CUresult cuMemHostAlloc ( void **  pp,
size_t  bytesize,
unsigned int  Flags 
)

Allocates bytesize bytes of host memory that is page-locked and accessible to the device. The driver tracks the virtual memory ranges allocated with this function and automatically accelerates calls to functions such as cuMemcpyHtoD(). Since the memory can be accessed directly by the device, it can be read or written with much higher bandwidth than pageable memory obtained with functions such as malloc(). Allocating excessive amounts of pinned memory may degrade system performance, since it reduces the amount of memory available to the system for paging. As a result, this function is best used sparingly to allocate staging areas for data exchange between host and device.

The Flags parameter enables different options to be specified that affect the allocation, as follows.

  • CU_MEMHOSTALLOC_PORTABLE: The memory returned by this call will be considered as pinned memory by all CUDA contexts, not just the one that performed the allocation.

  • CU_MEMHOSTALLOC_WRITECOMBINED: Allocates the memory as write-combined (WC). WC memory can be transferred across the PCI Express bus more quickly on some system configurations, but cannot be read efficiently by most CPUs. WC memory is a good option for buffers that will be written by the CPU and read by the GPU via mapped pinned memory or host->device transfers.

All of these flags are orthogonal to one another: a developer may allocate memory that is portable, mapped and/or write-combined with no restrictions.

The CUDA context must have been created with the CU_CTX_MAP_HOST flag in order for the CU_MEMHOSTALLOC_MAPPED flag to have any effect.

The CU_MEMHOSTALLOC_MAPPED flag may be specified on CUDA contexts for devices that do not support mapped pinned memory. The failure is deferred to cuMemHostGetDevicePointer() because the memory may be mapped into other CUDA contexts via the CU_MEMHOSTALLOC_PORTABLE flag.

The memory allocated by this function must be freed with cuMemFreeHost().

Note all host memory allocated using cuMemHostAlloc() will automatically be immediately accessible to all contexts on all devices which support unified addressing (as may be queried using CU_DEVICE_ATTRIBUTE_UNIFIED_ADDRESSING). Unless the flag CU_MEMHOSTALLOC_WRITECOMBINED is specified, the device pointer that may be used to access this host memory from those contexts is always equal to the returned host pointer *pp. If the flag CU_MEMHOSTALLOC_WRITECOMBINED is specified, then the function cuMemHostGetDevicePointer() must be used to query the device pointer, even if the context supports unified addressing. See Unified Addressing for additional details.

Parameters:
pp - Returned host pointer to page-locked memory
bytesize - Requested allocation size in bytes
Flags - Flags for allocation request
Returns:
CUDA_SUCCESS, CUDA_ERROR_DEINITIALIZED, CUDA_ERROR_NOT_INITIALIZED, CUDA_ERROR_INVALID_CONTEXT, CUDA_ERROR_INVALID_VALUE, CUDA_ERROR_OUT_OF_MEMORY
Note:
Note that this function may also return error codes from previous, asynchronous launches.
See also:
cuArray3DCreate, cuArray3DGetDescriptor, cuArrayCreate, cuArrayDestroy, cuArrayGetDescriptor, cuMemAlloc, cuMemAllocHost, cuMemAllocPitch, cuMemcpy2D, cuMemcpy2DAsync, cuMemcpy2DUnaligned, cuMemcpy3D, cuMemcpy3DAsync, cuMemcpyAtoA, cuMemcpyAtoD, cuMemcpyAtoH, cuMemcpyAtoHAsync, cuMemcpyDtoA, cuMemcpyDtoD, cuMemcpyDtoDAsync, cuMemcpyDtoH, cuMemcpyDtoHAsync, cuMemcpyHtoA, cuMemcpyHtoAAsync, cuMemcpyHtoD, cuMemcpyHtoDAsync, cuMemFree, cuMemFreeHost, cuMemGetAddressRange, cuMemGetInfo, cuMemHostGetDevicePointer, cuMemsetD2D8, cuMemsetD2D16, cuMemsetD2D32, cuMemsetD8, cuMemsetD16, cuMemsetD32


Generated by Doxygen for NVIDIA CUDA Library  NVIDIA