

Crack-Free Procedural Tessellation

CRACK-FREE POINT-NORMAL
TRIANGLES USING ADJACENT
EDGE NORMALS

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | ii

DOCUMENT CHANGE HISTORY

WP-05621-001_v01

Version Date Authors Description of Change

01 December 13,
2010

John
McDonald,

Mark Kilgard

Initial release

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | iii

TABLE OF CONTENTS

Overview .. 1

Hardware Tessellation Introduction ... 1

Tessellation Overview .. 1

In Depth .. 2

New Primitive Topologies .. 2

Hull Shader ... 3

Tessellation Generator (TG) ... 4

Domain Shader... 5

Efficient Work Partitioning ... 5

Curved Point-Normal Triangles with Edge-Adjacent Normals 7

Previous work and overview .. 7

Practical Usage ... 8

Implementation ... 9

The PN-AEN Triangle Index Buffer ... 9

PN-AEN Shaders .. 11

Meshes with negative curvature ... 15

Summary ... 16

Appendix ... 17

Complete Source Listing .. 17

Special Thanks ... 24

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | iv

LIST OF FIGURES

Figure 1. Tessellation Comparison .. 1

Figure 2. Direct3D 11 Pipeline Modification ... 1

Figure 2. Tessellation Factor specification ... 4

Figure 3. Wretch, used courtesy of Epic Games, Inc. .. 8

Figure 4. SCV, used courtesy of Blizzard Entertainment .. 9

Figure 5. Index Buffer for a Single Patch in PN-AEN .. 10

Figure 6. Hull Shader Thread Breakdown ... 11

Figure 7 Concave Curvature .. 15

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 1

OVERVIEW

Crack-Free Point-Normal Triangles using Adjacent Edge Normals (PN-AEN) is an

approach to real-time tessellation on existing hardware that produces crack-free meshes

without additional artist involvement. The solution uses existing vertex buffer data

along with index buffer data that can be easily computed from index buffers used by

existing triangle-based meshes, such as those found in real-time rendering applications

(e.g. games).

This approach extends PN triangles, originally proposed by Vlachos, et al, in the paper

Curved PN Triangles.

A source cube with divergent normals on each face (left), the resulting PN-Triangles Tessellation

(middle), and the resulting crack-free Tessellation (right).

Figure 1. Tessellation Comparison

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 1

HARDWARE TESSELLATION INTRODUCTION

As this may be the first exposure to hardware tessellation for many readers, a brief

overview is provided. Readers familiar with hardware tessellation can safely skip this

section.

TESSELLATION OVERVIEW

Programmable tessellation is a new feature of Direct3D 11 and OpenGL 4.0, and allows

the hardware to create contiguous geometry on-GPU. This allows for techniques that

were previously infeasible due to memory or complexity requirements.

Tessellation modifies the conceptual pipeline by adding three new stages, shown in

Figure 2:

Figure 2. Direct3D 11 Pipeline Modification

Hardware Tessellation Introduction

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 2

Tessellation requires three things to happen:

 Control Point Basis Transformation

Converting an input surface basis (parameterized by an ordered set of control

points) into a simpler to evaluate surface basis.

 Patch Geometry Generation

Generating geometry (lines, triangles, quads) from specified level-of-detail (LOD)

parameters.

 Vertex Shading

Transforming vertices from patch space to clip space.

In the implementation exposed by Direct3D 11, these tasks roughly correspond to the

three new stages.

IN DEPTH

New Primitive Topologies

New primitive topology types for tessellated patches are included in Direct3D 11, which

allow you to specify patches using between 1 and 32 control points per patch. The term

"Control Point" is used to refer to a vertex that is input to tessellation, while when

discussing tessellation a vertex is typically thought of as the result of the tessellation.

The new topology types follow the form

D3D11_PRIMITIVE_TOPOLOGY_X_CONTROL_POINT_PATCHLIST, where X indicates the

number of control points per patch.

Note: When using new index buffer types with tessellation disabled, the first three

indices of each patch will be interpreted directly as a triangle list. For example, if

using the index buffer type PATCH_9 with the input data { 0, 1, 2, 3, 4, 5, 6, 7, 8,

9, 10, 11, 12, 13, 14, 15, 16, 17, 18 }: if the hull and domain shader are set to

NULL, two triangles would be drawn: {0, 1, 2} and {9, 10, 11}.

Hardware Tessellation Introduction

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 3

Hull Shader

The hull shader is responsible for these tasks:

 Converts the control points of the input patch basis to the control points of the

output patch basis. A basis is a mathematical function, parameterized by control

points, which describes a surface.

The goal is to produce outputs useful for post-tessellation Vertex Shading (post-

tessellation). This process is completely application defined.

 Assigns LOD parameters for usage during Geometry Generation.

In the case of triangle tessellation, one factor must be set for each edge as well as one

factor for the interior of the triangle. In order to produce crack-free meshes, one must

ensure that the LOD values for each edge match up exactly. The safest way to do this

is to only use values available to both patches (ie, only shared data along the edge).

 Programs the TG stage parameters:

● Output primitive type

● Triangle winding specification

● Geometry generation method ("fractional_even", "fractional_odd", "int", "pow2")

However, these parameters are all set at shader creation time via attributes, not at

shader execution time.

 Optionally performs application-defined frustum culling.

Any patch with an EdgeLOD of zero will be culled. If the Hull Shader doesn't

perform culling, geometry can be generated outside of the frustum, leading to

performance degradation.

The Hull shader operates in two phases. The first phase, Hull Control Point shading,

executes in single-program-multiple-data (SPMD), where a distinct thread executes for

each output control point. One can specify the number of threads that run in parallel

during this phase by modifying the "outputcontrolpoints" shader attribute.

Upon completion of all of the Hull Control Point threads belonging to a single patch, the

hardware runs the Hull Patch Constant Function as a single thread. Your Patch Constant

Function may read the results of the Hull Control Point Functions by specifying an input

parameter of type const OutputPatch<ControlPointOutput,

OUTPUT_CONTROL_POINTS>. The control points cannot be modified during this stage.

Hardware Tessellation Introduction

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 4

The Hull Patch Constant Function is responsible for setting the LOD parameters, which

will be used by the Tessellation Generator (TG) to generate new geometry.

Note: The ordering of SV_TessFactor is described by language uncommonly seen in

triangle rasterization. SV_TessFactor must be correctly specified or cracks

between patches will result due to the mismatch of LOD between edges.

Figure 3. Tessellation Factor specification

Tessellation Factors are specified as the edge opposite the Nth vertex for tessellation in

the triangle domain.

The Patch Constant Shader can additionally output a set of constants for use during

Domain Shading.

Tessellation Generator (TG)

TG is a fixed-function unit, run upon completion of the Hull Patch Constant Function. It

uses the information specified above (Output Primitive Type, Forward Winding

Specification, Geometry Generation Method) to produce geometry in Patch Space. Patch

Space is a space that is specifically defined for each primitive type. The values output are

guaranteed to have bitwise accuracy even across patch edges, as long as the input LOD

values are identical for neighboring edges. Thus, proper Edge LOD specification is

critically important in producing crack-free meshes.

Hardware Tessellation Introduction

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 5

For example, when outputting triangles, TG will output a set of vertices using

Barycentric Coordinates. When outputting quads, TG will output a set of UV

coordinates.

Domain Shader

After TG has generated geometry according to compile-time Hull Shader parameters—

along with runtime-specified LOD parameters—the Domain Shader will begin to run on

the newly created vertices. The domain shader typically takes three items as input, an

InputPatch<ControlPointOutput, OUTPUT_CONTROL_POINTS>, an optional

PatchConstant (output by the Patch Constant portion of the Hull Shader), and a

parameter with the semantic SV_DomainLocation, which corresponds to the location in

patch space that is currently being shaded.

The Domain Shader combines all three pieces of information to convert vertices from

Patch Space to Clip (or Projection) space.

EFFICIENT WORK PARTITIONING

Now that the basics of tessellation have been covered, it's worthwhile to discuss how to

efficiently partition tessellation workloads. As with the standard pipeline, work should

be performed at the lowest frequency possible. This means that it is often worth

performing slightly more complex work in an earlier stage to allow for simpler work at a

later stage.

Here's a specific breakdown that seems to work well for numerous tessellation

techniques:

 Vertex Shader: Transform control points, normals, etc to camera space

 Hull Shader (Control Point): Compute Control Point locations, copy per-vertex data

to output control points. If possible, compute per-control point culling information.

 Hull Shader (Patch Constant): Use data from HS-Control Point to compute per-edge

LOD as well as interior LOD. Determine whether patch is outside of view frustum

(set edge-LOD values to 0 if so).

 Domain Shader: Perform tessellated multiply (patch->eye space) by multiplying

tessellation equation with control points and patch space location. Transform from

eye space to clip space.

Hardware Tessellation Introduction

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 6

This breakdown has several advantages:

 Transforming to eye space in the Vertex Shader, instead of the Hull Shader, will

utilize the Vertex Shader cache, which leverages optimized mesh layouts to reduce

the total amount of geometry being processed by the Vertex Shader.

 Culling geometry entirely outside of the view frustum saves significant geometry

processing when a model is close to the camera.

 Transforming from eye space to projected space in the domain shader can utilize an

optimized version of the projection transform which uses only 5 MADs instead of a

full 4x4 matrix transform per-vertex (on heavily magnified geometry).

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 7

CURVED POINT-NORMAL TRIANGLES WITH
EDGE-ADJACENT NORMALS

PREVIOUS WORK AND OVERVIEW

In the paper Curved PN Triangles, Vlachos, et al, prove that with purely local

information and non-C1 source data, it is impossible to avoid cracking in the output

mesh.

Note: The C(number) notation refers to the continuity of derivatives of a surface.

A surface is said to be C0 if it is crack-free (positions are continuous throughout

the mesh, no T-junctions, etc). A surface is said to be C1 if every position on the

surface has one and only one normal (no discontinuities in surface normals).

PN-AEN solves this problem by providing neighbor information during the Hull

Shading phase (while determining the Bezier control points of the surface) so that the

control points calculated along either side of a mesh edge can line up.

This requires:

 Performing a preprocess step that matches triangle edges to neighbor triangle edges,

and builds a custom index buffer that communicates these relationships.

 Writing a hull shader that averages the values computed by this triangle as well as

the adjacent triangle for each edge, resulting in control point selection that always

agrees across triangle edges—irrespective of whether normals are continuous across

the edge or not.

In this way, PN-AEN is able to produce crack free meshes for source material that is C0,

compared to the PN Triangles requirement of C1.

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 8

Practical Usage

PN-AEN is suitable for usage in real-time graphics applications (such as games) where

triangle meshes (including position and normal) already exist, and when additional

artist time cannot be spared. PN-AEN can be used to improve silhouette and shadowing

quality without a corresponding reduction in performance.

The following figures show two different models both with and without the usage of

this technique. The left image is the original untessellated mesh, while the right image is

tessellated using PN-AEN.

Figure 4. Wretch, used courtesy of Epic Games, Inc.

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 9

Figure 5. SCV, used courtesy of Blizzard Entertainment

IMPLEMENTATION

The PN-AEN Triangle Index Buffer

PN-AEN uses the 9-control point per-patch primitive type. By convention, the first 3

indices specify the triangle as though it were being specified in a TRIANGLELIST. This

actually allows the same buffer to be used to draw non-tessellated geometry by

specifying null Hull and Domain Shaders.

The remaining indices correspond to the neighboring vertex for each edge in the

triangle. This is more clearly demonstrated in Figure 6. Figure 6.

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 10

Figure 6. Index Buffer for a Single Patch in PN-AEN

Computing the PN-AEN Triangle Index Buffer

A pre-process step is used to compute the PN-AEN Triangle Index Buffer. A reference

implementation of this algorithm can be obtained by contacting NVIDIA’s Developer

Support.

The algorithm is linear in the number of triangles, where the constant factor depends on

the storage method used. It builds the adjacent edge information needed for PN-AEN as

follows, given a source Index Buffer (IB) as a TRIANGLELIST and Vertex Buffer (VB):

1. Create an output IB that is 3 times the size of input IB.

2. For each input Triangle in IB, with indices i0, i1 and i2:

a. Write out an initial output entry of: i0, i1, i2, i0, i1, i1, i2, i2, i0, which sets edges to

initially be neighbors of themselves. This would produce identical results to PN

Triangles.

b. Lookup the positions p0, p1, and p2, using i0, i1 and i2 to perform a lookup for

position of the associated vertex in VB.

c. Define 3 Edges, which consist of the two indices and two positions that make up

the corresponding Edge. An Edge should consist of the origin index, the

destination index, the origin position and the destination position.

d. For each edge, store the reverse of that edge in an easily searchable data structure

for the next step. The reference implementation uses an stdext::hash_map<Edge,

Edge> for this purpose. Reverse simply flips the sense of the edge (originating at

the destination position and index and heading to the origin position and index).

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 11

3. Walk the output index buffer (OB) constructed in step 2. For each patch of 9 indices:

a. For each Edge in the current Patch, perform a lookup into Edge->Edge mapping

created in step 2d.

b. If found, replace the current indices with the indices found in the map. Note that

two edges should be considered matching if their "from" and "to" indices match,

OR if their "from" and "to" positions match.

c. If not, continue to use the existing indices.

Upon completion of this algorithm, a buffer suitable for usage with PN-AEN will be

available.

Note: One-third of the data in a PN-AEN index buffers is identical to the

information stored in a TRIANGLELIST index buffer. Therefore, it may be

advantageous to store the "normal" index buffer data in one file and store only the

data unique to PN-AEN in a different file—and to interleave them together at asset

load time when tessellation is enabled.

PN-AEN Shaders

PN-AEN uses a Domain Shader that is identical to the Domain Shader used for PN

Triangles—the difference is entirely in Hull Shading (the computation of Bezier Control

Points).

In order to provide SIMD-efficient code, each hull shader control point program

operates on a single edge at a time. The values output from each thread are described in

Figure 7. In this figure, the ovals indicate the values worked out by a single thread. The

square in the middle is computed by the Patch Constant portion of the Hull Shader.

Figure 7. Hull Shader Thread Breakdown

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 12

A well-optimized reference implementation is provided beginning on the next page. For

reference, a similarly optimized implementation of PN Triangles is provided in the

Appendix, along with complete Vertex and Domain Shaders used with either PN or PN-

AEN Triangles.

// The Patch Control Point portion of the Hull Shader.

[domain("tri")]

[partitioning(PARTITION_METHOD)]

[outputtopology("triangle_cw")]

[patchconstantfunc("HS_Constant")]

[outputcontrolpoints(3)]

HS_ControlPointOutput HS_PNAENTriangles(

 InputPatch<HS_RenderSceneInput, 9> I,

 uint uCPID : SV_OutputControlPointID

)

{

 HS_ControlPointOutput O = (HS_ControlPointOutput)0;

 // The PN-AEN Index buffer provides access to the neighbor across

 // the edge of the triangle. Compute where

 // they are here.

 const uint NextCPID = uCPID < 2 ? uCPID + 1 : 0; // (uCPID + 1) % 3

 const uint AdditionalData = 3 + 2 * uCPID;

 const uint NextAdditionalData = AdditionalData + 1;

 float3 myCP, otherCP;

 // Copies first.

 O.f3ViewPosition[0] = I[uCPID].f3ViewPosition;

 O.f3WorldNormal = I[uCPID].f3WorldNormal;

 O.f2TexCoord = I[uCPID].f2TexCoord;

 // Calculate control points next. To compute a crack-free control

 // point, we average the control point we'd like with the

 // control point our neighbor would like. The result is that we

 // both agree on where that control point should go--and that

 // results in crack-free tessellation!

 // This is the only difference between PN and PN-AEN tessellation,

 // made possible by modern programmable tessellation hardware.

 myCP = ComputeCP(I[uCPID].f3ViewPosition,

 I[NextCPID].f3ViewPosition,

 I[uCPID].f3ViewNormal);

 otherCP = ComputeCP(I[AdditionalData].f3ViewPosition,

 I[NextAdditionalData].f3ViewPosition,

 I[AdditionalData].f3ViewNormal);

 O.f3ViewPosition[1] = (myCP + otherCP) / 2;

 myCP = ComputeCP(I[NextCPID].f3ViewPosition,

 I[uCPID].f3ViewPosition,

 I[NextCPID].f3ViewNormal);

 otherCP = ComputeCP(I[NextAdditionalData].f3ViewPosition,

 I[AdditionalData].f3ViewPosition,

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 13

 I[NextAdditionalData].f3ViewNormal);

 O.f3ViewPosition[2] = (myCP + otherCP) / 2;

 // Note: We're relying on the optimizer to avoid projecting to

 // projection space twice. Probably better to be explicit,

 // but this is a bit clearer.

 if (g_clipping.x) {

 O.fClipped = ComputeClipping(g_f4x4Projection,

 O.f3ViewPosition[0],

 O.f3ViewPosition[1],

 O.f3ViewPosition[2]);

 } else {

 O.fClipped = 0.0f;

 }

 // Perform Adaptive Tessellation step here.

 if (g_adaptive.x) {

 O.fOppositeEdgeLOD = ComputeEdgeLOD(g_f4x4Projection,

 O.f3ViewPosition[0],

 O.f3ViewPosition[1],

 O.f3ViewPosition[2],

 I[NextCPID].f3ViewPosition);

 } else {

 O.fOppositeEdgeLOD = g_f4TessFactors.x;

 }

 return O;

}

// The Hull Shader Constant function, which is run after all threads

// of the Hull Shader Control Point function (above) complete.

HS_ConstantOutput HS_Constant(

 const OutputPatch<HS_ControlPointOutput, OUT_PATCH_SIZE> I

)

{

 HS_ConstantOutput O = (HS_ConstantOutput)0;

 // These were computed during the Control Point phase of either PN

 // or PN-AEN Triangles.

 // We're just aliasing them to better match our functionality with

 // the reference implementation.

 float3 f3B300 = I[0].f3ViewPosition[0],

 f3B210 = I[0].f3ViewPosition[1],

 f3B120 = I[0].f3ViewPosition[2],

 f3B030 = I[1].f3ViewPosition[0],

 f3B021 = I[1].f3ViewPosition[1],

 f3B012 = I[1].f3ViewPosition[2],

 f3B003 = I[2].f3ViewPosition[0],

 f3B102 = I[2].f3ViewPosition[1],

 f3B201 = I[2].f3ViewPosition[2];

 // The tessellation factors map up in a somewhat surprising way.

 // Specifically, if you think of a triangle with indices 0, 1 and

 // 2, the LOD values map to the edge that is opposite the index.

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 14

 // That is to say that TessFactor[0] is the LOD for edge (1,2).

 // Here's the complete table:

 // TessFactor[0] => Edge(1, 2)

 // TessFactor[1] => Edge(2, 0)

 // TessFactor[2] => Edge(0, 1)

 O.fTessFactor[0] = I[1].fOppositeEdgeLOD;

 O.fTessFactor[1] = I[2].fOppositeEdgeLOD;

 O.fTessFactor[2] = I[0].fOppositeEdgeLOD;

 // There's no right or wrong answer here. We've chosen to say that

 // the interior should be at least as tessellated as the most

 // tessellated exterior edge.

 O.fInsideTessFactor[0] = max(max(O.fTessFactor[0],

 O.fTessFactor[1]),

 O.fTessFactor[2]);

 // Center control point

 float3 f3E = (f3B210 + f3B120 + f3B021

 + f3B012 + f3B102 + f3B201) / 6.0f;

 float3 f3V = (f3B003 + f3B030 + f3B300) / 3.0f;

 O.f3ViewB111 = f3E + ((f3E - f3V) / 2.0f);

 // Determine whether the center control point is visible or not.

 float fB111Clipped =

 IsClipped(ApplyProjection(g_f4x4Projection, O.f3ViewB111));

 if (I[0].fClipped && I[1].fClipped

 && I[2].fClipped && fB111Clipped) {

 // If all control points are clipped, the surface is

 // almost certainly not visible.

 O.fTessFactor[0] = O.fTessFactor[1] = O.fTessFactor[2] = 0;

 }

 return O;

}

Curved Point-Normal Triangles with Edge-Adjacent Normals

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 15

MESHES WITH NEGATIVE CURVATURE

While PN-AEN can produce crack free meshes from any C0 input mesh, there is still a

minor caveat. Meshes have normals that point inwards--indicating that the surface is

concave—can result in some mesh inter-penetration near the edges. While minor, this is

an issue to be aware of. This is more obviously illustrated in Figure 8.

Figure 8 Concave Curvature

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 16

SUMMARY

PN-AEN is a novel improvement on PN Triangles, producing crack-free tessellation

from a wider variety of input meshes and preserving hard edges when disjoint normals

occur.

As with PN Triangles, PN-AEN is able to produce surfaces with significantly higher

curvature than the memory footprint would imply without requiring additional artist

intervention.

Additionally, we've provided the reader with an overview of hardware tessellation on

modern GPUs, including an efficient, general work breakdown.

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 17

APPENDIX

COMPLETE SOURCE LISTING

#ifndef PARTITION_METHOD

#define PARTITION_METHOD "fractional_odd"

#endif

#define IN_PN_PATCH_SIZE 3

#define IN_KM_PATCH_SIZE 9

#define OUT_PATCH_SIZE 3

#define FAST_PROJECTION_XFORM 1

// Constant buffer

cbuffer cbPNTriangles : register(b0)

{

 float4x4 g_f4x4World; // World matrix for object

 float4x4 g_f4x4WorldView; // World * View matrix

 float4x4 g_f4x4WorldViewProjection; // World * View *

 // Projection matrix

 float4x4 g_f4x4ViewProjection; // View * Projection matrix

 float4x4 g_f4x4Projection; // Projection matrix

 float4 g_f4LightDir; // Light direction vector

 float4 g_f4Eye; // Eye

 float4 g_f4TessFactors; // Tessellation factors

 // x=Edge

 float4 g_f4ViewportScale; // The X and Y half

 // resolution, 0, 0

 bool4 g_adaptive; // Should use adaptive

 // tessellation

 bool4 g_clipping; // Should run clipping

 // tests.

}

// Some global lighting constants

static float4 g_f4MaterialDiffuseColor = float4(1.0f, 1.0f, 1.0f,

1.0f);

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 18

static float4 g_f4LightDiffuse = float4(1.0f, 1.0f, 1.0f,

1.0f);

static float4 g_f4MaterialAmbientColor = float4(0.2f, 0.2f, 0.2f,

1.0f);

// Textures

Texture2D g_txDiffuse : register(t0);

// Samplers

SamplerState g_SampleAniso : register(s0);

// Shader structures

struct VS_RenderSceneInput

{

 float3 f3Position : POSITION;

 float3 f3Normal : NORMAL;

 float2 f2TexCoord : TEXCOORD;

};

struct HS_RenderSceneInput

{

 float3 f3ViewPosition : POSITION;

 float3 f3WorldNormal : NORMAL;

 float3 f3ViewNormal : NORMAL1;

 float2 f2TexCoord : TEXCOORD;

};

struct HS_ConstantOutput

{

 float fTessFactor[3] : SV_TessFactor;

 float fInsideTessFactor[1] : SV_InsideTessFactor;

 float3 f3ViewB111 : POSITION9;

};

struct HS_ControlPointOutput

{

 float3 f3ViewPosition[3] : POSITION;

 float3 f3WorldNormal : NORMAL;

 float2 f2TexCoord : TEXCOORD;

 float fOppositeEdgeLOD : LODDATA;

 float fClipped : CLIPPED; // 1.0 means clipped,

 // 0.0 means unclipped.

};

struct DS_Output

{

 float4 f4Position : SV_Position;

 float2 f2TexCoord : TEXCOORD0;

 float4 f4Diffuse : COLOR;

};

struct PS_RenderSceneInput

{

 float4 f4Position : SV_Position;

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 19

 float2 f2TexCoord : TEXCOORD0;

 float4 f4Diffuse : COLOR;

};

struct PS_RenderOutput

{

 float4 f4Color : SV_Target0;

};

float3 ComputeCP(float3 posA, float3 posB, float3 normA) {

 return (2 * posA + posB - (dot((posB - posA), normA) * normA)) /

3.0f;

}

// Expects that projMatrix is the canonical projection matrix. Will be

// faster than performing a full 4x4 matrix multiply by an eye space

// position in that case.

float4 ApplyProjection(float4x4 projMatrix, float3 eyePosition)

{

 float4 clipPos;

#if FAST_PROJECTION_XFORM

 // In the canonical projection matrix, all other elements are zero

 // and eyePosition[3] == 1.

 clipPos[0] = projMatrix[0][0] * eyePosition[0];

 clipPos[1] = projMatrix[1][1] * eyePosition[1];

 clipPos[2] = projMatrix[2][2] * eyePosition[2] + projMatrix[3][2];

 clipPos[3] = eyePosition[2];

#else

 clipPos = mul(projMatrix, float4(eyePosition, 1));

#endif

 return clipPos;

}

// This will project the input eye-space position by the specified

// matrix, then compute an incorrect (but properly scaled) window

// position. Finally, we divide by the tessellation factor,

// which is approximately how many pixels we want per-triangle.

float2 ProjectAndScale(float4x4 projMatrix, float3 inPos)

{

 float4 posClip = ApplyProjection(projMatrix, inPos);

 float2 posNDC = posClip.xy / posClip.w;

 return posNDC * g_f4ViewportScale.xy / g_f4TessFactors.z;

}

float IsClipped(float4 clipPos)

{

 // Test whether the position is entirely inside the view frustum.

 return (-clipPos.w <= clipPos.x && clipPos.x <= clipPos.w

 && -clipPos.w <= clipPos.y && clipPos.y <= clipPos.w

 && -clipPos.w <= clipPos.z && clipPos.z <= clipPos.w)

 ? 0.0f

 : 1.0f;

}

// Compute whether all three control points along the edge are outside

// of the view frustum.

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 20

float ComputeClipping(float4x4 projMatrix, float3 cpA, float3 cpB,

float3 cpC)

{

 // Compute the projected position for each position, then check to

 // see whether they are clipped.

 float4 projPosA = ApplyProjection(projMatrix, cpA),

 projPosB = ApplyProjection(projMatrix, cpB),

 projPosC = ApplyProjection(projMatrix, cpC);

 return min(min(IsClipped(projPosA), IsClipped(projPosB)),

 IsClipped(projPosC));

}

// Compute the edge LOD for the four specifed control points, which

// should be the control points along one edge of the triangle. This is

// significantly more accurate than just using the end points of the

// triangle because it takes curvature into account. Note that will

// overestimate the number of triangles needed, but typically not by

// too much. It also ensures that we never cull a triangle by ensuring

// that the LOD is at least 1.

float ComputeEdgeLOD(float4x4 projMatrix,

 float3 cpA, float3 cpB, float3 cpC, float3 cpD)

{

 float2 projCpA = ProjectAndScale(projMatrix, cpA).xy,

 projCpB = ProjectAndScale(projMatrix, cpB).xy,

 projCpC = ProjectAndScale(projMatrix, cpC).xy,

 projCpD = ProjectAndScale(projMatrix, cpD).xy;

 float edgeLOD = distance(projCpA, projCpB)

 + distance(projCpB, projCpC)

 + distance(projCpC, projCpD);

 return max(edgeLOD, 1);

}

// This vertex shader transforms the input data to view space for

// optimized versions of tessellation shaders to use.

HS_RenderSceneInput VS_RenderSceneWithTessellation(

 VS_RenderSceneInput I

)

{

 HS_RenderSceneInput O = (HS_RenderSceneInput)0;

 O.f3ViewPosition = float3(mul(float4(I.f3Position, 1),

 g_f4x4WorldView).xyz);

 O.f3WorldNormal = mul(I.f3Normal, (float3x3)g_f4x4World);

 O.f3ViewNormal = mul(I.f3Normal, (float3x3)g_f4x4WorldView);

 O.f2TexCoord = I.f2TexCoord;

 return O;

}

[domain("tri")]

[partitioning(PARTITION_METHOD)]

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 21

[outputtopology("triangle_cw")]

[patchconstantfunc("HS_Constant")]

[outputcontrolpoints(OUT_PATCH_SIZE)]

HS_ControlPointOutput HS_PNTriangles(InputPatch<HS_RenderSceneInput,

IN_PN_PATCH_SIZE> I, uint uCPID : SV_OutputControlPointID)

{

 HS_ControlPointOutput O = (HS_ControlPointOutput)0;

 // Looking at HS_ControlPointOutput, we can see that we're really

 // outputing 3 control point positions

 // per real control point. Structuring the code this way allows us

 // to write efficient SIMD code,

 // because each thread can compute 3 control point values in

 // parallel.

 // Compute the next output control point ID so we know which edge

 // we're on.

 const uint NextCPID = uCPID < 2 ? uCPID + 1 : 0; // (uCPID + 1) % 3

 float3 myCP, otherCP;

 // Copies first.

 O.f3ViewPosition[0] = I[uCPID].f3ViewPosition;

 O.f3WorldNormal = I[uCPID].f3WorldNormal;

 O.f2TexCoord = I[uCPID].f2TexCoord;

 // Calculate control points next. The math in ComputeCP is the math

 // specified in Curved PN Triangles by Vlachos, et al.

 O.f3ViewPosition[1] = ComputeCP(I[uCPID].f3ViewPosition,

 I[NextCPID].f3ViewPosition,

 I[uCPID].f3ViewNormal);

 O.f3ViewPosition[2] = ComputeCP(I[NextCPID].f3ViewPosition,

 I[uCPID].f3ViewPosition,

 I[NextCPID].f3ViewNormal);

 // Note: We're relying on the optimizer to avoid projecting to

 // projection space twice. Probably better to be explicit,

 // but this is a bit clearer.

 if (g_clipping.x) {

 O.fClipped = ComputeClipping(g_f4x4Projection,

 O.f3ViewPosition[0],

 O.f3ViewPosition[1],

 O.f3ViewPosition[2]);

 } else {

 O.fClipped = 0.0f;

 }

 if (g_adaptive.x) {

 // Compute our adaptive tessellation factor based on each edge.

 // A few things worth noting:

 // In order to remain micro-crack free, neighboring patches

 // must compute the exact same LOD value for matching edges. To

 // ensure this, the safest method is to only use values that

 // are available to both

 // sides of the edge.

 // Additionally, we're computing LOD based on the view

 // projection, making this view-dependent.

 // We could also (for example), make this light-dependent, or

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 22

 // some combination of the two by using another matrix

 // and summing or maxing our results. The method we're using

 // will generate a bit more tessellation for an edge than is

 // really required, but will look correct when viewed edge-on,

 // and is why this method was chosen.

 O.fOppositeEdgeLOD = ComputeEdgeLOD(g_f4x4Projection,

 O.f3ViewPosition[0],

 O.f3ViewPosition[1],

 O.f3ViewPosition[2],

 I[NextCPID].f3ViewPosition);

 } else {

 O.fOppositeEdgeLOD = g_f4TessFactors.x;

 }

 return O;

}

// Our Domain Shader

[domain("tri")]

DS_Output DS_Shared(HS_ConstantOutput cdata,

 const OutputPatch<HS_ControlPointOutput, 3> I,

 float3 f3BarycentricCoords : SV_DomainLocation)

{

 DS_Output O = (DS_Output)0;

 // The barycentric coordinates

 float fU = f3BarycentricCoords.x;

 float fV = f3BarycentricCoords.y;

 float fW = f3BarycentricCoords.z;

 // Precompute squares and squares * 3

 float fUU = fU * fU;

 float fVV = fV * fV;

 float fWW = fW * fW;

 float fUU3 = fUU * 3.0f;

 float fVV3 = fVV * 3.0f;

 float fWW3 = fWW * 3.0f;

 // Although complicated, this is the canonical implementation of

 // PN, as per Vlachos, et al.

 float3 f3EyePosition = I[0].f3ViewPosition[0] * fUU * fU +

 I[1].f3ViewPosition[0] * fVV * fV +

 I[2].f3ViewPosition[0] * fWW * fW +

 I[0].f3ViewPosition[1] * fUU3 * fV +

 I[0].f3ViewPosition[2] * fVV3 * fU +

 I[1].f3ViewPosition[1] * fVV3 * fW +

 I[1].f3ViewPosition[2] * fWW3 * fV +

 I[2].f3ViewPosition[1] * fWW3 * fU +

 I[2].f3ViewPosition[2] * fUU3 * fW +

 cdata.f3ViewB111 * 6.0f * fW * fU * fV;

 // After computing our eye position, apply projection to compute

 // the clip space position. With tessellation enabled, you can

 // think of the bottom of the Domain Shader as being equivalent

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 23

 // to the bottom of the Vertex Shader when tessellation is

 // disabled.

 float4 f4ClipPosition = ApplyProjection(g_f4x4Projection,

 f3EyePosition);

 // In the canonical PN implementation, quadratic normals are

 // computed. However, this introduces high frequency lighting noise

 // in meshes with normals that point in the same direction but are

 // not perpendicular to the triangle surface. Moreover, quadtratic

 // normals in the face of normal maps would actually also require

 // per-pixel quadratic tangents and bitangents.

 float3 f3Normal = I[0].f3WorldNormal * fU

 + I[1].f3WorldNormal * fV

 + I[2].f3WorldNormal * fW;

 // Normalize the interpolated normal

 f3Normal = normalize(f3Normal);

 // Linearly interpolate the texture coords

 O.f2TexCoord = I[0].f2TexCoord * fU

 + I[1].f2TexCoord * fV

 + I[2].f2TexCoord * fW;

 // min(I[0].fOppositeEdgeLOD, 0) will evaluate to 0 always, but the

 // compiler cannot figure that out and fOppositeEdgeLOD (and

 // fClipped) need to be used in the domain shader to avoid being

 // compiled out of the output struct.

 // This code is only here to work around a compiler bug and will be

 // removed in a future version.

 float bogusCompilerWAR = min(I[0].fOppositeEdgeLOD, 0)

 * I[0].fClipped;

 O.f2TexCoord.x += bogusCompilerWAR;

 // Calc diffuse color

 O.f4Diffuse = g_f4MaterialDiffuseColor * g_f4LightDiffuse

 * max(0, dot(f3Normal, g_f4LightDir.xyz))

 + g_f4MaterialAmbientColor; //

 O.f4Diffuse.a = 1.0f;

 // Transform model position with view-projection matrix

 O.f4Position = f4ClipPosition;

 return O;

}

Appendix

Crack-Free Point-Normal Triangles using Adjacent Edge Normals WP-05621-001_v01 | 24

// Pixel Shader

PS_RenderOutput PS_RenderScene(PS_RenderSceneInput I)

{

 PS_RenderOutput O;

 O.f4Color = g_txDiffuse.Sample(g_SampleAniso, I.f2TexCoord)

 * I.f4Diffuse;

 return O;

}

SPECIAL THANKS

Special thanks to Blizzard Entertainment and Epic Games for allowing the usage of their

assets, both in testing PN-AEN as well as in this whitepaper.

www.nvidia.com

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND OTHER
DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA MAKES NO
WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND
EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR
A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication of otherwise under
any patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all other information previously supplied. NVIDIA
Corporation products are not authorized as critical components in life support devices or systems without
express written approval of NVIDIA Corporation.

HDMI

HDMI, the HDMI logo, and High-Definition Multimedia Interface are trademarks or registered trademarks of
HDMI Licensing LLC.

ROVI Compliance Statement

NVIDIA Products that are ROVI-enabled can only be sold or distributed to buyers with a valid and existing
authorization from ROVI to purchase and incorporate the device into buyer’s products.

This device is protected by U.S. patent numbers 6,516,132; 5,583,936; 6,836,549; 7,050,698; and 7,492,896
and other intellectual property rights. The use of ROVI Corporation's copy protection technology in the
device must be authorized by ROVI Corporation and is intended for home and other limited pay-per-view uses
only, unless otherwise authorized in writing by ROVI Corporation. Reverse engineering or disassembly is
prohibited.

OpenCL

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the U.S. and
other countries. Other company and product names may be trademarks of the respective companies with
which they are associated.

Third Party Copyright

Wretch © 2010, Epic Games, Inc. All Rights Reserved. Epic and Epic Games are trademarks or registered trademarks of
Epic Games, Inc. in the United States of America and elsewhere.
StarCraft® II SCV used with permission from Blizzard Entertainment, Inc.

Copyright

© 2010 NVIDIA Corporation. All rights reserved.

