

Whitepaper

Optimizing
Marble Blast Ultra

Eric Preisz
eric@venagen.com

Version 1.0 - February 2008

 2 Version 1.0 - February 2008

Optimizing Marble Blast Ultra

Abstract

Marble Blast Ultra (MBU) is an Xbox Live Arcade and InstantAction.com
launch title developed by GarageGames.com, Inc. in Eugene, Oregon. Using a
process taught at Full Sail Real World Education, located in Orlando, FL, we will
examine and improve the performance of this application by 53% - 66% with
little decrease in fidelity across different PC configurations.

Introduction

The method used to optimize MBU relies on a detection process that focuses
on system, application, and micro optimizations to balance the most efficient
optimizations with the opportunities that yield the highest return on our efforts.

The system level of optimization focuses on the utilization of our hardware.
We measure utilization as a percentage of time that the hardware is not idle.
For example, a common measurement of utilization is 100% CPU utilization and
25% GPU.

 System level optimizations include balancing. Balancing is when we move
work from an over utilized resource, to an underutilized one. Moving the
updates of a particle system from vertex buffer locking and CPU processing to a
GPU method would be a useful optimization for the utilization example in the
prior paragraph.

Application level optimizations are class or function sized optimizations.
These optimizations are typical in every game engine. In fact, one may think of
a game engine as a collection of application level optimizations. Quad trees,
render state batching, or sorting algorithms are all examples of application level
optimizations.

__
Eric Preisz is a course director for optimization at Full Sail Real World Education in Orlando, Florida
and a managing director at Venagen. Venagen is looking for the opportunity to optimize your
application. Contact Eric Preisz at eric@venagen.com

 Version 1.0 - February 2008 3

Micro optimizations are the fodder for mailing lists and arguments; these line
by line optimizations are easy to discuss in terms of latency and throughput, yet
their use to increase performance tend to vary from processor-to-processer and
configuration-to-configuration. Unless your detection process points you at a
specific area ripe for micro-optimizations, yield to the suggestions of an
optimizing compiler. Shaders, however, are an exceptional opportunity for micro
optimizations, especially if optimizing your shaders means fewer shader
instructions.

Understanding these levels of optimization is important to our task of
optimizing a game. Using the process of detection utilized at Full Sail Real World
Education, we attempt optimizations in the following order: system, application,
micro.

When we optimize a game and the frame rate increases, we must repeat the
process from the beginning. A game flows through our instructions like water
through a stream – remove a rock (bottleneck/hotspot) and the water flows
using new paths. Even the smallest optimization can change what resource
limits our applications performance.

In a perfect world, we would solve every system level optimization before
moving to the application level. Likewise, we would optimize the application
level before optimizing micro. Doing this helps us to find the optimizations with
the biggest return on investment. In the real world, milestones and deadlines
may prohibit the largest opportunity for frame rate increase if the
implementation of the optimization is complex. In these cases, programmers are
likely to choose a less time consuming optimization.

Even more important than finding the optimization that yields the biggest
gain is ensuring that we don’t perform an optimization that yields no gain. When
we incorrectly optimize a fast parallel stage, the stage that limits our frame rate
may still limit our performance as it did before the unprofitable optimization.

Understanding the three levels of optimization helps us in our task. As
developers, we need not just optimize our games, we must optimize them
efficiently. Large game engines can contain 500,000 to 1.5 million lines of code;
understanding what code to optimize is as important as the solution to what you
discover.

This paper will explore system, application, and micro optimizations, used to
optimize a title developed by Garage Games. The tool we used for GPU
optimizations NVIDIA’s PerfHUD 6.0.

Benchmark

For our benchmark, we chose an average scene that contained many of the
effects used throughout the game. To make our benchmark representative of

 4 Version 1.0 - February 2008

the final deliverable required for in-browser rendering, we must optimize the
application in windowed mode.

Figure 1. Pre-optimization benchmark running at 78Hz.

Figure 2. Post-optimized benchmark running at 130Hz.

By choosing an “average frame” we are hoping to achieve uniform
optimizations across the entire application. This paper will only address several
iterations of optimization using one benchmark. This process, to ensure a
performance increase across many configurations of PC, should be run on many

 Version 1.0 - February 2008 5

different GPUs and CPUs. In this particular case study, we executed the majority
of our application using a 1.18 GHz Intel Core 2 Duo and a NVIDIA 8300 GS.

Detecting Errors

Before diving into the optimizations, it is advisable to search for common API
errors or bad practices. Using the Debug Console, PerfHUD indicates that there
is a vertex buffer being locked every frame.

Figure 3. The Frame Debugger displays a vertex buffer creation call that occurs during
game runtime.

Placing a breakpoint inside the engine reveals the misuse of an enumeration
of the engine’s graphics layer that is causing the creation and deletion of a
vertex buffer. A simple switch of the enumeration, converts the vertex buffer to
dynamic, which also removes the call from the Debug Console.

The frame rate increase is minimal at best, but now that we are free of the
API “abuse”, we are able to continue the process of optimizing the application.

 6 Version 1.0 - February 2008

First Optimization

First Optimization: System Level View

Our first goal is to determine our system utilization. This is easily done in
the Performance Dashboard. PerfHUD collects data directly from hardware
counters. One of them, GPU Idle, will help us determine if we should be
optimizing the CPU or the GPU.

GPU Idle measures the idle state of the graphics card across each frame.
Through the customization of the interface available, we will select GPU Busy,
which is simply 100% - GPU Idle %.

Using this number will provide us insight on whether we are more CPU or
more GPU bound. By optimizing the resource that is bounding our application’s
performance, we are likely to find the biggest bottleneck or hotspot.

Figure 4. GPU Utilization is near 100%. This data is represented by the green line that is
near the top of the chart.

At this stage, our application is GPU bound, which we are able to determine
by PerfHUD’s reading of GPU Busy. Figure 4 shows a GPU Busy number that is
near 100%.

 Version 1.0 - February 2008 7

Empirical testing, performed by throttling CPU instructions and plotting frame
rates performance against GPU Busy output, suggests that an application is
equally CPU and GPU bounded near 85% GPU utilization. Therefore, when
reading GPU Busy numbers, we suggest that a GPU busy that is less than 80% is
likely CPU bound. An application with a GPU Busy number that is greater than
90% is mostly GPU bound.

Knowing that we are GPU bound doesn’t tell us enough to apply a solution.
The GPU contains many parallel units performing different operations on the
data. These are arraigned in a deep pipeline on the GPU, similar to multiple
vehicle assembly lines. These assembly lines perform parallel operations on
batches of triangles and pixels that share similar render state. When optimizing
the GPU, we must focus on which unit is the bottleneck, slowing the entire
pipeline. We should focus our optimizations there.

By continuing in the Performance Dashboard view, we are able to gather
more information about our benchmark. Figure 5 shows that shader (~60%)
and texture (~45%) utilization is the highest, when compared to the utilization
of vertex assembly (<~5%) and raster operations (~17%). Using this
information, we build an educated guess that we should focus on shader and
texture processing.

With shader model 4.0, shaders are unified, meaning that vertex, geometry,
and pixel shaders all share the same shader pool. Figure 5 also shows us that
the majority of shader utilization lies in the pixel shader.

 8 Version 1.0 - February 2008

Figure 5. The Performance Dashboard indicates that the shader unit is operating near
60% (green line) and the texture unit is operating near 45%. On the right, we see that
the 60% of the shader is dominated by work in the pixel shader.

 Understanding this data is useful as we continue. Pressing F8 activates
one of the most useful features of PerfHUD, the Frame Profiler. When entering
the Frame Profiler, PerfHUD runs a series of tests on a single frame, measuring
the performance at different units along the GPU pipeline. When the tests are
complete, PerfHUD presents the data by sorting the draw calls into groups
sharing common state, calling these State Buckets. At first, the largest State
Bucket (and the slowest draw call in that State Bucket) is selected. For more
information on state buckets, see the PerfHUD user guide. This draw call
represents a significant optimization opportunity.

The current State Bucket contains many draw calls, but one draw call seems
particularly costly. Figure 6 displays the slow draw call, highlighted in the scene
by PerfHUD in wireframe. Notice that the draw call generates 257,662 pixels.

Figure 6. Draw call 130 takes 3.247 milliseconds and draws 257,662 pixels.

There are many optimizations we can apply to this draw call. Using the
knowledge gained from our system level, an appropriate application optimization
is available.

 Version 1.0 - February 2008 9

First Optimization: Application Level

Using the knowledge from our system level analysis, we choose to perform a
z-pass to help reduce the amount of pixels generated by the draw call. We
implement this by drawing parts of the scene twice, disabling color-writes in the
first pass. This optimization works under the following conditions:

 Low number of draw calls.

 Under utilization of vertex assembly, vertex shader, and geometry shader.

 High utilization of pixel shader resource due to processed pixels that are
occluded.

This profile fits the description of our current application; when this
optimization is applied, we see a frame rate increase. The z-culling of those
pixels has reduced the number of pixels from 257,662 to 115,868. This
optimization is particularly interesting since doubling the number of draw calls
actually increased overall frame rate.

Figure 7. Using a z-pass, the application culls pixels more efficiently.

Now that we have increased the performance, we must move back to a
system level view and determine if we have drastically changed the performance
balance between CPU and GPU.

10 Version 1.0 - February 2008

Second Optimization

Second Optimization: System Level

Moving back to the Performance Dashboard, PerfHUD shows that we are still
GPU bound and our shader utilization is a few percent less than in the past view.
Since we are still mostly limited by shaders, and more specifically pixel shaders,
we will again run the Frame Profiler.

Second Optimization: Micro Level

After running the Frame Profiler, PerfHUD points to the same draw call.
There is no easily implemented application optimization, except for possibly
better culling; but, that wouldn’t change our pixel performance since pixels
outside the viewport are already culled during rasterization.

The remaining optimization on this particularly costly draw call is to micro
optimize the pixel shader.

The developer, GarageGames, was already aware that this pixel shader was
costly and had already revised the shader to perform using less texture samples.

Using the Pixel Shader Advanced State Inspector feature of PerfHUD, we are
able to replace this shader and compile it to test if our new shader is more
optimal. We can also toggle between the original and modified shader to
confirm the performance change in the Performance Dashboard.

 Version 1.0 - February 2008 11

Figure 8. Using PerfHUD, we are able to replace the current shader in the Advanced
State Inspector.

Third Optimization

Third Optimization: System Level

Having performed the optimization, we review the Performance Dashboard
and find only a slight change in shader performance and GPU utilization. The
Frame Profiler is showing a new, slowest state bucket and is pointing at a fixed
function draw call used to render the glow buffer into the framebuffer.

Instead of continuing to look for an increase in shader performance, we will
look at increasing the performance of the next highest utilized GPU sub-unit,
which, according to PerfHUD, is the texture unit.

12 Version 1.0 - February 2008

Figure 9. Performance Dashboard shows that we have reduced the utilization of the
shader unit.

Third Optimization: Micro level

The easiest way to test texture performance is to use the “ctrl+t” key
combination while in the Performance Dashboard. This causes PerfHUD to
substitute a 2x2 texture for every texture in the scene. When we perform this
operation, the frame rate should increase, but does not. The texture unit
utilization stays the same.

Detecting the next optimization requires an obscure observation. Since the
ctrl+t key only affects the draw calls, then a potential optimization lies in another
call. In this case, the trouble call is a stretchrect with a src that contains an
effect buffer and a dest that contains a pointer to the backbuffer.

Stretchrect is supported in hardware, so the use of the call is acceptable;
however, the resolution src texture is quite large at 512x512. That means for
that stretchrect, you will be reading and filtering 262,144 texels. Reducing the
resolution to 256x256 reduces resolution, but increases performance
significantly. The pixel utilization increases significantly and texture unit
utilization drops.

 Version 1.0 - February 2008 13

Figure 10. After reducing the resolution of the strechrect, pixel utilization increases and
texture utilization decreases.

Final Optimization

Final Optimization: System Level

There are no more obvious texture or pixel shader optimizations and we are
still GPU-bound. This final optimization is difficult to detect, yet yields a
significant performance gain.

The GPU is a deep pipeline with a large latency and incredible throughput.
This deep pipeline allows the CPU to be three frames ahead of the GPU. This
creates noticeable latency for user input when frame rates are low.

Due to a bug, the application reduces this latency in a costly way. The
application mistakenly falls back to a method that locks a dynamic texture with a
NULL flag forcing a CPU/GPU sync and download from video memory.

You can visualize the overhead in the Performance Dashboard by viewing the
driver time. The wasteful driver time occurs during the download and sync.

14 Version 1.0 - February 2008

Figure 11. Driver time is reduced by removing the rendering “fence”.

Conclusion

Our goal was to increase performance without sacrificing appearance. We
were able to meet this goal with almost all of our optimizations. The stretchrect
optimization does reduce fidelity in areas behind refracted glass, but the impact
on the scene is minimal and acceptable from an artistic standpoint.

With help from PerfHUD, our optimizations yielded a 53% frame rate
increase from the starting 40.1 Hz to 61.4 Hz on the 8300GS.

By using the ctrl+s key in the Performance Dashboard we are forcing all
pixels to be rejected in rasterization. Since the frame rate is still increasing, we
can conclude that there are still more opportunities for performance increase by
optimizing the pixel shader, texture, or ROP units.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in the United
States and other countries. Other company and product names may be trademarks of the respective
companies with which they are associated.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and
existing authorization from Macrovision to purchase and incorporate the device into buyer’s products.

Macrovision copy protection technology is protected by U.S. patent numbers 4,631,603, 4,577,216 and
4,819,098 and other intellectual property rights. The use of Macrovision’s copy protection technology in the
device must be authorized by Macrovision and is intended for home and other limited pay-per-view uses only,
unless otherwise authorized in writing by Macrovision. Reverse engineering or disassembly is prohibited

Copyright

© 2008 NVIDIA Corporation. All rights reserved.

