

Month 2007

High Quality
Antialiasing

Tristan Lorach
tlorach@nvidia.com

Month 2007 ii

Document Change History

Version Date Responsible Reason for Change

1 01/11/07 Initial release

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050

www.nvidia.com

 Abstract

This sample shows different ways of performing anti-aliasing - both by using only
the native hardware AA support, and by mixing the hardware modes with additional
supersampling. There are various ways in which the supersampled image can be
down-sampled. The way we do the downsampling in this example is the same
technique that was used in 2 of our latest launch demos – “Froggy” and “Adrianne”.

For any details related to hardware CSAA/MSAA mode, please visit our web page
at :

http://developer.nvidia.com/object/coverage-sampled-aa.html

Month 2007 2

Motivation

The NVIDIA demo team use many interesting techniques, but people often wonder
how these are implemented.

This sample shows how Alexei Sakhartchouk and Eugene D'Eon integrated
antialiasing in their respective demos ‘Froggy’ and ‘Adrianne’.

The purpose of this sample is to:

! Show how to activate different hardware MSAA/CSAA modes in OpenGL

! Show how to add on top of this another technique to improve antialiasing :
supersampling and filtering

How Does It Work?

For the section related to MSAA/CSAA modes, please refer to the document
http://developer.nvidia.com/object/coverage-sampled-aa.html

Next we will discuss how to add supersampling and how we can downsample it.

Month 2007 3

Simple downsampling

Figure 1

The simple downsampling is just using the hardware bilinear filtering : in this figure,
you can see that sample f will be the average of texels 1,2,3 and 4.

Month 2007 4

Downsampling with Filtering

Figure 2 : kernel 1

The second technique is down sampling the texture but also adds a filter by fetching
additional samples (b,c,d,e).

The resulting color will be the average normalized color of these 5 samples.

Month 2007 5

Note that this filter is giving slightly more weight to the center of the kernel : ‘a’
sample is helping, but also other samples are getting more from texels in the center
(1,2,3,4) than from texels around (5,6,7,8,9,10,11 and 12).

Note also that we used a rotated grid to avoid artifacts coming from vertical or
horizontal boundaries.

More Filtering

The last technique is mixing two kernels : the previous one with another larger.

Here is how the larger kernel looks :

Figure 3 : kernel 2

Month 2007 6

This larger kernel is using the hardware to filter 2x2 areas that aren’t intersecting at
all. Then these 5 separate areas are averaged to a final color value.

The combination of these two kernels (fig 2 and fig 3) is made through a l e rp of the
2 respective filtered results. The lerp will balance between those two filtered values
depending on the alpha value we filtered with kernel 1 (fig 2)

Figure 4 : mix of the 2 kernels

Using a larger kernel can be useful when some sharp objects (i.e high frequencies in
color changes) are spread around the model. Sharp objects can easily lead to aliasing
artifacts.

Month 2007 7

A good example is hair and eye lash rendering. Adrianne’s hair and lashes are using
this mix of 2 kernels by setting the alpha value to 0, while the rest of the body kept
alpha=1. As a consequence hair is softened with a larger area, thus adding the
feeling that these areas are fluffy.

Issues Related to Using Larger Kernel
However, there is a situation where using a larger kernel depending on alpha does
not give the proper result - displaying an abject with alpha=1 on top of objects with
alpha=0. For example in Adrianne demo, when we display an earring in front of the
hair, the ring is averaged with the hair and will look blurry.

If you consider the blue area (alpha = 0) as the equivalent of Adrianne’s hair and the
green lines (alpha = 1) as the earring, here is what we get :

Figure 5

Compared to the version with no kernel depending on alpha :

Figure 6

In figure 5, the green lines and even the black one are somehow blurred by the
background in blue (alpha = 0).

Note that the sample is doing the opposite and correct way : the blue object (torus)
has alpha = 1 while thin objects have alpha = 0.

Month 2007 8

Running the Sample

The sample has different menu items and key bindings that allow you to compare
different modes :

! ‘1’,’2’,’3’ : choose down sampling modes

" 1 : simple down sampling

" 2 : down sampling with kernel filtering

" 3 : down sampling with 2 kernel filtering

! ‘a’ : toggle between simple OpenGL MSAA (4x - no supersampling or specific
MSAA/CSAA) and other more sophisticated AA (CSAA, supersampling and
filter pass)

! ‘c’ : preset to set the application in our 16x CSAA mode.

! ‘s’ : preset to set the application in 16x CSAA mode with supersampling and 2
kernel filtering on top of it

Note that if your driver doesn’t have CSAA, the sample will fall back to MSAA 4x
instead.

Month 2007 9

Performance / Results

Our native CSAA is very efficient and provides high quality results. CSAA 16x is
slightly more expensive than MSAA 4x. For more details you may want to refer to
http://developer.nvidia.com/object/coverage-sampled-aa.html

Drawing the scene to super sampled buffer and processing it through our 3
different down sampling techniques has a cost. You should be since this technique
renders 4 times more fragments than the original technique. This means that
expensive shaders could be a problem.

However, if you are rendering simple shaded geometries (like in CAD/DCC
applications), the fill rate may not be as much of an issue.

Note that both the “Froggy” and “Adrianne” demos used this AA combination with
complex shaders and everything worked well.

Comparisons

Here are different screen captures to show the differences between MSAA 4x,
CSAA 16x and CSAA 16x combined with the use of supersampling and filtering.

The next set of pictures show the differences between the 3 techniques we used to
down sample (and filter) the FBO.

Month 2007 10

! MSAA 4x. Basic mode from glut initialization :

! CSAA 8x

! CSAA 8x + Supersampling AA using 2 kernels for downsampling and filtering :

Month 2007 11

Downsampling techniques

These 3 samples are usin CSAA 16x

a : b : c:

From left to right :

a) Simple down-sampling using only hardware bilinear filtering

b) Down sampling using 5 tap filtering

c) Down sampling using 2 5 tap filtering. You can see that the thin green
cones (having alpha=0) are blurry. This is what the kernel #2 is doing

Conclusion

Choosing the correct technique for antialiasing is really dependent on which kind of
application you are running. The additional super-sampling technique described here
is not practical in all situations.

Some CAD applications may be particularly interested in the more sophisticated AA
techniques described here. The reason is that professional / industrial applications
often use lines, wireframe and very thin and high-contrast primitives. Furthermore,
clients are very sensitive to image quality and will not tolerate even small artifacts.

Other applications such as games may not get such benefit from complex
antialiasing. Developers should make their own decision - this may depend on art
assets - the 3D models; the colors and the default resolution. In most of the cases,
CSAA would be the best tradeoff for games - for a little additional cost compared to
MSAA 4x, the result is very good.

Month 2007 12

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND

OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,

MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under any

patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA, the NVIDIA logo, GeForce, and NVIDIA Quadro are trademarks or registered
trademarks of NVIDIA Corporation in the United States and other countries. Other company and

product names may be trademarks of the respective companies with which they are associated.

Copyright

© 2007 NVIDIA Corporation. All rights reserved.

