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Fig. 1. Color triad is designed to approximate color distributions of shaded objects, enabling direct manipulation of colors in an image and other applications.

We present nonlinear color triads, an extension of color gradients able to
approximate a variety of natural color distributions that have no standard
interactive representation. We derive a method to �t this compact parametric
representation to existing images and show its power for tasks such as image
editing and compression. Our color triad formulation can also be included
in standard deep learning architectures, facilitating further research.
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1 INTRODUCTION
Existing color theme representations are either restricted to a few
color swatches or are fully unconstrained. In this work, we show
the power of a color representation that strikes a careful balance
between expressiveness and structure. We propose non-linear color
triads, which can both approximate a wide array of color distribu-
tions and naturally lend themselves to many applications.
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The simplicity of our representation is inspired by discrete color
palettes, typically comprised of 5-10 independent colors. Despite
their limited representative power, simplicity and the ease of con-
struction have made discrete palettes a popular tool for artists and
researchers alike, and they have found use in recoloring, color theme
extraction and machine learning. While discrete palettes may be
suitable for some domains, they are a poor �t for larger, continuous
color distributions found in most art and design. Palettes modeling
more complex color distributions [Meier et al. 2004; Nguyen et al.
2015; Shugrina et al. 2017, 2019] focus on supporting the creation of
novel artwork and have not been applied to representing, analyzing
and editing existing images, perhaps due to their freeform unstruc-
tured nature. Color triads combine versatility and representational
power with simplicity, enabling new applications.

A color triad is simply a triangular patch of RGB space governed
by �ve parameters: three colors de�ning the linear interpolation
space, and the fourth parameter setting a constrained amount of non-
linearity. This non-linearity is critical for modeling an array of color
distributions and blending behaviors, while constraints prevent
degeneracies during user editing. An additional �fth parameter
de�nes the level of discretization, making it possible to model both
coarsely and densely sampled distributions. We explain the intuition
behind this simple interactive representation, and demonstrate a
number of useful applications. Our contributions are:

• analysis and intuition for color distribution modeling (§3)
• nonlinear color triad formulation (§4)
• algorithm for �tting color triads to images (§5)
• application of color triads to interactive editing of images (§6)
• demonstration of color triad formulation incorporated into a fully
di�erentiable deep learning architecture (§7)

We also sketch out potential applications of our model to image com-
pression and paint pigment modeling in the Supplemental Material.
We evaluate our model quantitatively to show its representative
power and qualitatively with a user study (§8).
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2 RELATED WORK
Discrete color palettes: Discrete color palettes, consisting of a
small (typically 5) number of solid color swatches, have become
a ubiquitous representation of color combinations in design ap-
plications. Their simple representation makes discrete palettes, or
themes, easy to construct and share, e.g. using a platform such as
Adobe Color CC [Adobe 2017], or [COLOURlovers 2017]. Perhaps
due to this simplicity, discrete color palettes have also received
substantial attention from the research community. A number of
approaches have been proposed for extracting discrete color palettes
from images [Chang et al. 2015; Lin and Hanrahan 2013; O’Donovan
et al. 2011], and also for using these palettes for image recoloring
[Chang et al. 2015; Chen et al. 2014; Wang et al. 2010] or colorization
[Lin et al. 2013]. In addition, crowd sourcing user preferences for
this canonical color theme representation inspired work on com-
putational aesthetics of palettes [O’Donovan et al. 2011, 2014], and
machine learning approaches to palette extraction and generation
[Colormind.io 2018]. Other methods for discrete color palette ex-
ploration have been proposed, e.g. a constraint-based exploration
method of [Mellado et al. 2017]. However, color distributions of
most man-made images are not well-modeled by small discrete sets
of colors, limiting the applicability of discrete color palettes.
Other color palettes: Gamutswith a large number of colors have

no canonical representation. Perhaps for this reason they are harder
to construct, analyze and edit, and have received less attention from
the research community. [Nguyen et al. 2015] �t color manifolds to
collections of images, but their color manifold representation is not
editable once constructed and requires a large amount of data to
approximate. Conversely, the compact continuous palette of [Shug-
rina et al. 2017] is tuned for interaction during digital painting and
does not naturally support tasks outside of this scenario. Another
recent work [Shugrina et al. 2019] focuses on direct manipulation
of color blocks to allow unstructured construction of multi-color
blends. The underlying representation is limited to RGB blending,
which has limited representative power, and its application outside
of the proposed interface has not been explored.
Color blending: Digital color interpolation depends on its dig-

ital representation. Linear interpolation in CIELAB [CIE 2001],
HSV [Smith 1978], HWB [Smith and Lyons 1996] and RGB results in
vastly di�erent gradients (Fig.2). Typically, graphic design software
exposes only RGB blending due to its simplicity. However, RGB
blending can result in grayish tones when transitioning from one
vibrant color to another. The team behind Paper53 App [2017] hand-
tuned gradients of color pairs to look more pleasing [Dannen 2012].
Another possibility is modeling physical paint blending with the
Kubelka-Munk equation [Hecht 1983], e.g. to simulate watercolor
[Curtis et al. 1997]. It is also possible to take a data-driven approach
and learn blending and compositing behavior from examples [Lu
et al. 2014], or to optimize a set of multispectral pigments to model
appearance of a particular artwork [Tan et al. 2018a]. Rather than
settle on a particular alternative to the standard RGB interpolation
we model a variety of blending behaviors with the color triad’s bend-
ing parameter. Our system exposes the control of this parameter to
the artist, but it would also be possible to restrict it to better match
a particular medium in a more targeted application.

Recoloring and Colorization: Chang et al. [2015] extract a dis-
crete color palette from an image and use it for recoloring. Their
method precomputes color transfer functions for each pixel and
allows only indirect control over the resulting colors. In contrast,
we use color triads to model the entire color distribution, allowing
direct editing and additional creative a�ordances. In addition, we
allow �ner control by �tting multiple palettes to regions of the im-
age. Shugrina at el. [2017] allow recoloring a painting by changing a
continuous palette, but their method applies only to artwork created
with their interface. In contrast, our method works with any design.
Related to recoloring are user-guided systems for grayscale image
colorization [Preferred Networks Inc. 2017; Sangkloy et al. 2017;
Zhang et al. 2017]. While these systems e�ectively learn image se-
mantics for colorization, they are not designed to edit an image that
already contains color. We address a common use case of exploring
color choices in a design where color relationships have already
been de�ned by the creator.

Photo Segmentation and Editing: Image segmentation has
been addressed for a variety of contexts [Aksoy et al. 2018; Chen et al.
2016; Qi et al. 2017; Shen et al. 2016], and desirable segmentation
is, in general, application speci�c. We formulate segmentation to
allow direct manipulation of color distributions in the segmented
regions using color triads. While [Aksoy et al. 2018] also use color
cues to guide segmentation, the result is not tailored to direct color
distribution editing. Like most prior work, we leverage data to train
a segmentation model, but our method is fully unsupervised and
applicable to visual domains without labeled data. Related color
segmentation methods separate an image into solid-colored alpha
layers, e.g. [Aksoy et al. 2017; Tan et al. 2018b, 2017]. While such
layers are useful for image adjustments, color relationships are
baked into them and cannot be edited. Our model is more �exible,
and allows novel creative a�ordances.

Machine Learning for ImageManipulation: Recently, a num-
ber of deep learning methods for image manipulation have been
proposed. Methods such as [Gatys et al. 2015] allow users to change
the style of an image, change its season, or swap out horses with
zebras [Zhu et al. 2017]. [Zhu et al. 2016] allow users to generate
images on the �y in an interactive manner. In our work, we show
how to use the proposed triad formulation with deep learning, to
produce a set of user controls (alpha masks and color triads) that
give users direct control to easily recolor their images.

sRGB

linRGB

Lab

HSV

acrylic

Fig. 2. Blending Behaviors: Linear interpolation between blue and yellow
in RGB, linear RGB, CIELAB (Lab) and HSV color spaces, and between blue
and yellow acrylic paints [Okumura 2005] rendered using Kubelka-Munk
equation (fast transition from yellow matches paint’s behavior).
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(a) Lambertian shading (b) Shading with specularity

(c) Artwork, ©Maria Shugrina (d) Photograph

Fig. 3. Naturally Occurring Color Distributions: RGB plots of colors
sampled from shaded objects and more complex images. While some dis-
tributions are closely approximated by a plane (b,c), others exhibit strong
nonlinearity (d). Upper le� inset shows alternative view angle.

3 INTUITION AND MOTIVATION
We explain the intuition behind our design, inspired by discrete
palette’s simplicity and the expressiveness of other representations.

3.1 Requirements
Our direct goal is to extend the appealing properties of discrete
palettes with a representation that can model much more varied
color distributions. Therefore, by direct analogywith discrete palettes,
this representation must be:
R1 Sparse: comprised of few degrees of freedom
R2 Interactive: easy to construct and edit interactively
R3 Structured: well-structured for learning and statistical analysis
R4 Versatile: able to model a wide array of color distributions
Here, R1-R3 are shared with discrete color palettes, and R4 implies
the ability to model both discrete color gamuts and more complex
color manifolds, common in art and design.

R3 ismotivated by the uses of discrete color palettes for interactive
color editing, statistical analysis, compression and deep learning.
More versatile palette representations that ful�ll R4 tend to be harder
toworkwith. For example, the ease of indexing into a discrete palette
enables image compression strategies based on a limited palette (e.g.
supported by PNG and GIF image formats). However, indexing
into continuous representations like [Nguyen et al. 2015; Shugrina
et al. 2017] is not well-de�ned, making it di�cult to use them for
compression or recoloring, even when �t to novel images [DiVerdi
et al. 2019]. Freeform interactive palettes [Meier et al. 2004; Shugrina
et al. 2017, 2019] allow the same color gamut to be represented with
vastly di�erent palette con�gurations. Such ambiguity makes these
representations hard to work with for more structured tasks. We
design a palette representation that is as easy to work with as discrete
color palettes (R1-3), but much more versatile (R4).

3.2 Intuition
To �nd balance between such simplicity (R1-3) and �exibility (R4),
we draw intuition from the physical world. The classical shaded

(a) original (b) recon:lin (c) recon:triad (d) linear (e) triad

(f) (g) uncon. quadr. (h) uncon. cubic (i) triad

Fig. 4. Nonlinear blending: Image (a) reconstructed with linear 3-color
blend (b, d) and with color triads (c, e). While keeping vertex colors fixed
at (f), result of editing nonlinearity only of unconstrained quadratic (g),
unconstrained cubic (h) and color triad (i) 3-color blends.

sphere in a di�use material can be represented by a 2D gradient,
but specular re�ections result in a color distribution that is better
approximated by a solid triangle in RGB (Fig. 3a,b). We make a
choice to restrict our color representation to areas or objects with
colors related in some way, and take the blend of three colors as the
basis of our representation. Although the modeling power of three
colors (see further sections) may seem surprising, it should not be:
shaded objects are prevalent not only in photography, but in many
artistic domains, and it is often such semantically coherent areas
that require color representation and color editing.
However, restricting three color interpolation space to linear

blending would severely restrict its usefulness. Although colors
of some images are well approximated by a linear interpolation
space (Fig. 3b,c), others exhibit a pronounced nonlinearity (Fig. 3d).
In fact, a variety of color blending behaviors is to be expected, as
color transitions in natural imagery could result from a variety of
disjoint phenomena, for example from the nonlinear blending of
physical paint media, from linear RGB blending in graphic design
programs, or scattering of light within a physical substrate (Fig. 2).
Simply selecting a speci�c space for linear interpolation would
necessarily exclude many such phenomena. For example, linear
RGB blend (Fig. 4b, d) optimized to approximate colors in (a) results
in a signi�cantly muted approximation, while a nonlinear three-
color blend (c, e) is true to the original. Color triads parameterize
color blending behavior with an interactive control.

3.3 Modeling Nonlinearity
We choose a cubic Bezier triangle [Farin 2002] to model nonlinear
blending behavior. While the choice of this underlying representa-
tion is less critical, the way it is parameterized for user control is
key for interactive applications (R2). For example, in the quadratic
case, users could directly modify the shape of the gradients along
triangle’s edges, which makes control of the distribution’s center
di�cult due to saddle point e�ects (Fig.4g). An unconstrained cubic
case, while allowing users direct control of the distribution’s center,
has far too many parameters (7 control points, excluding vertices)

ACM Trans. Graph., Vol. 39, No. 4, Article 1. Publication date: July 2020.



1:4 • Maria Shugrina, Amlan Kar, Sanja Fidler, and Karan Singh

that could easily result in degenerate self-intersecting distributions
(Fig.4h). In addition, unconstrained control of the triangle shape
allows modifying the distribution to the point where it has little re-
lation to the 3 colors being interpolated (Fig.4d,g,h,i share the vertex
colors in f). To constrain nonlinearity, we parameterize the control
points of a cubic Bezier triangle with 3 bounded variables control-
ling the middle of the distribution. This allows a range of e�ects,
but prevents degenerate distributions that stray too far (Fig.4i).

4 COLOR TRIAD REPRESENTATION
We propose color triads, a versatile, compact, interactive represen-
tation for a variety of color distributions. This section details a
full mathematical formulation, which is fully di�erentiable and can
be used as a module in a Deep Learning architecture trained with
Stochastic Gradient Descent (§5.3, §7).

4.1 Overview
Each color triad is a triangular patch in RGB color space, de�ned by
the interpolation of its vertex colors. Additional parameters control
the triangle’s 3D shape, resulting in nonlinear blending behaviors.
The �nal parameter sets the discrete set of colors modeled by the
triad. Formally, each color triad T is parameterized by:
• vertex colors V = [v0,v1,v2] : RGB colors of the 3 vertices
• bending b : a �oat value, de�ning the relative magnitude of
nonlinear deformation of the triangle (sign de�nes direction)
• focus point (pu ,p� ) : barycentric coordinates of the point within
the triangular patch where bending is maximal
• subdivision level s : an integer parameter set to 0 or above
We �rst formalize the sampling of colors (§4.2), and then extend the
mathematical formulation to include nonlinear blending (§4.3).

4.2 Interpolation and Subdivision
The vertex colorsv0,v1,v2 de�ne a �at triangular face in RGB space,
with color at every point resulting from continuous interpolation
of the vertex colors. However, many creative domains also use
discrete distributions. For example, a graphic designermay choose to
create a few discrete shading options in a �yer (See Fig. 12). Further,
discrete samples allow integer indexing into triad colors and simplify
optimization formulation. The subdivision level s determines how
many distinct colors are represented. A setting of s = 1 includes
only the 3 vertex colors, whereas s = 16 visually approaches a
continuous distribution. Intuitively, s is de�ned to be exactly equal
to the number of discrete values along every edge (Fig. 5d-e) for s ≥ 2.
In this section we consider only linear blending. Let CL (T ) =
{c1 . . . cn } be the discrete set of colors de�ned by the color triad T .
Each such color can be de�ned as a linear combination of the vertex
colors: ci = ui0v0 +ui1v1 +ui2v2 = Vui , where ui0 +ui1 +ui2 = 1
for all i . For a given s , each ui j can take on values in the discrete
setUs = {0, 1/(s − 1), 2/(s − 1), . . . (s − 1)/(s − 1)}. Thus, the set of
(linearly blended) colors in T is formally de�ned as:

CL (T ) = {ui0v0 + ui1v1 + ui2v2 | ui j ∈ Us , �j ui j = 1} (1)

(a) naive (b) ours (c) ours, expanded

(d) subdivision s = 2 (e) subdivision s = 5 (f) subdivision s = 10
Fig. 5. Discrete Interpolation: Colors for subdivision levels s (d-f) are
computed using the interpolation points in (b) and (c). Interpolation with
barycentric coordinates at face centroids (a) would undesirably exclude the
three vertex colors and pure color gradients between any two of them.

Due to the sum constraint, the size ∥CL (T )∥ is exactly 1+2+. . .+s =
s (s + 1)/2. 1 Conveniently, this is equal to the number of upright
triangular patches in a triangle subdivided with s segments per side
(Fig. 5b), and when rendering the triad, we set the colors of these
triangles accordingly. Note that this formulation results in desirable
and correct behavior of including the vertex colors themselves into
the set of triad colors (See interpolation points in Fig. 5b) 2. We also
include the colors of the un�lled upside-down triangles, which are
computed by averaging the neighbor’s barycentric coordinates ui
(Fig. 5c). After including these additional colors into CL (T ), s2 is
the exact number of total colors (for s ≥ 2).3

4.3 Nonlinear Blending
Each color triad is modeled as a cubic Bezier triangle[Farin 2002],
where the position (i.e. color) of the three vertices can be set directly,
while the remaining 7 control points are constrained to respond to
two user-provided controls: signed bending magnitude b and the
focus point (pu ,p� ). As we discuss (§3.3), these constraints prevent
degeneracies and ensure cohesiveness of the resulting gamut.
The shape of the unconstrained Bezier triangle is de�ned by 10

control points P = {pi jk , i + j + k = 3} in RGB (Fig. 6a). Speci�cally,
the 3D location cP of a planar color triad point parameterized by
barycentric coordinates (u0,u1, 1 − u0 − u1) over the triangle ver-
tices (such as our planar interpolated colors in Eq. 1), can now be

1Sketch of proof: suppose 1 is split into (s−1) discrete chunks, with s chunk boundaries.
To pick ui0, ui1, ui2 subject to = 1 constraint, we must select 2 boundaries, with and
without replacement, which is exactly the sum of binomial coe�cients

(
s
2

)
+
(
s
1

)
.

2Conceptually this is equivalent to shrinking the triangle vertices by a factor of (s −
1)/(s ∗

√
3), to align with the centroids of the subdivided triangles. We do not use the

barycentric coordinates for the centroids themselves, as this would exclude the three
vertex colors themselves and gradients involving only two of the interpolated colors.
3Sketch of proof: if counting subtriangles by rows in the triangular patch, it is an
arithmetic series with s entries, �rst element equaling s ∗ 2 − 1 and last equaling 1.
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(a) Bezier triangle control points; e�ect of varying (pu, p� ) for b = 0

(b) E�ect of varying b for constant (pu, p� )

Fig. 6. Nonlinear blending:wemodel nonlinear blending as a cubic Bezier
triangle with control points constrained to respond to only two interactive
controls b and (pu, p� ).

expressed in terms of pi jk using Bernstein polynomials Bi jk :

cP (u0,u1) =
∑

i+j+k=3
Bi jk (u0,u1)pi jk (2)

Bi jk (u0,u1) =
3!

i!j!k!
ui0u

j
1 (1 − u0 − u1)

k (3)

To allow simple interactive control, we de�ne the location of the
triad control points PT in terms of the focus point (pu ,p� ) and
bending magnitude b, as well as the vertex colors V:

pi jk = Vui jk (pu ,p� ) + f (d2i jk ) · bn⃗ (4)

where the �rst term is the point location in the triangle plane, and
the second term is its displacement in the normal direction. First,
each control point pi jk is assigned barycentric coordinates ui jk
with respect to the triangle vertices V. We de�neu111 = (pu ,p� , 1−
pu −p� ) as the focus point, and set corner control points u300, u030,
u003 to the vertex colors. The remaining coordinates are likewise
naturally expressed in terms of (pu ,p� ), as shown in Fig. 6a. Then,
we displace all control points pi jk except the corner points in the
direction n⃗ normal to the triangle plane. The focus point control
point p111 is displaced the most, and the displacement of other
control points falls o� with the distance squared d2i jk to the central
control point. (See Supplemental Material A.1 for details.)
Thus, after amending Eq. 1 with nonlinearity, the �nal set of

colors de�ned by the color triad T is:

C(T ) = {cP (ui0,ui1) | ui j ∈ Us , �j ui j ≤ 1, P = PT } (5)

where ui0, ui1 are exactly as in Eq. 1, and the 10 control points PT
interpolated to obtain cP are expressed in terms of the color triad T
parameters. Our speci�c choices make it possible to express C(T )
in matrix form with clean derivatives of the interpolated colors with
respect to the color triad parameters.

4.4 Interpretation and Prior Art
Color triad is a generalization of the two color gradient, a ubiquitous
tool in graphic design. As a tradeo� to simple formulation with a
�xed number of parameters, color triads are designed to model
colors that are related in some way, e.g. pixels of a region or shaded
object – distributions that are feasible to edit interactively. More
complex distributions can be modeled with multiple color triads.

Other recent exploration of sparse multi-color blends [Shugrina
et al. 2017, 2019] focus on interfaces for the creation of novel art-
work, while we propose a simple model for approximation, edit-
ing and analysis of colors in existing imagery. Ability to model
and interactively edit nonlinear blending is critical to our applica-
tions, which rely on accurate approximation of existing distributions.
Other multi-color blends either lack this representative power due to
linear blending [Shugrina et al. 2019], do not support unambiguous
indexing into the palette when �t to a novel artwork [DiVerdi et al.
2019; Shugrina et al. 2017] (i.e. for recoloring), or disallow interactive
editing altogether [Nguyen et al. 2015]. Nonlinear color triads com-
plement the set of existing representations for applications where
requirements in §3.1 are important.

5 APPROXIMATING DISTRIBUTIONS
The full power of the color triad comes to light when it is �t to
existing distributions. In this section, we optimize the parameters of
a color triad T to approximate colors Äi ∈ Y , where Y is an image
or region. We solve this problem both using iterative optimization
(§5.2) and using a Neural Network (§5.3). While the solution in §5.2
is more accurate, the formulation in §5.3 is faster and can be trivially
plugged into modern Deep Learning architectures (e.g. §7).

5.1 Cost Functions
A representative color triad (palette) must contain all the colors in
Y . An obvious cost is a greedy L2 reconstruction loss in RGB:

EL2 (Y ,T ) =
1
∥Y ∥

∑

�i ∈Y
min

c j ∈C(T )
∥Äi − c j ∥2 (6)

This value tracks the average distance from each target color Äi to
its closest match in the set of triad colors C(T ) (Eq. 5).

Because average L2 error does not necessarily correlate well with
perceived quality, we de�ne a more perceptually motivated metric.
To assess visual quality, we compute the fraction of target colors
that are not approximated "well enough", i.e. within a certain � :

E% (Y ,T ) =
1
∥Y ∥

∑

�i ∈Y
1
[

min
c j ∈C(T )

∥lab (Äi ) − lab (c j )∥ ≥ �
]

(7)

where 1 is 1 if the condition inside the brackets evaluates to true
and 0 otherwise. To ensure a consistent "barely noticeable" distance
� we �rst map values to CIELAB space, where distances are more
perceptually uniform (we use � = 10, see Fig. 13b).
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Awell �tting palette should also contain few irrelevant colors. Yet,
a triad T will incur zero EL2 and E% costs for a red patch Y if one of
the vertex colorsvi is red and the remaining vertex colors bear no
connection to Y . There is no clear way to measure how relevant a
palette color is to an image.4 We choose a measure that encourages
the distribution of colors in T to resemble the distribution of Y ,
namely Kullback-Leibler divergence:

EKL = KL(HT ||HY ) = −
∑

b ∈HT
HT (b) log

HY (b)

HT (b)
(8)

where H are n × n × n histograms in RGB normalized to sum up to
15, and the summation is over histogram bins. To ensure function
smoothness during optimization, HT is a soft histogram, where the
contribution of each color is a Gaussian with a �xed variance � 2.
The asymmetric nature of KL-divergence is a good �t for evaluating
palette color relevance, but it is not perfect: a palette need not
contain colors in the same proportion as the image itself. To mediate
this discrepancy, we compute HY by �st computing small patch
histograms, then taking the max of every bin across patches, and
normalizing. This encourages every signi�cant color in Y to attain
a maximal value in its histogram. We use n = 10 and � = 0.5/n.

5.2 Fi�ing Using Iterative Optimization
Due to its sparseness and simplicity, color triad parameters can be
robustly optimized using out-of-the-box optimization methods. We
use interior-point implementation in MATLAB with EL2 cost func-
tion and EKL regularization weighed by �. The indicator function
in E% makes it ill-suited for optimization, and we use it only for
evaluation and tuning of � on a small held out evaluation set (we
found � = 0.0001 to work best).

Initialization: In the case of a simple image input, we initialize
Y to 10000 color samples. We initialize to linear blending with b =
0.0, (pu ,p� ) = ( 13 ,

1
3 ), and set vertex colors with a heuristic: v0 is

set to Äi ∈ Y furthest from the mean;v1 is the point furthest from
v0;v2 is the point with the largest product of distances fromv0 and
v1. This simple initialization works well in practice.

Tuning Subdivision Level: We exclude subdivision level s from
the optimization, because the desirable value depends on the appli-
cation: smallest s is desirable for compression, but large s result in
highest �delity approximation and editing results. Because lager s
results in larger set of colors in the triad (Eq.1), in general higher
values of s allow for lower approximation error E%. To tune s , we
�rst optimize with s = smax . Then, we perform binary search for
s < smax that does not increase E% by more than � . In reported
results, we use smax = 16, equivalent to 256 colors, and � = 0.0025
(at most 0.2% more pixels not approximated within � , Eq.7).

5.3 Fi�ing Using a Neural Network
As an alternative, we train a feed-forwardNeural Network to �t color
triads to distributions. This formulation can be used as a module in
Deep Learning architectures, e.g. §7.

4E.g. inverse reconstruction loss is meaningless here, as a single matching pixel in the
image would render a palette color "relevant", which is clearly not the case, especially
if Y has noise or compression artifacts.
5To ensure numerical stability each bin is assigned a tiny minimal value.

Fig. 7. Pale�e Neural Network used to fit color triads to distributions as
an alternative to iterative optimization.

Input: The input to our network is a normalized histogram HY
(as for Eq.8, we use n3 RGB bins, n = 10). Unlike image input, this
allows the same trained network to �t triads to color distributions
from any source: whole images, soft image regions (§7), etc.

Palette Network: We use a common encoder-decoder architec-
ture. Unlike a typical scenario, where the encoding has no direct
interpretation, our encoder EH maps an input histogram to the pa-
rameters of a color triad, while the decoder Ds is deterministic and
computes the triad’s colors according to Eq.5. As in §5.2, we do not
explicitly optimize for the subdivision level, but use s as a switch
specifying active Ds (Fig.7). We found that modeling EH as a simple
4-layer fully connected network works well, and that performance
hinges most on the loss function and training data selection.

Training: As in §5.2, we use EL2 + �EKL (� = 0.0001), and opti-
mize the parameters of the encoder EH using Stochastic Gradient
Descent with the Adam optimizer [Kingma and Ba 2014] (learn-
ing rate 10−3) by back propagation through the entire network,
including the decoder Ds , which itself has no trainable weights.
Color triads are designed to represent color distributions of coher-
ent image regions, not general images. In order to approximate
such input, we train the network on random patches sampled from
paintings, graphic design, visualization and other image domains.
See Supplemental Material for details.

6 APPLICATION: COLOR EDITING
Once �t to an image or region (§5), a color triad can be edited to
interactively recolor the original. Such direct manipulation of the
color distribution allows an array of novel creative explorations.

Fig. 8. Region Editing: A user-provided region in the SIGGRAPH Asia
2018 logo (a,b) is fit with a triad (c) and recolored (d-f). Second row shows
scribble-based selection and recoloring.
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triad(s=16) original recon.(s�t) recon.(s=16) edit(0) edit(1) edit(2)

Table 1. Fi�ing and Editing Results: images reconstructed with colors from a single optimized color triad (§5.2) at s = 16 and with s optimized to a lower
value. A variety of recoloring results (§6) by editing each triad. Rows 2-4, ©Spencer Nugent, ©George Dolgikh, ©Maria Shugrina; row 7 ©Joyston Judah.
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(a) original (b) reconstruction (c) edit vertex 1 (d) edit vertex 2 (e) b direction (f) adjust b (g) adjust focus pt. (h) wild edit

Fig. 9. Recoloring Controls: the e�ect of adjusting specific triad parameters. Row 2, ©Jeswin Thomas.

6.1 Recoloring Method
After optimizing triad T to an image (or region) Y, for each pixel
Äi ∈ Y we �nd its closest color c∗ (Äi ) among color triad colors
C(T ) (similarly to Eq.7) and save its barycentric coordinates idx(.)
within the triad triangle. After modifying triad parameters to T ′
we can compute recolored pixel color Äi (T ′) as follows:

Äi (T ′) = wi C(T ′)[idx(c∗ (Äi ))] + �i (9)
c∗ (Äi )) = argmin

c j ∈C(T )
∥lab (Äi ) − lab (c j )∥ (10)

where idx(. ) allows indexing into the color triad colors C(.) (Eq.5),
andwi = 1,�i = 0 in the simplest case. For T ′ = T , this is the best
reconstruction for Äi with the triad T .

Because triads are discrete by their nature, for all but large values
of s , the above equation will yield quantization errors even when
T ′ = T . The choice of �i can allow high-�delity recoloring even
with low-�delity (small s) approximation. We found the simplest
setting of �i = Äi − c∗ (Äi ) to work surprisingly well 6, and all
reported results use this setting. We suspect that more complex
transfer functions (e.g. [Chang et al. 2015]) are unnecessary because
in general most colors are approximated well. However, there is
room for improvement in the formulation ofwi and �i .

6.2 Recoloring Regions
Above method can be easily applied to image regions. For example,
the user can mask a region using existing software, thus selecting
the pixels to �t with a color triad and to recolor (Fig.8, Fig.10 row 2).
If exact selection is challenging, the user could simply scribble over
the range of shaded pixels that need editing, seeding a rough mask
with a low �ood �ll threshold (as all the colors have been sampled
by the scribble). This region could then be then approximated by a
triad, and soft reconstruction quality map could serve as the weight
during recoloring (Fig.8 row 2). We also generalize the notion of
such a mask and explore �tting a collection of color triads and
corresponding masks to any image using Deep Learning (§7).

6We also experimented with tracking displacement of target pixels from the color triad
manifold in the normal direction.

6.3 Results and Discussion
Triad-based recoloring opens up a number of creative controls. The
user can edit vertex colors, a�ecting color transitions (Fig.9c,d). The
blending can be adjusted by changing b (f). The values of b tend to
correspond to warmer (f, top) and cooler (f, bottom) shades and allow
stretching the distribution toward the fourth complementary color.
Our UI visualizes b samples in the positive and negative directions
(e; visualization is clamped to valid RGB values). Finally, the user
can shift the focus toward one of the vertices (g), e.g. emphasizing
the green of the plain (top) or the vivid pink (bottom). Reducing
subdivision level s posterizes the image (h, bottom). Combinations
of such edits allow dramatic e�ects (h).
Color exploration is useful for many creative domains, and we

demonstrate results on photography, illustration, �ne art and graphic
design in Tb.1. Representing semi-transparent areas in the color triad
directly allows seamlessly editing the background of the medusa
illustration in row 1. Colors of shaded objects can be adjusted (rows
2, 3). The method allows wild major color shifts, including invert-
ing lights and darks (row 2, last column), majorly modifying base
colors (row 4, second to last row), changing time of day (row 7),
or experimenting with relighting a museum installation (last row).
More subtle edits are also possible (e.g., portrait in row 6).

6.4 Comparison to Other Recoloring Methods
Our recoloring approach is complementary to existing methods,
providing novel control of blending and color emphasis in the image,
while keeping interaction simple. In spirit, our sparse recoloring
controls resemble [Chang et al. 2015], who extract a discrete palette
from an image and compute pixelwise weights for contributions of
color transfer functions. Unlike our approach, their method does not
allow directly controlling or visualizing the gamut. Further, the per-
pixel weights are computed deterministically and an in�uence of the
given color cannot be altered. User control of triad’s nonlinearity
in our method can shift "focus" from red, to gold, to dark, and
modify color blending behavior interactively, producing a larger set
of variations (Fig.10 bottom 2 rows).

Color decomposition approaches of [Aksoy et al. 2017; Tan et al.
2018b, 2017] accurately reconstruct an image with multiple solid-
colored alpha layers, allowing layer-based editing. This family of
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Fig. 10. Comparison to Other Recoloring Methods: note that color tri-
ads’s ability to change blending behavior and color emphasis results in a
wider range of variations for the same choice of base colors when compared
to previous approaches, where blending behavior is fixed. Original images
rows 3-4 ©Roman Sotola, rows 5-6 Spencer Nugen, rows 7-8 fromMIT-Adobe
FiveK Dataset.

approaches produces high-�delity results and works well for tar-
geted recoloring (e.g. red body of the vacuum, Fig.10, row 5) and
general global shifts. However, just as for [Chang et al. 2015], the
blending of colors is baked into the layers, making it hard to edit the
balance of shadows and highlights. For example, layers of [Tan et al.
2017] allows changing the light to red and making the shadow layer
darker (row 3). The wide range of e�ects for the interplay of shad-
ows and highlights, as well as the warmth of blending achievable
with our method (row 4) is impossible to obtain with layer-based
editing. The fact that color relationships are built into the color
triad representation can also cause undesired e�ects, such as the
bleeding of the red into the highlights (row 6). This is the price our
representation pays for a wide range of possible color explorations.
We also compare our approach to [Shugrina et al. 2017] (Fig.10,

top row), where a link between the palette and the painting estab-
lished during artwork creation allows subsequent recoloring by
editing the source palette. In our case, for a novel artwork not cre-
ated using color triads, user provided masks coupled with our triad
�tting and recoloring achieve a similar range of explorations (second
row). In addition, modifying the blending behavior of source colors
can create additional e�ects (see �ower variations in the inset).

EA

U-Net EH

EH

EH

Ds

Ds

Ds

DA

Fig. 11. Alpha Network (§7) converts an image intom alpha masks, which
are used to weigh histograms passed to the Pale�e Network (§5.3) in order
to fit corresponding color triads for a full reconstruction of the input image.

7 APPLICATION: DEEP LEARNING
We show one application of color triads (and palette network, §5.3)
to Deep Learning. Speci�cally, we design a Deep Convolutional
Neural Network (CNN) that approximates any input image using
a collection of color triads and alpha masks that assign pixels to
triads. The resulting approximation can be used for region-based
recoloring (§6.2). This brief demonstration invites future work.

7.1 Formulation
For any input image Y, our CNN EADA (Y) outputs m soft alpha
masks at the input resolution. Each mask Ai weighs counts in his-
togram Hi , which is then passed to the palette network (§5.3) to
produce triad parameters Ti for the masked region (Fig.11). The
alpha and palette networks work together to approximate color
distributions in images using several color triads. The color of a
pixel (x ,�) in the reconstructed image YR is computed by blending
colors C(Ti ) (Eq.5) from the resulting color triads:

YR (x ,�) =
∑

i=1...m
Ai (x ,�) argmin

c j ∈C(Ti )
∥Y(x ,�) − c j ∥2 (11)

Alpha Network: Following a common trend in image segmen-
tation, we use an encoder-decoder architecture [Long et al. 2015],
speci�cally, a U-Net [Ronneberger et al. 2015] with skip connec-
tions that propagate higher resolution information. A softmax on
the output channels ensures that alphas sum up to 1 for every pixel.

Loss: Similarly to Eq. 6, we use L2 reconstruction loss between Y
and YR . Note that the training is fully unsupervised, requiring only
an image dataset (Supplemental Material). To promote smoothness,
we add a total variation regularization (weight of 10−3).

Training: It is possible to train this model end-to-end using
Stochastic Gradient Descent, because the component of the palette
network(§5.3) is fully di�erentiable, allowing back propagation from
the reconstruction loss all the way to alpha selection. To train the
model, we used the Adam optimizer [Kingma and Ba 2014] with a
learning rate of 10−3 and other default parameters. We pre-train the
palette prediction network and keep it �xed. Optimizing for image
reconstruction given a constant palette network forces the alpha
network to output masks that correspond to image regions that can
be well explained by a distribution of colors in a single color triad.
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Fig. 12. Alpha results: Top Half: Full color triad prediction results, Bo�om Half: Recoloring results with color triad manipulation, with third and sixth results
taken from our user study (§8.2). Artwork columns 2, 7 ©Maria Shugrina.

Details: Di�erent images are best represented with di�erentm.
We train multiple models for variousm and select the best one at
runtime using a trade o� betweenm and the reconstruction quality.
Given a new image, only one forward pass in the network is required
to compute the full decomposition of the image into masks and color
triads (170 milliseconds on nVidia GTX Titan X), which can then be
used for editing. See Supplemental Material for more details.

7.2 Results and Discussion
Results of our joint alpha and triad prediction on held out test images
are shown in Fig.12, top to bottom: the original image, predicted
alphas as binary masks and image mattes, predicted color triads,
user-edited triads and the resulting recoloring (§6). Our network can
decompose images from a range of visual domains such as poster
designs and paintings, allowing an array of recoloring e�ects using
region-based triads, including subtle adjustments (col. 1, 7), major
shifts to the color transitions (col. 3-5) and posterization e�ects (col.
2). Soft predicted alphas also allow seamless recoloring of a non-
trivial background (col. 4). While our method can produce usable
masks and triads, it is not perfect. For example, the mouth of the �sh
is erroneously grouped with the surrounding sea (col. 7), blended
alphas can make editing di�cult (col. 5), and noise in the alphas can
introduce artifacts (col. 3). We believe that this approach is only the
�rst step toward learning user controls speci�cally optimized for
color editing, given the context of a particular image.
Future Directions: Our model can already re-predict triads for

user-corrected alphas fast, but exact corrections are di�cult to
produce manually. Considering sparse user hints during inference
would make our model more practical and accurate, but training for
this is an open problem, given lack of data. Because color triads can
represent coherent image regions, there also is promise in applying

them to segmentation tasks beyond color editing. Simple color rep-
resentations have already been used for seemingly unrelated tasks
like tracking [Vondrick et al. 2018], and we are excited to explore
other applications of this more complete color representation.

8 EVALUATION
Let us revisit requirements set forth in §3.1. By their de�nition, color
triads have a constant sparse set of user controls (R1). These con-
trols can be edited interactively (R2), as we have demonstrated, e.g.
for recoloring (§6), however, whether or not these controls provide
natural interactive control requires evaluation (§8.3 below). We have
demonstrated that color triads can be used for image approxima-
tion, within a deep learning architecture, as well as for compression
(Supplemental Material), showing that their structure is amenable
to statistical analysis and related applications (R3). However, some
evaluation of the success of these techniques is required, and we
provide quantitative evaluation of palette �tting (§5) in §8.1 and
evaluate usability of mask-based image editing with deep segmen-
tation (§7) in §8.4. In addition, we hope that our brief exploration of
possible applications above (and in Supplemental Material) shows
the merits of color triad structure (R3) and versatility (R4).

8.1 Color Triad Fi�ing Experiments
We evaluate the performance of both triad �tting methods (§5.2
and §5.3) on a collection of 3000 patches, with exactly one third
designated as easy, medium and hard based on histogram entropy.
Evaluation on patches is an approximation for human-marked co-
herent regions and objects that color triads are designed to represent.
Source images have been carefully selected from various categories
of art and design (see Supplemental Material). In all cases, tuning of
parameters was performed on a separate held out set.
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(a) R% results of both approaches in §5 on 3K patches (le�) and 60 full
images (right)

(b) Maximal barely noticeable di�erence in R% (we use � = 10).

(c) Pale�e net results on challenging patches

Fig. 13. Pale�e Generation Performance: reconstruction quality R%, (1-
E%, Eq. 7) plo�ed for patches (based on hardness, see SupplementalMaterial)
and full images (a), with maximal barely noticeable di�erence in R% visual-
ized in (b). Results of the pale�e petwork on particularly di�icult patches in
(c), top to bo�om: input patch, encoded pale�e, image reconstructed with
one best matching pale�e color.

We found both iterative optimization and pre-training a neural
network for the task of triad �tting to work well. We show the
median, 25th and 75th quantiles in the boxes, for both both learned
and optimized triads. Even on hard patches, we observe a median
reconstruction quality of 95.1% / 87.5% for optimization / learning,
with the 25th quantile being at 86.4% / 71.7% (Fig.13a (left)). This
shows the representation ability as well as the learnability of the
proposed triads. The fact that traditional optimization performs
better is not surprising, because triad T parameters are optimized
directly for each input example, while with learning the network
weights are optimized such that on average EH (H ) produces a well-
�tting palette for the input histogram H . In addition, the network
takes as input a rather coarse histogram, preventing it from adjusting
to subtleties. Despite these limitations, we �nd its performance
competitive (e.g. Fig.13c on hard patches). In fact, in Fig.13a (right),
we observe that learning and optimization perform similarly on
challenging full images, with both approaches reaching around 96%
median reconstruction quality. Also see Tb.1 for performance of
iterative optimization on even more full images.
Where the learning-based approach loses in quality, it gains in

speed7. On average the palette network �ts a triad to a mini-batch

7Our palette network occupies only 42MB of memory including all auxiliary data
structures and independently of image size, so there is no memory-speed trade o�. For
reference, loading 2000x2000 RGB image into a 32bit �oat array requires 48MB.

of a single image in 0.046 seconds, compared to an (unoptimized)
MATLAB implementation of our optimization method which ran
on average in 13.6 seconds per patch8. The bottleneck of both ap-
proaches (during training in one case, andT parameter optimization
in another) is the step of estimating the best reconstruction (Eq.6),
which requires �nding all pairwise distances. Both s and the number
of image/region pixels (or samples) have a large e�ect on the speed
of this step. We found 10K image samples to produce the best results
during iterative optimization, and a technique of quantizing or clus-
tering and weighing image samples during EL2 loss computation
has an order of magnitude speed up. In addition, we have imple-
mented a faster approximate search for the best matching color that
performs an order of magnitude or more faster, depending on the
�delity of the approximation.

While reconstruction quality is very good for most images, both
�tting approaches can su�er from averaging e�ects due to the L2
reconstruction loss (Eq.6), which can overlook rare but salient colors.
In general, we found this not to be a problem for regions and images
that one would want to edit coherently. For example, in the case
of a single white �ower in the �eld, one would edit the �ower and
the �eld using separate color triads. In other cases, 10000 samples
typically capture even themore rare colors, such as themany �owers
in the �eld. In both approaches, we observed an improvement in
palette quality with the introduction of EKL regularization (Eq.8).
See Supplemental Material for details.

8.2 User Study Set Up
Experiments below were part of the same user study. We believe
that in addition to researchers, color triad representation would be
most useful to creative professionals. To assess the utility of this
representation to designers and artists in their real world work�ow,
we recruited 11 participants: 3 professional graphic designers, 2
professional product/ux designers, 2 professional or advanced digital
illustrators, 2 traditional artists, and 2 people regularly using graphic
design software for their work. We interviewed every participant
about their use of color, and asked them to perform several tasks
(below). All participants were compensated with a $25 gift certi�cate
to Starbucks for this 1 hour study.

8Both methods were evaluated on the CPU only on Mac Book Pro with 2.8 GHz Intel
Core i7.

Fig. 14. Color Matching User Study: users were asked to edit a random
color triad to match colors in one of source images (a). Pale�es created by
users and best reconstructions of the source images using those pale�es are
shown in (b). Note that users were not shown ground truth pale�es (a), or
given any assistance to improve reconstruction.
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8.3 Color Matching Experiment
Task Set Up: To measure how intuitive it is to mentally link in-
teractive color triad parameters to an image, we have designed an
inverse recoloring task, which simulates a user trying to translate
an image edit in their mind’s eye to the parameters of a color triad.
Rather than using the triad to recolor the image, we have asked each
participant to edit a color triad (initialized to unrelated colors) to
best match colors in one of three input images. To ensure fairness,
all input images were edited to be representable by a color triad. A
system standard color chooser for vertex colors and the same UI we
instrumented for recoloring were provided, with no other special
assistance (e.g., we did not compute image reconstruction as the
user edited the triad). At most 3 minutes were allotted for this task.
Results: Although this seemed like a rather challenging task, the

users were able to reconstruct palettes with a surprising accuracy
just by looking at the image (Fig.§14). The mean E% (Eq.7) for the
reconstructions computed with user-edited palettes was 0.004336
(i.e. on average > 95% of pixels were reconstructed within allowable
delta). EL2 loss was likewise low at 0.007181 per pixel for RGB
mapped to [0, 1]. Coupled with positive response to the color editing
task (below), this suggest that manipulating a direct visualization of
an image’s color gamuts with color triads a�ords intuitive control.

8.4 Color Exploration Experiments
In this more open ended part of the user study we ask participants
to use the color triad interface with regions masks supplied by our
deep learning method (§7), as well as a desktop application they
were most familiar with to explore colors in an image. Our aim was
to collect high-level feedback about the usability of color triads for
color editing and exploration. With this study we focused on quick
exploration, not generating high-�delity �nal result.
Interview: To understand if color exploration is a real need,

we asked each subject whether they create multiple versions of
their designs speci�cally to visualize di�erent color choices, not
other design elements. 6 out of 11 emphasized that they do create
di�erent versions speci�cally for color exploration, while 3 reported
that they create versions, but usually do not focus solely on color
(versions do not really apply to 2 traditional artists). Several users
stressed that they can only create multiple versions, if there is time,
implying the time commitment necessary to explore di�erent color
variations in existing software. When asked if they typically settle
on a color theme early on or continue to re�ne throughout the
process, all but one said that color choice is an iterative process and
changes throughout the design process (the one subject who replied
otherwise works with company-de�ned branding color themes).
Recoloring Task: We asked each participant to adjust color

choices in one of 3 pre-selected designs (Fig.12, col 3, col 6, and
one more design) according to a loose inspiration (e.g. adjust this
�yer for the fall season) using desktop software they were most
comfortable with 9 and using our web-based user interface with
automatically computed triads. Both tasks were allocated 7 minutes,
and the ordering was randomized. The intention of this task was not
to produce a �nal result, but to visualize an alternative color choice

9For users electing to work with Adobe Illustrator, Illustrator layers were provided,
simulating a realistic use case of adjusting a vector design.

Fig. 15. Color Exploration User Study: Most participants were able to
create many more quick variations using color triads they were not familiar
with than desktop applications they were intimately familiar with in the
allo�ed 7 minutes. This figure shows color explorations of 3 users, using
Adobe Illustrator and a layered vector octopus artwork, compared to using
our system with automatically computed color triads.

to gain design intuition. In Fig. 15 we show the number of di�erent
explorations three Adobe Illustrator users were able to create for
the same design using our unfamiliar software, and the tool they
know very well.
User feedback suggests that color triad-based exploration can

augment rather than replace existing work�ows, designed primarily
for producing polished �nal results, but not ideation and exploration.
In the questionnaire at the end of the study 8 out of 11 participants
responded that this tool would complement the tools they already
use in their work (5 strongly agree, 3 agree on a 5-point Likert scale),
and 8 out of 10 felt they could be more e�cient in their work if they
had access to this system (4 strongly agree, 4 agree). Users also high-
lighted the need to visualize the behavior of the blending parameter
b, which we subsequently added to our user interface (See Video).
Most users made heavy use of the focus point parameter, because it
has a very natural interpretation. With this initial exploration, we
did not evaluate other interface possibilities, such as interactive ad-
justment of alpha masks, or recoloring inside user-speci�ed regions.
The positive response to color-triad-based color exploration despite
the lack of these creative a�ordances indicates the promise of this
approach for augmenting existing creative work�ows.

9 DISCUSSION
We present nonlinear color triads, a new representation that bal-
ances the power of a continuous color space with the structure
and artistic appeal of a discrete palette and is based on the funda-
mental insight that colors in shaded objects are well-approximated
by a non-linear blend of three colors. We show the versatility of
the proposed representation by sketching out several applications,
including color editing, usage in conjunction with deep neural net-
works, image compression and pigment modeling (Supplemental
Material). While presenting a comprehensive solution to any of
these is a paper in itself and subject to future work, our explorations
serve as a proof of concept. The positive response to our user study
con�rms the value of color triads for novel interactive applications.
Furthermore, we believe that novel color representations like ours
can lay the foundation for new breakthroughs in color modeling,
editing, analysis, perception and creative interfaces.
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