
Polar Stroking: New Theory and Methods for Stroking Paths

MARK J. KILGARD, NVIDIA

Fig. 1. Polar stroking samples: A cubic Bézier segment with a cusp rendered properly with polar stroking while uniform parametric tessellation has no cusp,
both using 134 triangles; B polar stroking improves the facet angles distribution compared to uniform tessellation, both using 126 triangles; C arc length
texturing; D ellipse drawn as just 2 conic segments, one external; E complex cubic Bézier path (5,031 path commands, 29,058 scalar path coordinates) with
cumulative arc length texturing; F centripetal Catmull-Rom spline.

Stroking and �lling are the two basic rendering operations on paths in
vector graphics. �e theory of �lling a path is well-understood in terms of
contour integrals and winding numbers, but when path rendering standards
specify stroking, they resort to the analogy of painting pixels with a brush
that traces the outline of the path. �is means important standards such
as PDF, SVG, and PostScript lack a rigorous way to say what samples are
inside or outside a stroked path. Our work �lls this gap with a principled
theory of stroking.

Guided by our theory, we develop a novel polar stroking method to render
stroked paths robustly with an intuitive way to bound the tessellation error
without needing recursion. Because polar stroking guarantees small uniform
steps in tangent angle, it provides an e�cient way to accumulate arc length
along a path for texturing or dashing. While this paper focuses on developing
the theory of our polar stroking method, we have successfully implemented
our methods on modern programmable GPUs.

CCS Concepts: •Computing methodologies→ Rasterization;

Additional Key Words and Phrases: path rendering, vector graphics, stroking,
o�set curves

ACM Reference format:
Mark J. Kilgard. 2020. Polar Stroking: New �eory and Methods for Stroking
Paths. ACM Trans. Graph. 39, 4, Article 145 (July 2020), 15 pages.
DOI: 10.1145/3386569.3392458

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permi�ed. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
© 2020 ACM. 0730-0301/2020/7-ART145 $15.00
DOI: 10.1145/3386569.3392458

1 INTRODUCTION
Vector graphics standards such as PDF (Adobe Systems 2008), SVG
(SVG Working Group 2011), PostScript (Adobe Systems 1985), PCL
(Hewle�-Packard 1992), HTML5 Canvas (Whatwg.org 2011), and
XPS (ECMA International 2009) support two basic rendering opera-
tions on paths: stroking and �lling.

�e intuition of stroking a path is like a child drawing in a coloring
book by “tracing over the lines” and treating each path as the outline
to trace. Filling a path is like “coloring inside the lines.”

�e stroking operation on paths—mandated and speci�ed by all
the listed standards above—lacks a mathematically grounded theory
to de�ne what stroking means. To remedy this situation, we aim
to provide a principled theory for stroking and show our theory
motivates robust, useful, and GPU-amendable methods for stroking.

1.1 A�ick Theory of Path Filling
We �rst review the theory of path �lling to show �lling indeed has
a principled theory—in contrast to path stroking.

When a path is �lled, pixels “inside” the path get shaded and
composited. At �rst glance, path �lling sounds simple, but a path
can be arbitrarily complex. It can be empty, concave (perhaps ex-
tremely so), intersect itself, contain multiple closed regions (some
which wind clockwise while others the reverse), contain curved
sections as well as straight ones, and may be degenerate in various
ways (exhibiting cusps or closed regions with no interior). So a
computer’s decision whether a pixel is “inside or not” may seem
quite involved—even ill-de�ned, but good theory turns path �lling
into an unambiguous, well-de�ned, and ultimately rote rendering
operation.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

ar
X

iv
:2

00
7.

00
30

8v
2

 [
cs

.G
R

]
 2

1
Ju

l 2
02

0

145:2 • Mark Kilgard

Vector graphics turns path �lling into a rigorously de�ned op-
eration by adopting the theory of contour integrals from complex
analysis. Appendix A reviews this theory and its winding number
concept.

Graphics practitioners have long appreciated and richly mined
discrete versions of this theory as a sound basis for e�cient �lled
path rasterization algorithms. �e details are outside our scope,
so we cite just a few examples. Lane et al. (1983) rasterized con-
cave polygons this way. Corthout and Pol (1992) formalized use of
discrete curved contours for rasterization and Fabris et al. (1997)
improved its e�ciency. Kilgard and Bolz (2012) combined stencil
bu�er methods with insights from Loop and Blinn (2005) to �ll paths
e�ciently using GPU rasterization and shading. Scanline rasterizers
for �lling paths (Ackland and Weste 1981; Kallio 2007) practice this
theory in 1D on rows of pixels.

1.2 Good Theory Would Benefit Stroking Too
While path �lling is explicitly speci�ed to depend on a pixel’s wind-
ing number, no such rigorous underpinning exists for path stroking
in any of the speci�cations of major vector graphics standards.

For example, the PDF standard (2008) states its stroke operator
“shall paint a line along the current path” and “shall follow each
straight or curved segment in the path, centered on the segment with
sides parallel to it.” �e PDF standard’s description is intuitive in its
appeal to a painting metaphor. However a metaphor is insu�cient
to reason about what pixels should and should not be covered by
any particular stroked path segment.

We use elements from the di�erential geometric theory of curves
to mathematically formulate the problem of stroking a path segment.
We de�ne stroking using the concept of o�set curves and take care
to handle points where the derivative goes to zero (cusps) by explicit
provisions/alternative path de�nitions. �e formalization allows
us to de�ne a predicate for the stroked region and develop robust,
useful, GPU-amendable methods for stroking.

1.3 Contributions and Organization
Our contributions are:

• A theory of path stroking we call polar stroking that, for
the �rst time, provides a mathematically grounded formu-
lation of the path stroking operation consistent with the
best consensus implementations of major vector graphics
standards.

• A nonrecursive and GPU-amenable method, based on our
theory, to tessellate a stroked path by making small uniform
steps in tangent angle and thereby tightly and intuitively
approximating the path’s stroked region. Joins, caps, and
path segments are all tessellated in a single, uni�ed way.

• A method for e�cient arc length computation along stroked
paths to harness for dashing and arc length texture mapping
of stroked paths.

A�er this introduction, we review prior work in Section 2. Sec-
tion 3 explains our new theory of path stroking. Starting from our
theory, Section 4 develops our polar stroking method. Section 5
explains how our polar stroking facilitates practical cumulative
arc length computations along a path for arc length texturing and

dashing. Section 6 compares polar stroking to uniform paramet-
ric tessellation and existing real-world so�ware implementations.
Section 7 reviews limitations of our methods. Section 8 concludes.
Figure 1 demonstrates various polar stroking results.

2 PRIOR WORK

2.1 Not Classic Curve and Line Rendering
We distinguish path stroking from the classic rasterization algo-
rithms for line (Bresenham 1965) and curve (Pi�eway 1967) render-
ing that we term “connect the pixels” approaches. In these algo-
rithms each line or curve segment is rendered as its own distinct
primitive. �e idealized line or curve is 1D, even when such seg-
ments are rendered wide or antialiased. What width these lines
have is expressed in pixel units.

In contrast, a stroked path de�nes a 2D region orthogonally o�set
from the path’s generator curve by half the path’s stroke width.
�is width is speci�ed in the same coordinate space as the path’s
control points. Sequences of path segments are connected by joins
and start and stop with caps. Paths can be arbitrarily complicated
in the ways listed in Section 1.1, and all those complications (cusps,
etc.) must be handled properly. Pixel-space line primitives can be
stippled, but the dashing of paths is considerably more complicated,
taking place in the path’s own coordinate system and operating on
curved paths.

2.2 Path Rendering’s Stroking Operation
�e foundational work of Warnock and Wya� (1982) outlines a
complete device-independent vector graphics system. �eir paper
describes an operation whereby a brush follows a trajectory to
generate a shape that can then be drawn using �lling. �e paper
never uses the terms stroke or path but by converting trajectories to
shapes to be �lled, their system foresees the path �lling and stroking
operations essential to path rendering.

In this same time frame, Turner (1983) and Hobby (1985) explained
brush extrusion approaches whereby a logical brush or pen tip of
some shape is dragged along some trajectory and whatever pixels
are “swept out” by the brush or pen tip are considered part of the
rasterized region. �e brush shape and size is speci�ed in pixel-space
units.

PostScript arrived in 1984 (Adobe Systems 1985) providing both
stroke and �ll operators on paths with support for stroke width,
dashing, joins, and caps. PostScript-style stroking is our focus.

2.3 Stroking as a Brushing Operation
Corthout and Pol (1991) were the �rst to formulate a rigorous
stroking de�nition based on the Minkowski sum of a trajectory
and a brush and used it to reason about algorithms for stroking
PostScript. Fabris et al. (1998) further re�ned the underlying theory
to implement a more e�cient algorithm.

However this model does not capture the path stroking behavior
of PostScript and similar standards. Recall the PDF standard’s phras-
ing “paint a line … centered on the segment with sides parallel to
the segment” (emphasis added). �is phrasing implies stroking must
somehow depend on the gradient of each path segment. However
the brush-trajectory formulation ignores the gradient.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

Polar Stroking • 145:3

�e brush-trajectory model “stamps” the brush pa�ern all along
the trajectory and its neighborhood whereas path rendering stan-
dards have a wide-but-thin “pen tip” that sweeps the trajectory
orthogonal to the trajectory’s gradient. While a circular bush gen-
erates identical coverage to a path segment with round caps, path
rendering standards support cap and joins styles other than round,
in which case the coverage will not match PDF or other standards,
particularly at caps, joins, and the start and end of a segment.

As a practical ma�er, the brush-trajectory model’s coverage is
di�cult to transform into a tessellation of triangles or other geo-
metric primitives suited for e�cient GPU rasterization. While the
brush-trajectory model has a rigorous formulation, we assess it does
not meet our goal of matching the stroking behavior expected by
existing path rendering standards.

2.4 Path Stroking in Practice
We survey established approaches to implement path stroking.

2.4.1 Render a Filled Region Approximating the Stroked Region.
�e description of the stroke operator by Gosling et al. (1989) in-
dicates that early on, stroking was implemented by generating a
�llable region corresponding to the stroked region of a path and
then drawing that derived �llable region. Other recent path render-
ing systems explicitly state they take this approach (Dokter et al.
2019; Ganacim et al. 2014; Li et al. 2016).

An approximation strategy such as Tiller and Hanson (1984) is
necessary for curved segments. �is approximation is made di�cult
because the polynomial order of the stroked boundary of a path
segment with of a 2nd or 3rd order curve is substantially higher, 6th
or 10th order respectively in general (Farouki and Ne� 1990a). �is
approach is subject to defects where stroked segments overlap in
ways so that the net result is a zero winding number for a sample that
should technically be in the stroke, thereby dropping coverage that
should properly be part of the stroked region. If, in order to avoid
this, individual segments are rendered in isolation and antialiased,
con�ation artifacts are likely.

2.4.2 Recursive Conversion of Stroked Paths to Polygons. �is
approach recursively splits curved segments into smaller segments
until su�ciently straight and then converts the resulting sequence
of nearly straight segments into a quadrilateral strip. Care must be
taken at cusps and near-cusps of cubic Bézier segments and other
degenerate segments. �e Skia (Skia development team 2009) and
Anti-Grain Geometry (Shemanarev 2006) renderers do this. As this
approach is recursive, it maps poorly to GPU tessellation.

2.4.3 Approximation to Stroked �adratic Bézier Hulls. Ruf (2011)
shows a means to construct a conservative bounding region around
the o�set regions of quadratic Bézier curves so that point contain-
ment queries with respect to a stroked quadratic Bézier segment can
be limited to inside the bounding region. Kilgard and Bolz (2012)
take this further by handling cubic Bézier segments and arcs by
approximating them with quadratic Bézier splines and moving the
point containment queries into a fragment shader for GPU accelera-
tion.

𝑃𝐴

𝑃𝐶
𝑃𝐵

𝑃𝐶
𝑃𝐷

𝑃𝐴

𝑃𝐵

𝑃𝐷

Cubic generator: 𝒈𝑪 𝑡 for t ∈ [0,1]

w
Quadratic generator: 𝒈𝑸 𝑡 for t ∈ [0,1]

𝑃𝐵

𝑃𝐷

𝑃𝐴

𝑤

2

±
𝑤

2
𝑢𝐧 𝑡 for u ∈ [0,1]

w
𝑤

2

±
𝑤

2
𝑢𝐧 𝑡 for u ∈ [0,1]

±
𝑤

2
𝑢𝐧 𝑡 for u ∈ [0,1]

exact cusp
double semicircle

±
𝑤

2
𝑢 cos𝜃(𝑡, 𝑣), sin𝜃(𝑡, 𝑣)

for u,v ∈ [0,1]

Fig. 2. Geometric interpretation of Equations 1 and 2 for stroking path
segments shown applied to three example Bézier segments: quadratic (upper
le�), serpentine cubic (upper right), and exact cusp cubic (bo�om). �e pink
region is the stroked region according to Equation 1 that fails to include the
cusp’s double semicircle. �e black curve within each pink stroked region is
each segment’s generator curve. �e pink+blue regions correspond to the
stroked region according to Equations 2 and 9. Green double arrows show
the stroke widening term of Equation 1. �e red double arrows show the
cusp semicircle term of Equation 2.

2.5 Not Non-Photorealistic Rendering Stroking
Techniques for Non-Photorealistic Rendering (NPR) use stroke,
brush, and pen metaphors to create artistic e�ects; surveys by Hertz-
mann (2003) in particular and Kyprianidis et al. (2013) more recently
explore various stroke-based techniques for NPR. While stroke-
based NPR techniques and vector graphics both share the term
“stroke” and have similar conceptual underpinnings, we address
the speci�c stroking operation on paths found in vector graphics
standards rather than what NPR techniques broadly call stroking.

3 THEORY OF PATH STROKING

3.1 Path Preliminaries
A path is a sequence of n path segments. Each segment i = 1...n is
de�ned by the locus of (x ,y) positions generated by a parametric
generator curve gf ,i (t) assuming f ∈ {C,Q,K ,L}, t ∈ [0, 1].

�e form f of a segment selects among four parametric equations:
cubic Bézier (C), quadratic Bézier (Q), conic (K), and linear (L), with
each form de�ned in Table 1 where PA, PB , PC , and PD are (x ,y)
control points andwB is a homogeneous coordinate associated with
control point PB . Each segment in a path has its own associated con-
trol point coordinates. In practice segments are typically connected
into splines.

�e conic equation gK uses the so-called normal parameterization
(Piegl and Tiller 1995) of a rational quadratic Bézier segment, known
to be su�cient to represent any conic segment (Lee 1987); we place
no restrictions onwB , allowingwB to be both zero and negative (fur-
ther explained in Section 3.3.2) and allowing for external elliptical,
hyperbolic, and parabolic segments (Reimers 2011).

Path rendering standards use arc segments rather than conic
segments. For example, SVG parameterizes elliptical arcs using
an endpoint parameterization (SVG Working Group 2011, Elliptical
arc implementation notes). All such arcs can be transformed into

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes
https://www.w3.org/TR/SVG11/implnote.html#ArcImplementationNotes

145:4 • Mark Kilgard

Table 1. Table of path segment forms in vector graphics standards.

Segment
form

Generator
curve function, дf (t)

Initial normalized gradient, ∇̂ g(0)
Terminal normalized gradient, ∇̂ g(1) Figures

Cubic
Bézier

gC (t) = (1 − t)3 PA + 3(1 − t)2t PB+
3(1 − t)t2 PC + t3 PD

∇̂ gC (0) =

�PB − PA, if | |PB − PA | | > 0�PC − PA, else if | |PC − PA | | > 0�PD − PA, otherwise

∇̂ gC (1) =

�PD − PC , if | |PD − PC | | > 0�PD − PB , else if | |PD − PB | | > 0�PD − PA, otherwise

3, 4,
5, 6

�adratic
Bézier

gQ (t) = (1 − t)2 PA + 2(1 − t)t PB + t2 PD ∇̂ gQ (0) =
{ �PB − PA, if | |PB − PA | | > 0�PC − PA, otherwise

∇̂ gQ (1) =
{ �PC − PB , if | |PC − PB | | > 0�PC − PA, otherwise

7, 8

Conic gK (t) =
(1 − t)2 PA + 2(1 − t)t wB PB + t2 PD
(1 − t)2 + 2(1 − t)t wB + t2 ∇̂ gK (0) =

{
sgn(wB) �PB − PA, if | |PB − PA | | > 0 ∧wB , 0�PC − PA, otherwise

∇̂ gK (1) =
{

sgn(wB) �PC − PB , if | |PC − PB | | > 0 ∧wB , 0�PC − PA, otherwise

9, 10
11, 12

Line gL(t) = (1 − t) PA + t PD ∇̂ gL(0) = �PB − PA
∇̂ gL(1) = �PB − PA 13

an equivalent gK form. While arc segments are more intuitive for
artists creating path content, conic segments are compact, more
general, more e�cient to evaluate, and easier to reason about.

�ese four forms of path segments are the only ones needed by
path rendering standards so we restrict our focus to them. All four
are smooth functions. Linear transformation of their homogeneous
control points is equivalent to the same transformation applied to
points belonging to each segment’s locus.

Figures 3, 4, 5, and 6 illustrate gC with topologically varied con-
�gurations of stroked cubic Bézier segments. Figure 7 illustrates
gQ forming a stroked quadratic Bézier segment. Figures 8, 9, 10,
11, and 12 illustrate gK forming various stroked conic segments.
Figure 13 illustrates gL forming a stroked line segment. �e speci�c
tessellation shown for each stroked segment in each of these �gures
is generated with the method of Section 4.

�e gradient of g(t) with respect to t is denoted g′(t) or simply
g′. �e unit-length tangent t, unit-length normal n, and signed
curvature κ at t are de�ned as

t =
g′

| |g′ | | , n = t × z, κ =
(g′ × g′′) · g
| |g′ | |3

where we de�ne z = n × t to form a unit vector perpendicular to
the plane of the curve, assuming | |g′ | | is nonzero.

�e graph of a gradient such as g′(t) is known as a hodograph.
To the right of each stroked segment in Figures 3 through 13 is the
segment’s hodograph on a polar plot.

3.2 Formulating Path Stroking
3.2.1 Stroking Expressed with O�set Curves. O�set curves (Farouki

and Ne� 1990b) depend on the gradient of their generator curve and

so are be�er suited than the brush-trajectory model (Section 2.3) to
formulate path stroking consistent with path rendering standards.

Given a plane curve g(t) with a regular parameterization on t ∈
[0, 1]—known as the generator curve—the o�set curve to g(t) at a
distance d is de�ned by

go (t) = g(t) + d n(t) for t ∈ [0, 1]

where n(t) is the unit normal to g(t) at each point.
We can de�ne the stroked region of a path segment with a gener-

ator curve g(t) as the locus of points de�ned by

sw (t ,u) = g(t) ± w

2 u n(t) for t ,u ∈ [0, 1] (1)

where w is the stroke width. Figure 2 provides a geometric inter-
pretation of Equation 1. Observe sw faithfully captures the PDF
speci�cation’s phrasing (quoted in Section 1.2) that a stroked re-
gion is centered because of ±w2 and parallel to the generator curve
because the stroke boundary is o�set by the normal n(t).

Because sw allows simultaneous negative and positive o�set dis-
tances, we may relax the previously stated regularity restriction on
g(t) when considering its stroked region sw because any disconti-
nuities introduced by an abrupt reversal of the normal vector when
| |g′(t)| | = 0 do not a�ect the stroked region’s continuity.

�is relaxation is important as path rendering standards place no
restrictions on path segments to guarantee regularity. It is straight-
forward to specify a nondegenerate cubic Bézier segment with an
exact cusp. See Figure 6 for an example. Various degenerate path
segments may also induce cusps.

To reason about the rasterized coverage of (x ,y) pixels with re-
spect to a stroked path, we express sw as a support predicate sw (x ,y)

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

Polar Stroking • 145:5

Fig. 3. Cubic Bézier segment in loop con�guration with its hodograph.

Fig. 4. Cubic Bézier segment in serpentine con�guration (1 in�ection in
[0, 1]) with its hodograph.

Fig. 5. Cubic Bézier segment in serpentine con�guration (2 in�ections in
[0, 1]) with its hodograph.

de�ned as

sw (x ,y) =
{

1, if ∃(t,u)∈[0,1] : (x ,y) = sw (t ,u)
0, otherwise

While much closer than the brush-trajectory model to the behav-
ior expected by path rendering standards, sw still does not fully
conform with established stroking expectations as we now explore.

3.2.2 Handling Cusps Robustly. Consider the rendering implica-
tions of a cusp on g, meaning there is a t where g′ passes through
the origin (0, 0), a situation that occurs when | |g′(t)| | = 0. By formu-
lating stroking as sw (t ,u), situations where g′(t) would nearly—but
not exactly—pass through (0, 0) should induce the segment’s nor-
mal to “pivot” 180° at the limit. �is ever-so-nearly 180° pivot acts
to sweep out pixels in a nearly circular (more accurately: double
semicircle) region. However if a cusp formed exactly—not simply
nearly so—then the normal would instantaneously reverse without a

Fig. 6. Cubic Bézier segment in cusp con�guration with its hodograph.

pivot as t and hence n are unde�ned at a cusp so the stroked region
de�ned by sw would lack a double semicircle at the cusp point.

Not forming the rasterization coverage of a double semicircle at
an exact cusp is inconsistent with how stroking is well implemented
in modern path rendering systems. Additionally the behavior of
sw is practically and artistically undesirable as it permits small
perturbations of control points to “wink away” stroked coverage if
the perturbations were to induce an exact cusp.

We can “�x” this undesired behavior of sw at exact cusps by
augmenting the stroked region with a double semicircle of additional
points around exact cusps. See the exact cusp blue region in Figure 2.
We de�ne this augmented stroked region as

Sw (t ,u,v) =
{
g(t) ± w

2 u 〈cos θ (t ,v), sin θ (t ,v)〉, if | |g′(t) | |=0 ∧
0<t<1

g(t) ± w
2 u n(t), otherwise

(2)
for t ,u,v ∈ [0, 1], where

θ (t ,v) = θin (t) +v (θout (t) 	 θin (t))
θin (t) = lim

s→t−
tan−1 n(s)

θout (t) = lim
s→t+

tan−1 n(s)

θ1 	 θ2 =

θ1 − θ2 − 2π , if θ1 − θ2 > +π

θ1 − θ2 + 2π , if θ1 − θ2 < −π
θ1 − θ2, otherwise

understanding that tan−1 returns the angle of a vector and 	 is a
relative angle di�erence. Notice θ (t ,v) is constructed such that

θ (t , 0) = θin (t)
θ (t , 1) = θout (t)

If g′ passes through the origin at u, |θout (u) 	 θin (u)| is 180° as g
is smooth. Examine the origin of the cusp hodograph in Figure 6
to see this. �e careful formulation above using one-side limits
will prove useful to handle caps and joins. Robustly handling cusps
is important not merely to handle segments containing cusps but
also to generalize our theory to caps and joins by treating them as
essentially partial cusps; see Section 4.3 and Figures 15 and 16.

When the generator curve g does contain an exact cusp within
its parametric domain, Sw unions in a double semicircle pivot at the
cusp into the stroked region. E�ectively at a cusp on g, Sw selects an
alternative guaranteed-to-be-de�ned normal that varies with θ (v)
rather than relying on t varying and its unde�ned-at-cusps n(t)
normal.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

145:6 • Mark Kilgard

3.3 Defining a Gradient-Free Stroked Region
�e Sw formulation of stroking in Equation 2 allows determining a
stroked region without evaluating the generator curve’s gradient g′
at cusps. We now take this idea one step further to forgo depending
on the evaluation and normalization of g′ at all.

Rather than varying t over the generator curve g, we instead
explore varying the normal angle θ by assuming there exists a
function t(θ) that maps a normal angle to a parametric value t that
we then use to evaluate g. �is assumed function t(θ) behaves like
the inverse of actual-function θ (t) de�ned as

θ (t) = tan−1
(

g′

| |g′ | |

)
+
π

2
but with the caveat that t(θ) is de�ned even when | |g′ | | = 0 and
hence even when n is unde�ned.

Indeed when there exists some θc such that t(θc) returns a partic-
ular value tc that locates a cusp on g (so | |g′(tc)| | = 0), then either
θc is among a 180° range of other normal angles that all return the
cusp location tc (this we call the ordinary cusp case) or with extreme
rarity θc is an isolated angle such as occurs when both | |g′(tc)| | = 0
and | |g′′(tc)| | = 0. �is la�er rare case occurs when g′ “kisses”
the origin but then reverses direction without passing through the
origin, a feature known as a kink (Porteous 1994).

Of the four parametric equation forms used in path rendering,
only gC can form nondegenerate cusps and only a degenerate form
of gC can form a kink and then only when the degenerate cubic
segment is masquerading as a line segment.

Assuming t(θ) is a one-to-one function over some restricted do-
main [θa ,θb], we can construct a gradient-free formulation of the
stroked region de�ned by

Sw (θ ,u) = g(t(θ)) ± w

2 u 〈cos θ , sin θ〉 for u ∈[0,1],
θ ∈[θa,θb]

where θa and θb designate the start and stop normal angles of the
stroked region.

3.3.1 Switching from Normal Angle to Tangent Angle. So far, this
discussion has used normal angles, but expressing Sw in terms of
tangent angles instead will prove more convenient. Every normal
angle θ is related to its tangent angleψ by a 90° rotation:

ψ = θ − π2
Rewriting Sw in terms ofψ gives

Sw (ψ ,u) = g(t(ψ)) ± w

2 u 〈− sin ψ , cos ψ 〉 for u ∈[0,1],
ψ ∈[ψa,ψb]

3.3.2 The Need for Limited Tangent Angle Ranges. We needψ (t)
to be one-to-one within a bounded range of t so we can invert it to
obtain a well-de�ned function t(ψ) over a rangeψ ∈ [ψa ,ψb].

However when t(ψ) is unconstrained in its range, it may be a
multifunction. Multiple points on g may share the same tangent
angle. Indeed examples where t(ψ) is a multifunction are easy to
identify. For example, a spiral or periodic function will share a
single tangent angle with many distinct points. In the extreme, a
line segment has a single tangent angle for every t .

For ranges ofψ free of points with zero curvature on g (so contain-
ing neither a line segment nor being a curved segment containing
an in�ection point), t(ψ) can be one-to-one.

In�ection points occur when κ(t) = 0. If the tangent angle in-
creases (decreases) along a curve, when passing through an in�ec-
tion point, the tangent angle reverses direction and begins decreas-
ing (increasing) as a consequence of the curve’s curvature reversing
its sign. As g is smooth, this implies the curve must be revisiting
tangent angles—and t(ψ) cannot be one-to-one in this interval.

Stated more simply, a �rst necessary requirement for t(ψ) to be
invertible is its domain must be constrained so all the domain’s
tangent angles strictly rotate either all clockwise or all counter-
clockwise. A second necessary requirement is each angular interval
must be less than a complete revolution so |ψb −ψa | < 2π .

�adratic Bézier gQ and linear gL segment forms need not solve
κ(t) = 0 as these forms are free of distinct in�ection points. For
the cubic Bézier gC segment form, Loop and Blinn (2007) provide
e�cient expressions to setup a quadratic equation to solve for the
parametric value t at 0, 1, or 2 in�ection points, corresponding to
loop, cusp, or serpentine cubic curve types respectively.

3.3.3 Handling External Conics. Extra care must be taken for
the conic gK segment form because we allow negative values of
wB . Non-degenerate conic segments are free of regions where
κ(t) = 0. However particular conic sections we call discontinuous
(or external) hyperbolic or parabolic segments have tangent angle
reversals when we allow wB ≤ −1. So we use K(t) = 0 as a
more technical de�nition for when a tangent angle reversal occurs,
de�ned as

K(t) = sgn lim
s→t+

κ(s) + sgn lim
s→t−

κ(s)

meaning the signs of the curvature are opposite on either side of t
at the limit, or informally the curvature’s sign �ips moving through
t . Note for the (nonrational) forms gC , gQ , and gL , K(t) = κ(t).

When κK is the curvature of gK , the numerator of κK is an
involved expression but nonzero—except if gK is degenerate, such
as �a�ened to a line segment or point. Yet the denominator of κK
is much simpler:

denomκK = ((1 − t)2 + 2(1 − t)t wB + t
2)3

= (denom gK)3

Notice the denominator of κK is the cube of the denominator of
gK (see Conic row of Table 1). As the denominator is smooth, we
can solve for when denomK(t) = 0 to know when its (in�nite)
curvature reverses. So the solutions trev when KK (t) = 0 for non-
degenerate conic segments gK are

trev =
−2 ± 2

√
w2
B − 1

4wB − 4 (3)

Our interest is only in solutions in the parametric range [0, 1]. �ere
are two solutions whenwB < −1, the case of an external hyperbola;
one solution when wB = −1, an external parabola; and no solutions
(so no tangent reversals) for external ellipses (−1 ¡wB < 0), degener-
ate lines (wB = 0), internal ellipses (0 < wB < 1), internal parabolas
(wB = 1), or internal hyperbolas (wB > 1).

3.3.4 Building Tangent Angle Ranges of Consistent Turning. �e
second requirement for t(ψ) to be one-to-one is its total tangent

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

Polar Stroking • 145:7

angle domain must turn less than 2π radians; otherwise a single
tangent angle aliases to more than one parametric value t .

By solving K(t) = 0 for t strictly inside [0, 1], we can produce an
ordered sequence p[0...n] of n + 1 parametric values, de�ned as

p0 = 0

pi = t such that
K(t) = 0 ∧
t ∈ (0, 1) ∧
pi−1 < t

(4)

pn = 1
such that i = 1...n − 1 (i , n). When n > 1, p1 through pn−1 each
identify a tangent angle reversal on g. Because of the requirement
that pi−1 < pi in the de�nition of p, any region of continuous zero
curvature is jointly characterized in p by a single pi value for i < n.

Next we produce a second ordered sequence Ψ[0...n] of n + 1 tan-
gent angles where Ψi corresponds to in�ections point g(pi), de�ned
as

Ψ0 = tan−1 ∇̂ g(0)
Ψi = tan−1 g′(pi) (5)

Ψn = tan−1 ∇̂ g(1)

where i = 1...n − 1 (i , n) and ∇̂ is a special normalized gradient
operator (detailed shortly) guaranteed in-almost-all-cases to return
a well-de�ned tangent at the start or end point of a parametric
curve g, even when | |g′(0)| | = 0 or | |g′(1)| | = 0 respectively. �e
one exception to the guarantee is if the segment has an arc length
of zero, but then the segment’s stroked region is the empty set.

When i > 1, Ψ1 through Ψn−1 are the points of tangent angle
reversals g(p1) through g(pn−1). �ese tangent angles are well-
de�ned because g′(pi) for i ∈ [1...n−1] is well-de�ned sinceK(pi) =
0 implies g′(pi) exists.

We de�ne ∇̂ g(0) and ∇̂ g(1) as

∇̂ g(0) = limt→0+ g′(t)
| | limt→0+ g′(t)| |

∇̂ g(1) = limt→1− g′(t)
| | limt→1− g′(t)| |

Table 1 provides ∇̂ g(0) and ∇̂ g(1) for each of the four generator
function forms.

�ese de�nitions rely on the initial and terminal tangent property
of the Bézier basis. Successive control points are di�erenced until a
nonzero length vector di�erence is found—or the segment’s control
point sequence is exhausted. Using these normalized gradient oper-
ators, the Ψ0 and Ψn tangent angles are well-de�ned for nonzero
length segments, even when one or more control points—but not
all—are colocated. All control points being colocated is a zero length
segment.

3.3.5 Bounding Total Curvature Within Tangent Angle Intervals.
We now consider the possibility thatSw (ψ ,u)might not be a one-to-
one function in one or more of the intervals [Ψi ,Ψi+1] because the
tangent angle “wraps around” a full turn (i.e., 2π radians) or more.
We know there are cases such as if g is a spiral when we can expect
total curvature to exceed 2π . However we limit our consideration to
just the four parametric equation forms de�ned for path segments
in Table 1 and Section 3.1.

Rational Bézier curves with nonnegative homogeneous weights
adhere to the hodograph property (Floater 1992). �is property says
the segment’s tangent (in the direction of increasing t) lies between
the directions of the control polygon segments Pi+1 − Pi .

So for the quadratic gQ form with 3 control points, all the seg-
ment’s tangents must be between P1−P0 and P2−P1. �e maximum
angle between such a pair of segments is π radians. �erefore a
quadratic Bézier path segment gK has a maximum absolute total
angle range of π . For the cubic gC form with 4 control points, all the
segment’s tangents must be between two pairs of such segments.
�erefore a cubic Bézier path segment gC has a maximum absolute
total angle range of 2π . �e maximum total angle range of the linear
gL form is trivially zero as a line is straight so has no tangent angle
change.

�e conic gK form deserves more discussion. gK is a rational
quadratic Bézier curve where we allow the weight wB to be either
nonnegative or negative. When wB ≥ 0, the weights are all non-
negative, satisfying the conventional hodograph property, so the
maximum total angle change is π just like for gQ . However when
−1 ≤ wB < 0, gK can “�ex outward” so its tangent angle range is
the re�ex of directions that lie between P1 − P0 and P2 − P1 so the
absolute angle of gK with a weight −1 < wB < 0 would be between
π and 2π radians. Finally when wB < −1 the gradient direction
range is bounded between the limit of the gradient direction of trev
from Equation 3 so here the maximum total angle change is π .

Based on this analysis, for all the parametric equation forms that
path rendering standards use, the total curvature of any interval
[Ψi ,Ψi+1] is < 2π . �is means there is no need to split [Ψi ,Ψi+1]
intervals to be < 2π . �e sequences p and Ψ are limited to a maxi-
mum of 4 elements because they need 2 elements for the initial and
terminal elements for t = 0 and t = 1 and at most 2 more elements
for the at most 2 in�ection points allowed by the gC or gK forms.
With at most 4 elements in the sequence Ψ, there are at most 3
intervals.

In the case of a conic path segment when −1 < wB < 0 (external
ellipse) or a cubic Bézier segment without multiple in�ections (so
a loop or cusp cubic), a single interval could have a total turning
angle ≥ π . In this situation, we �nd it numerically helpful (see
Section 3.4) to split the region into two intervals [Ψ0, split(Ψ0,Ψ1)]
and [split(Ψ0,Ψ1),Ψ1] where split(θa ,θb) is de�ned

split(θa ,θb) = θa ⊕
θb 	 θa

2 ⊕ π

and ⊕ is angle addition de�ned as

θ1 ⊕ θ2 =

θ1 + θ2 − 2π , if θ1 + θ2 > +π

θ1 + θ2 + 2π , if θ1 + θ2 < −π
θ1 + θ2, otherwise

Spli�ing such intervals in half so each half has < π radians makes
it numerically unambiguous to distinguish an angleψ fromψ + π
in the process of evaluating t(ψ).

3.3.6 Building a Unified Tangent Angle Interval Range. A�er es-
tablishing our intervals as described, we have 1 to 3 intervals—call
this the interval count M . Each interval’s t(ψ) is one-to-one, except
in the case of a �at interval where Ψi−1 = Ψi , such as a line segment
gL form or a degenerate version of some other segment form.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

145:8 • Mark Kilgard

We specify the radian di�erence δi in each interval and the accu-
mulated absolute δΣ(k) for each interval as

δi = Ψi−1 	 Ψi (6)

δΣ(k) =
M∑
i=1
|δi | for k ∈ [0...M]

so that δΣ(0) = 0 and δΣ(M) is total absolute angle rotation over
all the intervals. By how we constructed our intervals, we know
δi ≤ π and δΣ ≤ 2π for gf where f ∈ C,Q,K ,L. So all the standard
path segment forms listed in Table 1 rotate no more than 180° in
any interval and no more than 360° total.

For a value z ∈ [0,δΣ(M)], we specify a functionψ (z) as

ψ (z) =
{
Ψk , if ∃k : z = δΣ(k)
Ψk + sgnδk (z − δΣ(k)), else ∃k :

δΣ(k)<z<δΣ(k+1)

By building onψ (z), we can de�ne robust functions on z that return
a parametric value t(z) and a unit tangent n(z):

t(z,v) =

pk , if ∃k : z = δΣ(k) ∧ δi , 0
t[Ψk ,Ψk+1](ψ (z)), else if ∃k :

δΣ(k)<z<δΣ(k+1)
(1 −v)pk +v pk+1, otherwise ∃k : z = δΣ(k)

(7)

n(z,v) =
{
〈− sinΨk , cosΨk 〉, if ∃k : z = δΣ(k)
〈− sinψ (z), cosψ (z)〉, else ∃k :

δΣ(k)<z<δΣ(k+1)
(8)

�e yet-to-be-de�ned function t[Ψk ,Ψk+1](ψ) maps an angle ψ to
a parametric value t within the interval [Ψk ,Ψk+1]; our next Sec-
tion 3.4 explains the construction of this function.

�e otherwise case in Equation 7 operates for zero curvature
intervals, using v to �ll in a �at interval with a widened line seg-
ment. Much as Sw (t ,u,v) in Equation 2 varies v to generate cusps,
Sw (z,u,v) instead varies v to generate widened line segments for
�at intervals.

Now we express Sw in terms of these expressions to arrive at a
gradient-free formulation of the stroked region of a path segment g

Sw (z,u,v) = g(t(z,v)) ± w

2 u n(z) for z∈[0,δΣ(M)],u,v ∈[0,1] (9)

�is Sw (z,u,v) version of S is superior to the Sw (t ,u,v) version in
Equation 2 because the former is gradient-free and provides a way
to traverse uniformly the path segment in tangent angle by varying
z linearly over [0,δΣ(M)]. �is last point is our big idea and the
basis for our polar stroking method of tessellation.

We call the conventional theory parametric stroking (Equation 2)
because the parametric variable t drives the generation of the stroked
region along the generator curve. We call our new theory polar
stroking (Equation 7) because the tangent angle ψ , expressed as a
polar angle, drives the stroked region along the generator curve.

To complete our theory, we de�ne a support predicate to indi-
cate when a pixel at (x ,y) is inside of the stroked segment using
Sw (z,u,v) in Equation 9:

Sw (x ,y) =
{

1, if ∃z∈[0,δΣ(M)],u,v ∈[0,1] : (x ,y) = Sw (z,u,v)
0, otherwise

(10)
�e support coverage for an entire path P is the maximum of the
support coverage of each path segment in P according to Equation 10

and that of any joins and caps. �is provides a robust support
predicate for stroked paths comparable to the support predicates
for �lled paths found in Appendix A.

Path rendering standards are su�ciently concrete about the re-
gions de�ned by caps and joins (e.g., handling miters, etc.) that we
do not belabor de�ning the stroked regions including caps and joins
in formal terms.

3.4 From Tangent Angle to Parametric Value
We must still explain how to implement the assumed function
t[Ψk ,Ψk+1](ψ) in Equation 7. �is involves solving for t when the
gradient is orthogonal to the normal vector N (90° rotated from the
tangent angleψ) so

0 = g′(t) · N (11)

where

N = 〈−sinψ , cosψ 〉

and then selecting what should be by construction the single solution
in the range [pk ,pk+1]. However if numerically no solution is in
the range [pk ,pk+1], evaluate the range extremes and pick t using

t =

{
pk , if |g′(pk) · N| < |g′(pk+1) · N|
pk+1, otherwise

For the cubic gC and conic gK forms, this involves solving a qua-
dratic equation. �e conic gK form also needs solve only a quadratic
because we can ignore the denominator of g′Q when solving Equa-
tion 11. For the quadratic Bézier gQ , this involves solving a simple
linear equation. �e linear gL never needs to perform this solve.

Notice at a cusp, g′ will be (0,0) so any angle will satisfy Equa-
tion 11—though the t for the cusp might not be in the range of
interest [pk ,pk+1].

4 THE POLAR STROKING METHOD
We now turn this theory into a robust discrete tessellation scheme
for a complete path.

�e algorithm we seek should have these properties:
• Degenerate path segments, cubic Bézier path segments with

cusps, and all other valid path segment, caps, and joins
should approximate the theory in Section 3.

• Intuitive control of the tessellated quality; this means the
facet angles between tessellated quadrilaterals (called quads
henceforth) are guaranteed less than a con�gurable facet an-
gle threshold while also uniformly distributing the change
in tangent angle within an in�ection-bounded interval.

• �e number of tessellated quads must also be determined a
priori to tessellation of a given path segment, as opposed
to being the result of a recursive process; this is motivated
by wanting to map well to GPUs where predictable work
creation is necessary as GPUs do not naturally support
recursive processes.

• Uni�ed handling of joins and caps using the same approach
as path segments.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

Polar Stroking • 145:9

4.1 Stroked Paths Tessellated to�ad Strips
�e output of our stroke tessellation algorithm should be a sequence
of quads, suited for GPU rendering. For uniformity of processing, if
we need to generate a triangle (such as for a miter join), we generate
a degenerate quad with two colocated vertices. �ese could easily
be optimized into triangles.

We expect these sequences of quads to be rasterized by GPUs
designed to rasterize triangles. Standard practice for GPUs is to
subdivide quads into two triangles and rasterize each triangle inde-
pendently and perform a�ribute interpolation per-triangle. �is is
not ideal for our purposes as our quads “bow-tie” (Strassmann 1986)
(meaning opposite edges intersect) whereas the GPU draws two
triangles that overlap. We also naturally expect bilinear a�ribute
interpolation over the quad so all 4 vertices contribute—per-triangle
interpolation is noticeably inferior. Hormann and Tarini (2004) de-
scribe proper methods for rendering a quad with two colocated
vertices; we implemented proper quad rasterization and interpola-
tion (adapting a geometry shader example found in the Cg Toolkit
(NVIDIA 2012) source code) and found this approach remedied the
rasterization and interpolation issues a�ributable to GPUs spli�ing
quads into triangles.

4.2 Uniform Tangent Angle Step Tessellation
We now assume a maximum tangent angle step threshold q. Treat
q as an intuitive tessellation quality knob that determines the maxi-
mum tangent angle step along the generator curve.

Farouki and Ne� (1990b) explain that an o�set curve’s tangent to
and normal no vectors, at any parametric t , are a linear scale factor
di�erent from the tangent t and normal n of the generator curve at
the same t . When κ is the generator curve’s curvature at t :

to =
1 ± κw2
|1 ± κw2 |

t, no =
1 ± κw2
|1 ± κw2 |

n

So the tangent and normal angles, respectively, of o�set and gener-
ator curves are equal modulo 180°. Also if the scale factor is zero,
the o�set curve cusp forms a cusp (as its gradient is zero) and an
angle reversal must occur when traversing that cusp.

�us the tangent and normal angles on the boundary of the stroke
change by the same step in angle as the generator curve’s tangent
and normal angle—except reversing at o�set cusps. Arguably the
stroked tessellation quality is more sensitive to what we call the
facet angle, the angle when one quad connects to the next. Ordinary
facet angles are bounded to < 2q though usually quite close to q.
Consult our supplement (Kilgard 2020c) for details.

Hence the reason q is an e�ective quality knob is q provides a
uniform tangent angle step that then bounds the ordinary facet
angle change. �is bound excludes a small number of exceptional
facet angles adjacent to o�set cusps on the boundary that lack a
bound and are typically internal to the tessellation.

4.2.1 Building a Discrete Interval Range. To build our tessellation
of a path segment, we now compute a number of steps ∆i per

Fig. 7. �adratic Bézier segment with its hodograph.

interval and cumulative number of steps for the segment ∆Σ(k):

∆i =

⌈
δi
q

⌉
(12)

∆Σ(k) =
k∑
i=1

∆i (13)

so that ∆Σ(0) = 0 and ∆Σ(M) = N where N is the total number of
steps for the entire path segment. Figure 14 shows how decreasing
q a�ects the tessellation.

For a value j = 0...N , we can now determine a functionψ (j) such
that as j varies from 0 to N , the function steps in t such that the
change in absolute tangent angle fromψ (j) toψ (j + 1) is guaranteed
to change by ≤ q.

ψ (j) =
{
Ψk , if ∃k : j = ∆Σ(k)
Ψk +

δk
∆k
(j − ∆Σ(k)), else ∃k : ∆Σ(k) < j < ∆Σ(k + 1)

By building on ψ (j), we can de�ne robust functions to return a
parametric value and unit tangent from stepping in j:

t(j) =
{
pk , if ∃k : j = ∆Σ(k)
t[Ψk ,Ψk+1](ψ (j)), else ∃k : ∆Σ(k) < j < ∆Σ(k + 1)

(14)

n(j) =
{
〈− sinΨk , cosΨk 〉, if ∃k : j = ∆Σ(k)
〈− sinψ (j), cosψ (j)〉, else ∃k : ∆Σ(k) < j < ∆Σ(k + 1)

(15)

�e function t(j) checks if j corresponds to an interval bound-
ary Ψk for some k and, if so, simply returns the parametric values
pk ; otherwise, j falls within an interval [Ψk ,Ψk+1] and then lin-
early interpolates a tangent angleψ in the range to use to evaluate
the function t[Ψk ,Ψk+1](ψ) for the interpolated angle. Likewise n(j)
operates similarly but returns a unit normal corresponding to t(j).

Unlike Equations 2 and 8 that need a varying v to generate �at
segments, discrete tessellation has no such need. A �at segment
will be rasterized as a quad so there is no need for v to generate
points. �is means a line segment tessellates to a single quad.

4.2.2 Tessellating a Path Segment to �ads. To tessellate a path
segment with a particular generator path segment equation gf ,
associated control points, and stroke width w , �rst compute N and
the sequences p, Ψ, δ , ∆Σ.

Break the tessellation of a path segment into N = ∆Σ(M) steps.
N + 1 ribs are generated, each having a pair of vertices Pi and Ni

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

145:10 • Mark Kilgard

Fig. 8. Rational quadratic Bézier segment in external parabola con�guration
with its hodograph.

Fig. 9. Rational quadratic Bézier segment in internal ellipse con�guration
with its hodograph.

Fig. 10. Rational quadratic Bézier segment in external ellipse con�guration
with its hodograph.

where j = 0...N de�ned

Nj = g(t(j)) − rN n(j) (16)
Pj = g(t(j)) + rP n(j) (17)

where
rN =

w

2 , rP =
w

2
�e distinct positive- and negative-directed radii rN and rP are
introduced to aid in generating caps in joins in the next section.

�en generate the N tessellated quads numbered i = 0...N − 1
assembled from pairs of sequential ribs where each has 4 vertices:
Ni , Pi , Ni+1, and Pi+1.

4.2.3 Hodograph Intuition. To help appreciate our approach, Fig-
ures 3 to 13 show on their right side a path segment, tessellated
by our GPU-based implementation of polar stroking and overlaid

Fig. 11. Rational quadratic Bézier segment in internal hyperbola con�gura-
tion with its hodograph.

Fig. 12. Rational quadratic Bézier segment in external hyperbola con�gura-
tion with its hodograph.

Fig. 13. Linear segment with its hodograph.

with its wireframe tessellation while the right side shows the hodo-
graph (a polar plot of the gradient g′) of the segment. Points on the
hodograph correspond to ribs on the tessellated path segment.

4.3 Joins and Caps
When consecutive path segments share the same end and start
points but do not join with exact tangent continuity—as is o�en the
case—a path’s join style augments the path’s stroked region with
a join region. Round, bevel, and miter are the standard joins; PCL
and XPS also support triangular joins. Miter joins are subject to a
miter limit so if a join is su�ciently sharp it exceeds the miter limit,
the miter is either truncated or reverted to a bevel. See Figure 15.

Caps are another way to augment the stroked region of a path.
When a path segment does not join with another segment at its
start or end, the stroked region beyond the unjoined start or end,
respectively, can be augmented by a square or round cap. PCL and
XPS also support triangular caps. See Figure 16.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

Polar Stroking • 145:11

Fig. 14. Path with cubic, quadratic, conic, and linear segments drawn from
le�-to-right with q = 10°, 4°, 1°.

Fig. 15. Tessellations of all supported join styles.

Fig. 16. Tessellations of all supported cap styles.

4.3.1 Tessellation Approach for Caps and Joins. We now discuss
how to augment the tessellation process in Section 4.2 to support
caps and joins with minimal modi�cations. We treat caps and joins
as zero-length segments—so the generator curve is a single point—
yet with distinct start and stop tangent angles. In other words, at
a join or cap point (x ,y) there is a start tangent angle and stop
tangent angle despite the fact that the generator curve’s position
is �xed at (x ,y) so has no actual gradient. �ink of this as a pivot.
Caps pivot 180° (similar to a cusp) while joins pivot based on the
angle di�erence between the incoming and outgoing path segments
meeting at the join. �ese start and stop tangent angles depend on
the path segments to which the join or cap connects.

For a join, the start and stop tangent angles are matched to the stop
and start tangent angles of the incoming and outgoing path segments
respectively. �e start and stop tangent angles at a start cap are
matched to the capped path segment’s start normal angle (tangent
angle rotated +90°) and the angle 180° rotated from the normal

angle by rotating counterclockwise (increasing angle) respectively.
�e start and stop tangent angles at a stop cap are matched to the
capped path segment’s stop normal angle and the angle 180° rotated
from the normal angle by rotating clockwise (decreasing angle)
respectively.

For both joins and caps, the generator function is simply g(t) =
(x ,y) for the join/cap position; M = 1; the sequence p is trivially
p0 = 0 and p1 = 1; and ∆Σ(0) = 0, ∆Σ(1) = J where J depends on
the cap or join style, as will be discussed.

Speci�c to a join, the sequence Ψ is Ψ0 = ∇̂ga (1) and Ψ1 = ∇̂gb (0)
where ga and gb name the incoming and outgoing path segment
generator functions; and δ1 = Ψ1 	 Ψ0.

Speci�c to a start cap, the sequence Ψ is Ψ0 = ∇̂gc (0) and Ψ1 =
Ψ0 + π where gc names the cap path segment generator function;
and δ1 = +π .

Speci�c to a stop cap, the sequence Ψ is Ψ0 = ∇̂gc (1) and Ψ1 =
Ψ0 + π where gc names the cap path segment generator function;
and δ1 = −π .

With this initialization established, we can specify how the vari-
ous cap and join styles vary in their implementation.

For both caps and joins, respectively forcing either rN or rP to
zero when δ1 is positive or negative ensures only the visible outside
of the join is tessellated. To ensure a watertight tessellation when
forcing rN or rP to zero, we recommend introducing an extra quad
that connects the adjacent path segment rib to the �rst or last rib of
the join or cap. �ese quads will typically be zero area, but avoid
cracks from so-called T-junctions.

4.3.2 Easy Joins: None, Miter, Triangular, Round. �e none, miter,
and triangular join styles correspond to J = 0, 1, 2 respectively.

For a round join, compute J = dδ1/qe similar to Equation 12 so
that q controls the tessellation quality for round caps just as it does
for conventional curved path segments. When the edges of the
tessellated quads are small relative to a pixel, q can be increased,
thereby decreasing N , with no visible loss of round cap quality.

What makes these joins easy is they all have a constant distance
w
2 from the join point to the outer rib vertex.

4.3.3 Harder Joins: Miter Truncate and Revert. With miter joins,
there is not a constant distance from the join point to the miter
vertices. Set J = 3 for the miter joins. �is generates three quads.
�ese three quads are su�cient to form the normal miter, the trun-
cated miter, and a miter reverted to a bevel. �e details for how to
compute miter vertices is standard stroking practice and beyond
our scope. Once computed with conventional methods, override rib
vertices P1 and P2 when δ1 > 0 (or N1 and N2 when δ1 < 0) that
otherwise are computed with Equations 16 and 17.

4.3.4 Easy Caps: None, Triangular, Round. �e none and trian-
gular cap styles correspond to J being 0 and 2 respectively.

For round caps, same as round joins, set J = dδ1/qe again similar
to Equation 12 so that q controls the tessellation quality for round
caps just as it does for conventional curved path segments. As
with round joins when the edges of the tessellated quads are small
relative to a pixel, q can be increased with no visible loss of round
cap quality.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

145:12 • Mark Kilgard

Fig. 17. Stroked ampersand glyph with no dashing (le�), then [1,1] (center)
and [6,2] (right) dashing generated with polar stroking.

4.3.5 Harder Caps: Square Caps. Square caps should set J to 4
and then override rP when δ1 > 0 (or rN when δ1 < 0) to

√
2 for

j = 1, 3 to push out to right angles these “corner” vertices to form a
square cap.

4.4 Complete Algorithm
Divide a path into links, one link per path segment, cap, and join.
For each link,

Compute M and the sequences ∆Σ, p, Ψ, δ .
For j = 0...N where N = ∆Σ(M):

Evaluate g(t(j)) and n(j).
Generate rib vertices Nj and Pj .
If j > 0 emit the quad with vertices Nj−1, Pj−1, Nj , Pj .

�e algorithm’s expressions evaluate equations in Sections 3 and
4.2: g(t) to one of the generator curve functions in Table 1; t(j) to
Equation 14; n(j) to Equation 15. Nj and Pj to Equations 16 and 17.

For the per-link intermediates, M is the number of intervals (Sec-
tion 3.3.6), N is the last element index in the sequence ∆Σ computed
by Equation 13; sequences p, Ψ, and δ are computed by Equations 4,
5, and 6 respectively.

To visualize of our complete algorithm’s e�ectiveness, we present
experiments in stroke rendering in an accompanying document
(Kilgard 2020b) where we apply our method to di�cult and topo-
logically varied path segments. �ese experiments cover all the
examples in our Figures 3 through 13, degenerate situations such
as colocated and colinear control points, and the troublesome test
cases found in our accompanying survey (Kilgard 2020a).

5 ARC LENGTH ALONG PATHS
Accurate algorithms for computing arc length along a curve typically
rely on recursion to build a chord length parameterization (Gravesen
1995; Vincent and Forsey 2001). Our polar stroking method provides
a recursion-free way to build a chord length parameterization that
adapts to curvature through its uniform steps in tangent angle.

With polar stroking, we estimate the arc length for a path segment
as ∫ 1

t=0

g′(t) dt u ∆Σ(N)∑
j=1
‖g(t(j − 1)) − g(t(j))‖ (18)

�e accuracy of this approximation depends on the tangent angle
maximum step q. �e smaller the threshold angle for tangent angle
step, the more accurate the approximation. Floater (2005) provides a
rationale for why this kind of chordal parameterization of arc length

for polynomials of degrees ≤ 3, such as path rendering’s gC and gQ
forms, converges rapidly.

As our method provides a robust conversion of paths contain-
ing curved segments into strictly piecewise-linear sequences with
bounded tangent angle changes, we expect our method to be use-
ful in path-based NPR techniques expecting piecewise-linear paths
such as stroke parameterization (Schmidt 2013).

5.1 Cumulative Arc Length Texturing
Texture-based brush pa�erns (Beach and Stone 1983) are straight-
forward with a texture coordinate tracking cumulative arc length.

While tessellating a stroked path, we can accumulate the arc
length and send this per-rib vertex pair as a texture coordinate
for use by a fragment shader. To apply a 2D texture, we would
also send a second texture coordinate: 0 for the Nj vertex of the
rib, and 1 for the Pj vertex. Within a quad, we can reasonably
linearly interpolate the arc length because polar stroking establishes
the tangent angle change is bounded by q within the quad. See
Figure 1.C-F for examples. For simplicity we do not mitigate texture
folding artifacts, but techniques developed by Asente (2010) could
apply.

5.2 Dashing
Dashing in path rendering breaks a path up into “on” and “o�”
sub-paths using the cumulative arc length along the path and a
dash pa�ern and o�set. While spli�ing a line or circular arc is
straightforward based on linear interpolation of parametric value
or arc angle respectively, spli�ing curves in the form of gC , gQ , and
gK is involved.

Using the polar stroking method to approximate such curves as a
sequence of line segments with uniform steps in absolute tangent
angle, we can quickly split curves to determine cumulative arc
length. Figure 17 shows our CPU-based dasher using polar stroking.

Rougier (2013) proposes a GPU shader-based approach to dashing,
but to apply it path rendering assumes curved paths have been
broken up into polylines. Polar stroking would be a natural way
to accomplish this. �e arc length texturing discussed in the prior
subsection pairs well with Rougier’s method, enabling it to work
on arbitrary paths. We expect Rougier’s method is just one of many
applications of arc length texturing on paths. Yue et al. (2016) is
another example for cartography.

6 EXPERIMENTAL RESULTS

6.1 Versus Uniform Parametric Tessellation
Figure 1A compares polar stroking (q = 4°) of a cubic Bézier cusp
segment generating 67 quads with uniform parametric tessellation
using Equation 1 to also budget 67 quads. While polar stroking
generates the expected double semicircle tessellation of the cusp for
any valid q, the uniform approach fails for any quad budget.

Figure 1B compares polar stroking (q = 4°, w = 100) of a ser-
pentine cubic Bézier segment with uniform parametric tessellation.
Each generates 126 quads. Polar stroking generates a 69% smaller
maximum ordinary facet angle: 5.29° versus 17.12° for the uniform
approach. Polar stroking also has a similar mean and 76% smaller
standard deviation (3.79° versus 3.89° mean; 0.94° versus 3.99° SD).

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

Polar Stroking • 145:13

j =

t(j) =

ψ(j) =

±n(j) =

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

ΣΔ(0) ΣΔ(1) ΣΔ(2) ΣΔ(3)

p0 p1p2 p3

Fig. 18. Tessellation chart for exact cusp segment from Figure 6. �e row of red arrows show the tangent angle at each j stepping by 4° increments; the row of
blue double arrows shows the normal vector at each j . At the cusp t = 0.5 observe the 180° of tangent angle change. Each j corresponds to a rib in the stroked
tessellation of the cusp in Figure 6.

Table 2. Stroking grades for 21 stroking implementations from our supple-
mental survey, 8 rated A+ and consistent with polar stroking.

Stroking Implementation Grade Notes
Acrobat Reader DC A+
Cairo B−
Chrome 74 (Windows) B uses newer Skia
Direct2D CPU A+
Direct2D GPU A+
Firefox 66 (Windows) A+ uses Direct2D
Foxit Reader 8 C
GSview 5.0 D−
Illustrator CC 2019 A+
Inkscape 0.91 A+
Internet Explorer 11 A+
MS Expression Design 4 D
MS O�ce Picture Manager A−
NV path rendering (NVpr) A+ OpenGL ext.
OpenVG 1.1 Reference Impl. A−
Paint Shop Pro 7 D−
PostScript (circa 1991) C+
Qt 4.5 C+
Skia CPU C
Skia GPU C without NVpr
SumatraPDF 3.1 D

Crucially polar stroking provides a principled basis to determine
how many quads to tessellate, something uniform parameterization
does not itself provide.

When seeding uniform tessellation to match the same quad output
count as polar stroking, we observe polar stroking to be superior
at minimizing a path segment’s ordinary facet angle maximum
and standard deviation over wide variations of segment con�gura-
tion, q, and stroke width. �is angle-based quality metric is scale-,
translation-, and rotation-invariant and compares with a ground
truth of 0° or “in�nite” tessellation. Our supplemental experiments
(Kilgard 2020b) provide further corroborating evidence that polar
stroking provides a statistically be�er facet angle distribution for
the same number of quads. �is is likely due to polar stroking’s
similarity to chord length parameterization (Floater 2005) and our
analysis (Kilgard 2020c) bounding ordinary facet angles to 2q. A
thorough analysis is beyond our scope and le� for future work.

6.2 Polar Stroking of a Cusp
To visualize why polar stroking forms the double semicircle cup
tessellation correctly for Figure 6’s stroked segment, Figure 18 charts
polar stroking’s tessellation method. �e chart shows how the
integer values of j driving the algorithm in Section 4.4 generate t(j)
values to evaluate gC (t) as well as generate the tangent angleψ (j)
and normal ±n(j).

�e chart shows how polar stroking nonuniformly distributes the
steps in t (along the orange line). Polar stroking forms the tessellated
cusp because values of j ∈ [5..50] all map to the cusp at t = 0.5
but each j has a distinct normal advanced in uniform tangent angle
steps.

�is chart is just one from 27 carefully-curated stroking exam-
ples in our supplemental materials (Kilgard 2020b) to demonstrate
experimentally why polar stroking operates robustly.

6.3 Comparison to Stroking Implementations
Table 2 summarizes our supplemental survey (Kilgard 2020a) listing
grades we assigned to real-world vector graphics implementations
for stroking quality. Figure 19 collects results from the survey no-
ticeably di�erent from what polar stroking theory expects. We
emphasize A+ means rendering matched both polar stroking theory
and the survey’s best consensus. See our supplemental survey for
complete discussion and images.

7 LIMITATIONS
We collect and amplify limitations of our methods and o�er advice:

• As q diminishes, more tessellated quads will be generated;
vice versa, if q is insu�ciently small, facet angles will be
noticeable. Assessing how varying q a�ects pixel quality is
le� for future work.

• To guarantee a facet angle bound of θ , q should be θ/2 (Sec-
tion 4.2). Ribs immediately bracketing a rib at an in�ection
points on cubic Bézier segments have larger facet angles
(closer to θ) to o�set the zero or near-zero facet angle at the
in�ection point. Our future work provides a tighter bound.

• Our tessellation method works properly when bow-tie
quads are rasterized as such (Section 4.1). Treating bow-
tie quads as overlapping triangles, as GPUs do by default,
exaggerates stroked coverage for bow-tie quads; the ex-
cess coverage diminishes as q diminishes. When paths are
stroked with round joins and use either round caps or al-
ways closed contours, the caps and joins hide the excess
coverage.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

145:14 • Mark Kilgard

• When steps by q are minuscule, solving for t in Equation 11
may not guarantee strictly increasing t values as j increases.
“Stencil-then-cover” methods update pixels once per path
so hide this negligible misordering. For arc length compu-
tations, Equation 18 can accommodate this by zeroing step
distances when t(j − 1) > t(j).

• Our arc length approximation (Equation 18) converges fast
when q diminishes but is biased to underestimate the ideal
arc length. As both arc length texturing and dashing rely
on such arc length computations, these methods are more
accurate when q is diminished.

• Our method does not consider the scale of pixels. Heuristics
could boost q (reducing the tessellation) for segments, caps,
and joins near or below the scale of pixels to avoid excessive
tessellation relative to the available pixels to cover.

• Our facet angle and tangent angle step bounds—dependent
on q—are not be maintained a�er non-conformal transfor-
mations (i.e., nonuniform scaling, shearing, or projection)
of the tessellation. Our future work addresses this.

8 CONCLUSIONS
Prior to our work, vector graphics lacked a principled theory of
path stroking consistent with the expectations of established path
rendering standards. Leveraging our new theory of stroking—based
on o�set curves parameterized by tangent angle—we developed a
novel method to tessellate stroked paths by taking uniform steps
in tangent angle magnitude. Our method intuitively bounds the
tessellation error at facet angles and matches the number of quadri-
lateral primitives generated to each path segment’s absolute tangent
rotation while robustly handling cusps, in�ections, general conics,
and degenerate segments—all without recursion so GPU-amenable.

We made sure to harmonize our theory and methods with practi-
cal requirements of modern path rendering standards. We explained
how our theory and method extends to handle caps and joins. Our
theory and methods make approximating the cumulative arc length
of paths straightforward, even for lengthy paths with high curva-
ture, and we leveraged this ability to implement dashing and arc
length texturing methods.

Accompanying this paper are sample images for quality evalua-
tion and source code for a path stroking testbed that demonstrates
our method using the CPU to perform the stroked tessellation. While
beyond the scope of this paper, we have also successfully imple-
mented our methods on modern programmable GPUs.

ACKNOWLEDGMENTS
Sanjana Wadhwa assisted validating the polar stroking method and
its initial GPU implementation.

REFERENCES
Bryan D. Ackland and Neil H. Weste. 1981. �e Edge Flag Algorithm: A Fill Method

for Raster Scan Displays. IEEE Trans. Comput. 30, 1 (Jan. 1981), 41–48. h�p:
//dl.acm.org/citation.cfm?id=1963620.1963624

Adobe Systems. 1985. PostScript Language Reference Manual (1st ed.). Addison-Wesley
Longman Publishing Co., Inc.

Adobe Systems. 2008. Document management–Portable document format–Part 1: PDF
1.7. h�p://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000
2008.pdf Also published as ISO 32000.

Paul J. Asente. 2010. Folding Avoidance in Skeletal Strokes. In Proceedings of the
Seventh Sketch-Based Interfaces and Modeling Symposium (Annecy, France) (SBIM
�10). Eurographics Association, Goslar, DEU, 33��40.

Richard Beach and Maureen Stone. 1983. Graphical Style Towards High �ality Illus-
trations. In Proceedings of the 10th Annual Conference on Computer Graphics and
Interactive Techniques (Detroit, Michigan, USA) (SIGGRAPH ’83). ACM, New York,
NY, USA, 127–135. h�ps://doi.org/10.1145/800059.801141

Jack E Bresenham. 1965. Algorithm for computer control of a digital plo�er. IBM
Systems journal 4, 1 (1965), 25–30.

Marc Corthout and Evert-Jan Pol. 1991. Supporting Outline Font Rendering in Dedicated
Silicon: the PHAROS Chip. In Conference proceedings on Raster imaging and digital
typography II. Cambridge University Press, 177–189.

Marc Corthout and Evert-Jan Pol. 1992. Point Containment and the PHAROS Chip. Ph.D.
Dissertation. University of Leiden.

Mark Dokter, Jozef Hladky, Mathias Parger, Dieter Schmalstieg, Hans-Peter Seidel,
and Markus Steinberger. 2019. Hierarchical Rasterization of Curved Primitives for
Vector Graphics Rendering on the GPU. Computer Graphics Forum 38, 2 (2019),
93–103. h�ps://doi.org/10.1111/cgf.13622

ECMA International. 2009. Standard ECMA-388: Open XML Paper Speci�cation. h�p:
//www.ecma-international.org/publications/standards/Ecma-388.htm

Antonio Elias Fabris, Luciano Silva, and A Robin Forrest. 1997. An e�cient �lling
algorithm for non-simple closed curves using the point containment paradigm. In
Proceedings X Brazilian Symposium on Computer Graphics and Image Processing.
IEEE, 2–9. h�ps://doi.org/10.1109/SIGRA.1997.625138

A. E. Fabris, L. Silva, and A. R. Forrest. 1998. Stroking discrete polynomial Bezier
curves via point containment paradigm. In Proceedings SIBGRAPI’98. International
Symposium on Computer Graphics, Image Processing, and Vision (Cat. No.98EX237).
94–101. h�ps://doi.org/10.1109/SIBGRA.1998.722738

R. T. Farouki and C. A. Ne�. 1990a. Algebraic Properties of Plane O�set Curves.
Computer Aided Geometric Design 7, 1-4 (June 1990), 101–127. h�ps://doi.org/10.
1016/0167-8396(90)90024-L

R. T. Farouki and C. A. Ne�. 1990b. Analytic Properties of Plane O�set Curves. Com-
puter Aided Geometric Design 7, 1-4 (June 1990), 83–99. h�ps://doi.org/10.1016/
0167-8396(90)90023-K

Michael S. Floater. 1992. Derivatives of rational Bézier curves. Computer Aided Geometric
Design 9, 3 (1992), 161–174. h�ps://www.mn.uio.no/math/english/people/aca/
michaelf/papers/bez.pdf

Michael S. Floater. 2005. Arc length estimation and the convergence of polynomial
curve interpolation. BIT Numerical Mathematics 45, 4 (2005), 679–694.

Francisco Ganacim, Rodolfo S. Lima, Luiz Henrique de Figueiredo, and Diego Nehab.
2014. Massively-parallel Vector Graphics. ACM Trans. Graph. 33, 6, Article 229 (Nov.
2014), 14 pages. h�ps://doi.org/10.1145/2661229.2661274

James Gosling, David S. H. Rosenthal, and Michele J. Arden. 1989. �e NeWS book: an
introduction to the network/extensible window system. Springer-Verlag.

Jens Gravesen. 1995. �e Length of Bézier Curves. In Graphics Gems V, Alan Paeth
(Ed.). Elsevier.

Aaron Hertzmann. 2003. Tutorial: A Survey of Stroke-Based Rendering. IEEE Comput.
Graph. Appl. 23, 4 (July 2003), 70–81. h�ps://doi.org/10.1109/MCG.2003.1210867

Hewle�-Packard. 1992. PCL5 Printer Language Technical Reference Man-
ual. h�ps://developers.hp.com/system/�les/PCL 5 Printer Language Technical
Reference Manual.pdf HP Part No. 5961-0509.

John D. Hobby. 1985. Digitized Brush Trajectories. Ph.D. Dissertation. Stanford University.
h�ps://9p.io/who/hobby/thesis.pdf Also Stanford Report STAN-CS-85-1070.

Kai Hormann and Marco Tarini. 2004. A �adrilateral Rendering Primitive. In Pro-
ceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hard-
ware (Grenoble, France) (HWWS ’04). ACM, New York, NY, USA, 7–14. h�ps:
//doi.org/10.1145/1058129.1058131

Kiia Kallio. 2007. Scanline Edge-�ag Algorithm for Antialiasing. In �eory and Practice of
Computer Graphics, Ik Soo Lim and David Duce (Eds.). �e Eurographics Association.
h�ps://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG07/081-088

Mark J. Kilgard. 2020a. Anecdotal Survey of Variations in Path Stroking among Real-
world Implementations. Supplemental document to this paper.

Mark J. Kilgard. 2020b. Demonstrations of the Robustness of the Polar Stroking Method
for Rendering Stroked Paths. Supplemental document to this paper.

Mark J. Kilgard. 2020c. Ordinary Facet Angles of a Stroked Path Tessellated by Uniform
Tangent Angle Steps Is Bounded by Twice the Step Angle. Supplemental document
to this paper.

Mark J. Kilgard and Je� Bolz. 2012. GPU-accelerated Path Rendering. ACM Trans. Graph.
31, 6, Article 172 (Nov. 2012), 10 pages. h�ps://doi.org/10.1145/2366145.2366191

Jan Eric Kyprianidis, John Collomosse, Tinghuai Wang, and Tobias Isenberg. 2013. State
of the “Art”: A Taxonomy of Artistic Stylization Techniques for Images and Video.
IEEE Transactions on Visualization and Computer Graphics 19, 5 (May 2013), 866–885.
h�ps://doi.org/10.1109/TVCG.2012.160

Je�rey M. Lane, Robert Magedson, and Michael Rarick. 1983. An Algorithm for Filling
Regions on Graphics Display Devices. ACM Trans. Graph. 2, 3 (July 1983), 192–196.
h�ps://doi.org/10.1145/357323.357326

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

http://dl.acm.org/citation.cfm?id=1963620.1963624
http://dl.acm.org/citation.cfm?id=1963620.1963624
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/PDF32000_2008.pdf
https://doi.org/10.1145/800059.801141
https://doi.org/10.1111/cgf.13622
http://www.ecma-international.org/publications/standards/Ecma-388.htm
http://www.ecma-international.org/publications/standards/Ecma-388.htm
https://doi.org/10.1109/SIGRA.1997.625138
https://doi.org/10.1109/SIBGRA.1998.722738
https://doi.org/10.1016/0167-8396(90)90024-L
https://doi.org/10.1016/0167-8396(90)90024-L
https://doi.org/10.1016/0167-8396(90)90023-K
https://doi.org/10.1016/0167-8396(90)90023-K
https://www.mn.uio.no/math/english/people/aca/michaelf/papers/bez.pdf
https://www.mn.uio.no/math/english/people/aca/michaelf/papers/bez.pdf
https://doi.org/10.1145/2661229.2661274
https://doi.org/10.1109/MCG.2003.1210867
https://developers.hp.com/system/files/PCL_5_Printer_Language_Technical_Reference_Manual.pdf
https://developers.hp.com/system/files/PCL_5_Printer_Language_Technical_Reference_Manual.pdf
https://9p.io/who/hobby/thesis.pdf
https://doi.org/10.1145/1058129.1058131
https://doi.org/10.1145/1058129.1058131
https://doi.org/10.2312/LocalChapterEvents/TPCG/TPCG07/081-088
https://doi.org/10.1145/2366145.2366191
https://doi.org/10.1109/TVCG.2012.160
https://doi.org/10.1145/357323.357326

Polar Stroking • 145:15

Eugene T.Y. Lee. 1987. �e Rational Bezier Representation for Conics. In Geometric
Modeling: Algorithms and New Trends, Gerald E. Farin (Ed.). SIAM, Philadelphia,
3–19.

Rui Li, Qiming Hou, and Kun Zhou. 2016. E�cient GPU Path Rendering Using Scanline
Rasterization. ACM Trans. Graph. 35, 6, Article 228 (Nov. 2016), 12 pages. h�ps:
//doi.org/10.1145/2980179.2982434

Charles Loop and Jim Blinn. 2005. Resolution independent curve rendering using
programmable graphics hardware. In ACM SIGGRAPH 2005 Papers (Los Angeles,
California) (SIGGRAPH ’05). 1000–1009. h�ps://doi.org/10.1145/1186822.1073303

Charles Loop and Jim Blinn. 2007. Rendering Vector Art on the GPU. In GPU Gems 3
(�rst ed.), Hubert Nguyen (Ed.). Addison-Wesley Professional. h�ps://developer.
nvidia.com/gpugems/GPUGems3/gpugems3 ch25.html

NVIDIA. 2012. Cg Toolkit 3.1. h�ps://developer.nvidia.com/cg-toolkit-download
Les Piegl and Wayne Tiller. 1995. �e NURBS Book. Springer-Verlag, Berlin, Heidelberg.
Michael L.V. Pi�eway. 1967. Algorithm for drawing ellipses or hyperbolae with a digital

plo�er. Comput. J. 10, 3 (1967), 282–289.
Ian R. Porteous. 1994. Geometric di�erentiation for the intelligence of curves and

surfaces.
Detlef Reimers. 2011. Drawing Circles with Rational �adratic Bezier Curves. h�ps:

//ctan.math.illinois.edu/macros/latex/contrib/lapdf/rcircle.pdf
Nicolas P. Rougier. 2013. Shader-Based Antialiased Dashed Stroked Polylines. Journal

of Computer Graphics Techniques 2, 2 (Nov. 2013), 91–107. h�ps://hal.inria.fr/
hal-00907326

Erik Ruf. 2011. An inexpensive bounding representation for o�sets of quadratic curves.
In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics
(Vancouver, British Columbia, Canada) (HPG ’11). 143–150. h�ps://doi.org/10.1145/
2018323.2018346

Ryan Schmidt. 2013. Stroke parameterization. In Computer Graphics Forum, Vol. 32.
Wiley Online Library, 255–263.

Maxim Shemanarev. 2006. Anti-Grain Geometry Library. h�ps://sourceforge.net/
projects/agg/

Skia development team. 2009. Skia Graphics Library. h�ps://skia.org/
Steve Strassmann. 1986. Hairy Brushes. In Proceedings of the 13th Annual Conference

on Computer Graphics and Interactive Techniques (SIGGRAPH ’86). ACM, New York,
NY, USA, 225–232. h�ps://doi.org/10.1145/15922.15911

SVG Working Group. 2011. Scalable Vector Graphics (SVG) 1.1 (2nd edition). h�p:
//www.w3.org/TR/SVG/

Wayne Tiller and Eric Hanson. 1984. O�sets of Two-Dimensional Pro�les. IEEE Comput.
Graph. Appl. 4, 9 (Sept. 1984), 36–46. h�ps://doi.org/10.1109/MCG.1984.275995

Stephen Vincent and David Forsey. 2001. Fast and accurate parametric curve length
computation. Journal of graphics tools 6, 4 (2001), 29–39.

John Warnock and Douglas K. Wya�. 1982. A device independent graphics imaging
model for use with raster devices. In Proceedings of the 9th Annual Conference on
Computer Graphics and Interactive Techniques (Boston, Massachuse�s, United States)
(SIGGRAPH ’82). ACM, New York, NY, USA, 313–319. h�ps://doi.org/10.1145/800064.
801297

Whatwg.org. 2011. HTML Living Standard. Chapter �e canvas element. h�p://www.
whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html

Turner Whi�ed. 1983. Anti-aliased Line Drawing Using Brush Extrusion. In Proceedings
of the 10th Annual Conference on Computer Graphics and Interactive Techniques
(Detroit, Michigan, USA) (SIGGRAPH ’83). ACM, New York, NY, USA, 151–156.
h�ps://doi.org/10.1145/800059.801144

Songshan Yue, Jianshun Yang, Min Chen, Guonian Lu, A-xing Zhu, and Yongning Wen.
2016. A function-based linear map symbol building and rendering method using
shader language. International Journal of Geographical Information Science 30, 2
(2016), 143–167. h�ps://doi.org/10.1080/13658816.2015.1077964

A PATH FILLING THEORY IN BRIEF
By representing the pixel location (x ,y) as a number w = x + iy on
the complex plane and the path as a contour de�ned by a closed
complex function γ , complex analysis provides a means to compute
an integer winding number of w with respect to γ expressed as a
contour integral

n(γ ,w) = 1
2πi

∮
γ

dz

z −w

where |n(γ ,w)| measures the whole number of times that the con-
tour γ “winds around”w while the sign of n(γ ,w) indicates whether
the winding is counterclockwise when n(γ ,w) > 0, clockwise when
n(γ ,w) < 0, or not wound within when n(γ ,w) = 0. A path P in
vector graphics can specifym contours, say γ1 through γm , so the

Foxit Reader
 Ghostscript Expression Design

1991 PostScriptSkia
without
NV_path_rendering

Expression
Design

1991 PostScript GhostscriptQt Skia
without
NV_path_rendering

 Cairo Ghostscript

Paint Shop Pro OpenVG Ref. Sumatra PDF

Expression
Design

Ghostscript

Foxit Reader

Polar Stroking &
A+ renderers

Polar Stroking &
A+ renderers

Polar Stroking &
A+ renderers

Polar Stroking &
A+ renderers

Exact
Cusp
case

Fig. 19. Survey of real-world stroking results showing divergences from po-
lar stroking. Olive: mutual overlap of polar stroking and the other stroking
implementation. Red: other implementation’s excess coverage. Green: ab-
sent coverage. Note: image alignment is inexact.

net winding number of w with respect to P is

n(P ,w) = 1
2πi

m∑
i=1

∮
γi

dz

z −w

Whether a pixel at (x ,y) is within P is decided by one of two standard
support predicates

Pnz(x ,y) =
{

1, if n(P ,x + iy) , 0
0, otherwise

Peo(x ,y) =
{

1, if n(P ,x + iy)mod 2 , 0
0, otherwise

Pnz and Peo respectively correspond to the standard nonzero and
even-odd �ll rules in path rendering systems so the winding number
concept is explicit in how path �lling is speci�ed.

ACM Transactions on Graphics, Vol. 39, No. 4, Article 145. Publication date: July 2020.

https://doi.org/10.1145/2980179.2982434
https://doi.org/10.1145/2980179.2982434
https://doi.org/10.1145/1186822.1073303
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch25.html
https://developer.nvidia.com/gpugems/GPUGems3/gpugems3_ch25.html
https://developer.nvidia.com/cg-toolkit-download
https://ctan.math.illinois.edu/macros/latex/contrib/lapdf/rcircle.pdf
https://ctan.math.illinois.edu/macros/latex/contrib/lapdf/rcircle.pdf
https://hal.inria.fr/hal-00907326
https://hal.inria.fr/hal-00907326
https://doi.org/10.1145/2018323.2018346
https://doi.org/10.1145/2018323.2018346
https://sourceforge.net/projects/agg/
https://sourceforge.net/projects/agg/
https://skia.org/
https://doi.org/10.1145/15922.15911
http://www.w3.org/TR/SVG/
http://www.w3.org/TR/SVG/
https://doi.org/10.1109/MCG.1984.275995
https://doi.org/10.1145/800064.801297
https://doi.org/10.1145/800064.801297
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
http://www.whatwg.org/specs/web-apps/current-work/multipage/the-canvas-element.html
https://doi.org/10.1145/800059.801144
https://doi.org/10.1080/13658816.2015.1077964

	Abstract
	1 Introduction
	1.1 A Quick Theory of Path Filling
	1.2 Good Theory Would Benefit Stroking Too
	1.3 Contributions and Organization

	2 Prior Work
	2.1 Not Classic Curve and Line Rendering
	2.2 Path Rendering's Stroking Operation
	2.3 Stroking as a Brushing Operation
	2.4 Path Stroking in Practice
	2.5 Not Non-Photorealistic Rendering Stroking

	3 Theory of Path Stroking
	3.1 Path Preliminaries
	3.2 Formulating Path Stroking
	3.3 Defining a Gradient-Free Stroked Region
	3.4 From Tangent Angle to Parametric Value

	4 The Polar Stroking Method
	4.1 Stroked Paths Tessellated to Quad Strips
	4.2 Uniform Tangent Angle Step Tessellation
	4.3 Joins and Caps
	4.4 Complete Algorithm

	5 Arc Length Along Paths
	5.1 Cumulative Arc Length Texturing
	5.2 Dashing

	6 Experimental Results
	6.1 Versus Uniform Parametric Tessellation
	6.2 Polar Stroking of a Cusp
	6.3 Comparison to Stroking Implementations

	7 Limitations
	8 Conclusions
	Acknowledgments
	References
	References
	A Path Filling Theory in Brief

