
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Compositional Neural Scene Representations for Shading Inference

ANONYMOUS AUTHOR(S)

SUBMISSION ID: PAPERS_525

���������������� ����������� �����������
�
������		��������� �
�������������
������		����������
�������������
������		��������� ��������������
������		���������

Fig. 1. Our system integrates data-driven synthesis into a standard path tracing framework. Given a set of observations (a), we extract a view-independent

scene representation using a neural encoder. A neural image generator then takes the scene representation together with geometric features (b) of a novel

view and synthesizes indirect illumination (d). We then add it to ray-traced direct illumination (c) to obtain a high-quality, global illumination image.

We present a technique for adaptively partitioning neural scene representa-

tions. Our method disentangles lighting, material, and geometric information

yielding a scene representation that preserves the orthogonality of these

components, improves interpretability of the model, and allows compositing

new scenes by mixing components of existing ones. The proposed adaptive

partitioning respects the uneven entropy of individual components and

thereby reduces the performance penalty induced by static partitioning. It

also permits compressing the scene representation, which lowers its memory

footprint and reduces the computation cost. Furthermore, the partitioned

representation enables an in-depth analysis of existing image generators.

We compare the flow of information through individual partitions, and by

contrasting it to additional inputs (G-buffer), which our modified genera-

tors consume, we are able to identify the roots of undesired visual artifacts

and propose one possible solution to remedy the poor performance. We

also demonstrate that neural scene representations can handle scenes with

moderately complex geometry and materials, if used in a complementary

manner to classical representations of the scene.

CCS Concepts: •Computingmethodologies→Rendering;Neural net-
works.

ACM Reference Format:
Anonymous Author(s). 2018. Compositional Neural Scene Representations

for Shading Inference. ACM Trans. Graph. 9, 4, Article 39 (August 2018),

15 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

Data-driven realistic image synthesis has recently achieved a num-

ber of notable breakthroughs, such as rendering realistic human

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

© 2018 Copyright held by the owner/author(s).

0730-0301/2018/8-ART39

https://doi.org/10.1145/nnnnnnn.nnnnnnn

faces [Karras et al. 2017], or high-quality relighting of photographs

[Philip et al. 2019]. Remarkable achievements have been demon-

strated also in data-driven simulation of light transport, where neu-

ral networks predict various radiative quantities [Hermosilla et al.

2018; Kallweit et al. 2017; Nalbach et al. 2017; Ren et al. 2013] or

improve their unbiased estimation [Müller et al. 2019; Zheng and

Zwicker 2019]. Common to all these is the utilization of neural net-

works to perform the task in its entirety, all at once. The black-box

nature, however, hinders interpretability, generalization, and makes

further development less intuitive.

An alternative approach to performing the synthesis at once is to

introduce an intermediate neural scene representation [Eslami et al.

2018; Kulkarni et al. 2015; Sitzmann et al. 2019], by breaking the

rendering task into: (i) extracting a learned scene representation, and

(ii) using it to render an image. Employing the intermediate (latent)

scene representation allows enforcing certain behaviors upon the

model, e.g. ensuring consistency of images rendered from different

views of the scene. It also presents an opportunity for increasing

robustness, improving generalization, and accelerating training by

injecting physically-based constraints to regularize the model; we

present one step in that direction. While the scene complexity and

rendering quality of these approaches may appear limited, especially

when compared to state-of-the-art neural simulators and renderers,

we show in Figure 1 that the quality can be increased by having

the neural representation merely complement traditional rendering

inputs, rather than relying on it exclusively. The key ingredient here

is the end-to-end training, which makes the neural representation

focus on complementary information.

We present three main contributions in this work. First, we extend

the works of Eslami et al. [2018] and Sitzmann et al. [2019] with

mechanisms to disentangle material, lighting, and geometric con-

tent of the scene. We do not prescribe a specific encoding between

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn


115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

39:2 • Anon. Submission Id: papers_525

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

images and the latent scene representation (this shall be extracted

from data), but we introduce additional constraints to adaptively
partition the latent scene representation. The adaptive partitioning

ameliorates interpretability of the representation, permits tracing

the roots of poor rendering quality, and mitigates the performance

penalty induced by static partitioning [Kulkarni et al. 2015]. It also

permits compressing the neural scene representation and thereby

accelerating the image generation.

The adaptive partitioning enables our second contribution: an

analysis of generated images with respect to the extracted scene rep-

resentation and the input observations. The analysis yields insight

into the data-driven synthesis and guides the choice of the neural

architectures and design of techniques to remedy visual artifacts

and poor performance.

Our third contribution is the demonstration that disentangled

neural scene representations capture sufficient information for syn-

thesizing a wide range of illumination effects, such as shadows,

color-bleeding, view-dependent highlights, and glossy reflections.

We achieve this by balancing standard rendering inputs and the

learned scene representation. We also demonstrate that the com-

positional aspect of the partitioned scene representation allows

creating novel configurations, e.g. by swapping lighting and mate-

rial information between scenes.

Scope. We focus on applications where the scene is known, and

available as a 3D model. We draw inspiration, and architectures,

fromworkswhere suchmodel is not available; the focus is on extract-

ing it [Eslami et al. 2018; Sitzmann et al. 2019], but we leverage these

architectures to complement the strengths of classical renderers.

Specifically, we use a classical renderer to obtain information that is

exact and cheap, and we employ the neural renderer to approximate

only the costly shading, e.g. due to global illumination.

2 RELATED WORK

Next, we review recent methods utilizing neural networks for ren-

dering, discuss techniques for representation learning, disentan-

glement, and attribution, and point out hybrid renderers that bear

similarities to our approach.

Neural scene representations. A recurring approach to render a

scene using neural networks is to start off from a voxel grid rep-

resentation, along with a camera pose and light position. This has

been applied to simple shading models [Nguyen-Phuoc et al. 2018]

or to a single object with global illumination [Rematas and Ferrari

2019]. Our method can also render these effects, but is not restricted

to a single object, and can scale to more complex scenes as it does

not incur the memory overhead of a voxel grid. Lombardi et al.

[2019] reduce the memory requirements and artifacts of voxel grids,

while Sitzmann et al. [2019] replace it altogether with a learned 3D

scene representation obtained using a differentiable ray-marcher.

Tatarchenko et al. [2015] compress a single image into a repre-

sentation for novel view synthesis. Rendering of novel views is also

achieved by Thies et al. [2019] who learn neural textures of objects.

However, all lighting and shading is “baked” and cannot be edited

easily. Our method is designed to avoid such baking. We build upon

generative query networks (GQNs) [Eslami et al. 2018], which are

composed of two core components: an encoder that extracts a scene

representation from multiple observations, and a generator that

synthesizes the novel view. The lengthy optimization procedure

of GQNs (weeks of training) led to the development of more effi-

cient losses [Nguyen-Ha et al. 2019] and exploitation of geometric

information [Tobin et al. 2019]. We take a different approach: we

accelerate image generation by leveraging geometric features of the

novel view (G-buffer) and using the pixel generator [Sitzmann et al.

2019] architecture instead of the original probabilistic approach uti-

lizing LSTM cores [Eslami et al. 2018]. This significantly accelerates

training (days instead of weeks) and improves accuracy.

Disentanglement and user control. GQNs [Eslami et al. 2018] ex-

tract a monolithic scene represention that does not lend itself to anal-

ysis or direct control. Multiple approaches have been explored to in-

troduce user control, such as latent-space transformations [Nguyen-

Phuoc et al. 2019; Olszewski et al. 2019] or disentanglement of the

latent variables [Chen et al. 2016; Higgins et al. 2017]. Our work

builds upon a disentanglement technique proposed by Kulkarni et al.

[2015]: they modify a single aspect of the scene per training batch

and average the activations and adjust gradients partitions encoding

other (static) aspects. We employ this technique to partition lighting,

material, and geometry in the representation, and extend it to obtain

adaptively partitioned, compressed scene representations.

Interpretability and Attribution. An underlying goal of our work

is to gain insights into data-driven image synthesis by attributing

the outputs to individual components of the model. Du et al. [2019]

classify interpretability as either global or local. Global interpreta-

tion, which relates a model behavior to the network parameters and

structure, is facilitated by our proposed adaptive partition scheme.

Local interpretability, which relates a model output to its inputs,

can be achieved through pertubation-based [Wagner et al. 2019;

Zeiler and Fergus 2013] and gradient-based [Ancona et al. 2018;

Shrikumar et al. 2016] methods; we use the later type. While these

are commonly used in the context of classification, we perform at-

tribution on a pixel basis, that is, we attribute each pixel value to

the extracted scene representation, which in turn can be related to

the input observations to get a complete view of data flow.

Hybrid Renderers. Augmenting traditional renderers using data-

driven techniques has a long and successful history. Early successes

in data-driven lighting [Debevec 1998] and material modeling [De-

bevec et al. 2000; Matusik 2003] have had a profound impact on ren-

dering pipelines, both for real-time and offline applications. Recent

work has turned to deep learning techniques, for instance to model

subsurface scattering [Vicini et al. 2019], approximate multiple scat-

tering in clouds [Kallweit et al. 2017], or approximate light transport

in screen space [Nalbach et al. 2017]. Similarly to these approaches,

we propose to tightly integrate data-driven image synthesis in the

rendering pipeline, but we do so in a more general setting allowing

the model to synthesize arbitrary (residual) components of light

transport, which complement existing renderers techniques. We

show examples where the image generator translates a G-buffer

into a shaded image, or a G-buffer w/ direct illumination into an

indirectly lit image only.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

Compositional Neural Scene Representations for Shading Inference • 39:3

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

�

�

��� ����

SCENE ENCODING
IMAGE 

GENERATION

c1

g1 i1

cn

gn in

r1

rn
R(ci , ii , gi ) avg

Neural scene

representation

r

cv

gv

Fig. 2. In order to generate an image, we utilize a view-independent neural scene representation r and a G-buffer rendered using a classical renderer from a

novel view v . The scene representation is extracted from n (high-quality) observations of the scene. Each i-th observation, which consists of a beauty image ii ,
G-buffer gi , and camera parameters ci , is processed using a neural encoder to produce a vector ri . These vectors are averaged across all observations to

obtain the neural scene representation r (pink box). For a novel view v , the representation r, the camera parameters cv , and G-buffer gv are fed into an

image-generating neural network to obtain an image of the scene from v .

3 BACKGROUND AND MODEL OVERVIEW

Our goal is to leverage neural scene representations to improve tra-

ditional forward-rendering tasks, in which a virtual 3D scene is ren-

dered into a 2D image. We draw inspiration from prior works, where

one neural network—scene encoder—builds a scene representation

that is then passed to another network—image generator—that syn-

thesizes a novel image of the scene [Eslami et al. 2018; Kulkarni

et al. 2015; Sitzmann et al. 2019].

The individual components of our rendering system (see Figure 2)

are based on previously published techniques; we do not claim nov-

elty in their design. Our original contributions pertain to how these

components are combined and optimized. More specifically, we note

that the neural scene representation, if constructed as proposed by

e.g. Eslami et al. [2018], lacks interpretability. Tracing down the

roots of undesired artifacts is thus difficult.

In order to improve interpretability, we adjust the optimization

in Section 4 to enforce (adaptive) partitioning of the scene represen-

tation, dedicating one partition to each of lighting, materials, and

(macro) geometry of the scene. The partitioned scene representation

allows attributing poor performance to absence of one (or more) of

these properties due to their underrepresentation in the training set,

or due to a loss function that is insensitive to them. Once identified,

these issues can be mitigated by adjusting the optimization. To that

end, we propose to add auxiliary image generators in Section 6.1 that

rebalance the individual components of the scene representation

and thereby improve the synthesis quality.

The rest of this section discusses the neural components of the

system and the inputs, datasets, and loss functions used throughout

the experiments.

3.1 Scene encoder

The task of the scene encoder is to extract relevant information

from n scene observations {(ci , ii , gi )}i=1..n and compress it into

a neural scene representation r. In our case, observation i consists
of a view matrix identifying the camera view ci , a beauty image

ii that contains all light transport we wish to reproduce later, and

a G-buffer gi that contains geometry features of visible surfaces

obtained as a byproduct of rendering the beauty image.

U-NET GENERATOR

PIXEL GENERATOR

GQN GENERATOR

LSTM
CORE

LSTM
CORE

LSTM
CORE

Fig. 3. Illustration of image generators compared in Figure 6. The green

and yellow boxes represent tensors holding the G-buffer gv and spatially

duplicated camera parameters cv for the novel view. Red boxes represent the

(spatially duplicated) neural scene representation r. Black arrows represent

flow of data and blue arrows symbolize convolutions (with pooling and

upsampling in the case of the U-net).

The main component of the encoder is a convolutional neural

network R, which extracts a partial, high-dimensional scene rep-

resentation ri for each observation i: ri = R(ci , ii , gi ). We use the

pool architecture [Eslami et al. 2018] for the encoding network R.
The network takes a tensor of concatenated image buffers (ii , gi )
and processes them with strided convolutions. The viewpoint pa-

rameters ci are shaped into a tensor and concatenated to the output
tensor of one of the convolutional layers in the middle of the net-

work. The last component of the network is a pooling layer that

outputs a 1× 1×k vector ri where k is the number of desired values

in representations; see [Eslami et al. 2018] for details.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

39:4 • Anon. Submission Id: papers_525

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

W/o scene representation W/ scene representation Reference

Fig. 4. In most of our experiments, the neural scene representation provides

all material and lighting information, and information about geometry

outside the camera frustum. Without it (left) the image generator can still

synthesize images using the information in the G-buffer, but it learns to

produce average appearances and lighting in the training set.

All partial representations are combined to obtain a (more) com-

plete representation of the scene using an order-independent ag-

gregator; we use componentwise averaging: r = avg ({ri }k=1..n ).
Alternative aggregators such as summation, attention networks, and

max pooling have been explored by Eslami et al. [2018], Rosenbaum

et al. [2018], and Deschaintre et al. [2019], respectively.

3.2 Image Generator

The purpose of the image generator is to synthesize an image from

a novel, unobserved view v of the scene. The generator receives: (i)

parameters of the camera cv , (ii) a G-buffer gv rendered using a tra-

ditional renderer from the novel viewv , and (iii) a view-independent
scene representation r extracted by the encoder.

Numerous neural image generators have been proposed in the

past. Some, such as denoising and shading U-nets [Chaitanya et al.

2017; Nalbach et al. 2017], do not utilize any learned representations

and reconstruct the image from image buffers rendered from the

novel view. Others rely only on the neural scene representation,

either directly [Eslami et al. 2018], or by extracting a 2D slice of it

via ray marching [Sitzmann et al. 2019]. Our preferred approach lies

somewhere in the middle, i.e. we want to leverage the neural scene

representation and a cheap-to-compute G-buffer from the novel

view. We tested three, previously published generators adjusted

to consume cv , gv , and r as inputs, as illustrated in Figure 3. We

briefly outline their architecture here and provide details in the

supplementary material.

GQN generator. The GQN generator [Eslami et al. 2018] is a prob-

abilistic model consisting of prior and conditional densities that are

parameterized by the output of deep convolutional networks. Each

network is based on the recurrent convolutional DRAWmodel [Gre-

gor et al. 2016], which constructs the conditional density sequen-

tially using a convolutional LSTM core. Each instance of the core

receives the camera parameters cv , the G-buffer gv , the scene rep-
resentation r, and all the other inputs (e.g. the state of the LSTM

core) that Eslami et al. [2018] utilized.

PrimitiveRoom dataset

ArchViz dataset

Fig. 5. Random scenes from the PrimitiveRoom and the ArchViz datasets.

U-net generator. Convolutional U-nets [Ronneberger et al. 2015]
with auxiliary feature buffers [Chaitanya et al. 2017; Nalbach et al.

2017] have been applied to many image-to-image translation tasks.

The main feature of a convolutional approach is the ability to ex-

tract information from a screen-space neighborhood around each

pixel. The U-net architecture, specifically, consists of encoding and

decoding stages that generate a very large receptive field, while

still allowing activations and gradients to bypass the information

bottleneck via skip connections.

We use four levels in our U-net. The G-buffer gv dictates the

resolution of the first and last level of the U-net. The scene repre-

sentation r and camera parameters cv are input at each level of the

encoder; we concatenate the two vectors along the depth dimension

and duplicate them spatially to match the resolution of the level.

Pixel generator. The pixel generator [Sitzmann et al. 2019] is a

straightforward image-to-image translation model that processes

each pixel independently with a multi-layer perceptron. The advan-

tage of the pixel generator is the multi-view consistency and better

handling of arbitrary output resolutions, both of which stem from

the reliance on information in a single pixel only. This contrasts

with convolutional approaches where the pixel neighborhood, and

thus the inferred color, generally vary across views and resolutions.

In our implementation, the representation vector r and camera pa-

rameters cv are concatenated and duplicated spatially to match the

gv resolution. These are then given as input to the network and

concatenated to the outputs of each hidden layer.

3.3 Auxiliary Image Features

All the aforementioned generators utilize a G-buffer gv rendered

from the novel view. Similarly, the scene encoder operates on obser-

vations augmented with a G-buffer. This has the benefit of acceler-

ating the optimization, improving the image quality, and allowing

smaller, faster image generators to perform well. In this paper, the

decision of what surface features to include in the G-buffer is pri-

marily driven by the ease of analysis and interpretability of the

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

Compositional Neural Scene Representations for Shading Inference • 39:5

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

Observ. G-buffer GQN generator (148M parameters) U-net generator (28M parameters) Pixel generator (4M parameters) Path-traced reference

64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128

64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128 64 × 64 128 × 128

Fig. 6. Comparison of three different image generators that consume (i) a neural scene representation extracted from three observations (left column), and (ii)

a G-buffer (second left column) containing geometric information about directly visible surfaces (position, normal, object ID). Each generator was trained with

its own encoder, end-to-end, using 64 × 64 observations. We compare the quality of generated images with G-buffers rendered at resolutions 64 × 64 and

128 × 128; this defines the resolution of the final image. Despite being smallest (labels on top report numbers of trainable parameters) and fastest to train, the

pixel generator delivers the best results overall. The most noticeable artifacts appear on shadows and reflections; we analyze these in Section 5.

learned scene representation. We chose to include only geometry
information in the G-buffer, namely world-space positions, normals
and object identifiers. Information about materials, lighting, and in-

visible geometry can only be delivered to the generator through the

neural scene representation. Figure 4 demonstrates the impact of

the scene representation on the quality of generated images.

Such clear separation enables easy analysis of the flow of scene

information. A more practical scenario, where the G-buffer also

contains material and lighting information, is shown in Figure 1

and Figure 22 and discussed in Section 6.3.

3.4 Datasets and Optimization

We use two datasets in our experiments. Each dataset consists of

144k procedurally generated instances; a detailed generation recipe

is provided in the supplementary material. The beauty images (see

Figure 5 for examples) were rendered using path tracing and feature

multi-bounce effects, such as color bleeding and mirror reflections.

The visually simple PrimitiveRoom dataset contains rectangular

rooms with a small number of geometric primitives. The primitives

vary in shape, position, and rotation and feature a random instance

of either a Lambertian diffuse material, a glossy material, or an ideal

mirror. The scene is illuminated by a single spherical emitter.

The ArchViz dataset consists of variations of a living room with

a dining area. While still rather simple, the geometry, materials,

and lighting resemble realistic apartment design. The variations are

again created by randomizing the placement of the luminaire and

geometric primitives or varying the (textured) albedo and roughness

of materials. The textures and scene objects are extracted from

scenes published by Bitterli [2016].

Optimization. We trained all of our models end-to-end using

the Adam optimizer [Kingma and Ba 2014] with a learning rate of

10
−4

and minibatches consisting of 16 scenes. For each scene, we

construct the neural scene representation by encoding three random

observations with 64 × 64 resolution. The resolution of the G-buffer

input into the image generator is also 64 × 64 during training. We

use a loss comprising a pixel-wise L1 error term and a structural

dissimilarity (DSSIM) term, which we empirically found to work

well for the U-net and pixel generator. The weights of the terms are

manually selected such that the losses are of approximately equal

magnitude. For the GQN generator we rely on the ELBO-based loss

utilized by Eslami et al. [2018]. We optimize all models using one

million batches. This amounts to 111 training epochs and requires

about 8.5, 8.5, and 10 days of training for the pixel, U-net, and GQN

generators, respectively on a single NVIDIA Tesla V100 GPU.

In contrast to prior works on scene representations, we train

the generators to produce high dynamic-range images. We apply

a log(i + 1) transform to each HDR input image i and perform the

computation in log space (including the loss evaluation). The final

HDR image is obtained by reverse-transforming the predicted image.

Once a model is trained, we use it to generate images of a novel,

previously unseen scene in the following way. We use a traditional

renderer to render the scene from three random 64 × 64 camera

views (observations). The camera parameters, the G-buffers, and

the beauty images are passed to the scene encoder to obtain a view-

independent scene representation r. To create a novel view, we pass
r and the parameters of the view (and the G-buffer) to the image

generator, which synthesizes the beauty image. The representations

that we use have between 128 and 512 dimensions.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

39:6 • Anon. Submission Id: papers_525

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

Monolithic scene representation Lighting

partition

Geometry

partition

Materials

partition

(a) No partitioning (b) Static partitioning

Fig. 7. In contrast to the monolithic scene representation (left) our parti-

tioned scene representation (right) splits scene information into lighting

(yellow), geometry (blue), and material (red) partitions. Each row shows

the average standard deviation in each dimension of the representation

when only lighting (top row), geometry and materials (middle row), or only

materials (bottom row) are randomized across a large set of scenes.

3.5 Quality Assessment

In Figure 6 we show two representative results obtained with the

three image generators described in Section 3.2. Each generator was

trained with its own encoder end-to-end on 64 × 64 images from

the ArchViz dataset. The figure shows images of two, previously

unobserved scenes. The observations (left column) are computed

for three random positions of the camera. The generators are sorted

according to attained overall visual quality, which, interestingly,

anti-correlates with their sizes (reported on top of the figure).

The GQN suffers from splotchy artifacts and blurry edges. It

appears it did not learn to properly utilize the information in the

G-buffer, which is to be expected, as it was not designed for image-

to-image translations, but rather to generate an image given camera

parameters only. The quality could potentially be further improved

at the cost of longer training times. Unless stated otherwise, we

proceed focusing primarily on the other two (image-to-image) gen-

erators that yield better results in our experiments.

Resolution scaling. The U-net generator and the pixel generator

produce generally sharp images. The most notable difference, how-

ever, surfaces when comparing outputs at higher resolution than

the models were trained on. We tested each generator with G-buffer

gv at two resolutions: 64 × 64 and 128 × 128—the resolution of the

G-buffer defines the resolution of the generated image. In contrast

to the U-net and GQN generators, which are both convolutional

architectures, the pixel generator handles well the higher resolution

(128 × 128) despite being trained with 64 × 64 G-buffers only. This

graceful scaling is a key advantage of the pixel generator as it avoids

the burden of training at all possible resolutions.

The most notable artifacts, common to all generators, are the

inaccurate shadows. The exact cause of these artifacts is unclear and

difficult to identify with the monolithic nature of the learned scene

representation; it could stem from poorly represented geometry

but also lighting. In the next section, we propose a technique for

partitioning the scene representation, which allows to carry out

a fine-grained analysis (Section 5) and to attribute the artifacts to

(missing) information in individual partitions and the G-buffer.

Partition p− Partition p ;d ∈p Partition p+

b−(p) d b+(p)

S
(
α (x − b+(p))

)
wp (d )

wp− (d )

wp+ (d )

Fig. 8. We adaptively partition the scene representation and assign each

dimension d to three consecutive partitions. The contribution of d to a parti-

tion is modeled using sigmoids (cyan "S"-shaped curves), which are centered

at partition boundaries, and progressively sharpened during optimization.

4 ADAPTIVE DISENTANGLEMENT AND ATTRIBUTION

Our goal in this section is to impose a structure over the neural

scene representation such that it better respects the orthogonalities

between individual scene properties. This improves interpretability

of the scene representation by adaptively disentangling the material,

lighting, and geometry properties of the scene, and storing them in

disjoint partitions RM , RL , and RG , respectively. In Section 4.1, we

adapt the static partitioning approach of Kulkarni et al. [2015] and

extend it to enable adaptive, compressive partitioning in Section 4.2.

In Section 5, we will visualize various gradients of the partitioned

representation to trace roots of visual artifacts.

4.1 Static partitioning

Denoting R as the latent space of the scene representations, we

split R into three non-overlapping partitions of equal size, ∥RM ∥ ≈

∥RL ∥ ≈ ∥RG ∥ ≈ ∥R∥/3, that will contain (most of) material, light-

ing, and geometry information. In order to force each partition

to hold only the desired information, we adopt the algorithm of

Kulkarni et al. [2015] to disentangle scene components by carefully

averaging scene representations and adjusting the gradients during

training.

Specifically, Kulkarni et al. [2015] propose to train networks us-

ing batches where only one scene property varies. During forward

propagation, activations in dimensions that store all the other prop-

erties are averaged; these batch-invariant properties should lead to

identical activations for all entries in the batch. During backprop-

agation, the partial derivatives in dimensions for batch-invariant

properties are adjusted; the gradient is replaced by its difference

from the per-dimension mean. Using the differences nudges the

encoder towards producing activations that are closer to the mean.

Example. In our case, we may decide to randomize, for instance,

only materials across the batch and keep lighting and geometry

identical across all batch entries. For each entry we first compute

the scene representation with the scene encoder. We then modify

activations in lighting and geometry partitions by averaging each

dimension across the batch. During backpropagation, we compute

loss gradients with respect to the scene representations; one for each

entry in the batch. Then we compute the mean partial derivative

for each lighting and geometry dimension across the batch, and set

the derivative in those dimensions to its difference from the mean.

The backpropagation then continues further to update the weights

of the scene encoder.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

Compositional Neural Scene Representations for Shading Inference • 39:7

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

Lighting partition Geometry partition Material partition Null partition

U
-
n
e
t
g
e
n
e
r
a
t
o
r

0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1M 0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1M

P
i
x
e
l
g
e
n
e
r
a
t
o
r

0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1M 0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1M

(a) Adaptive partitioning (b) Adaptive w/ null partition (black)

Fig. 9. Adaptive partitioning distributes dimensions of the scene represen-

tation between lighting (yellow), geometry (blue), and material (red) com-

ponents of the scene. The curves show relative sizes of individual partitions

and how they evolve during training on the PrimitiveRoom dataset; they

stabilize around 1M batches. Note how the partitions become smaller when

a null partition (right, black curve) is added to compress the representation.

The aforementioned algorithm by Kulkarni et al. will ensure that

each scene component, i.e. lighting, geometry, and materials, is

stored primarily in its own partition. Figure 7 demonstrates the dif-

ference between a monolithic and partitioned neural representation.

Each bar in the six charts represents the average standard deviation

of activations in one dimension across many scenes, where only

lighting (top), geometry and materials (middle), or only materials

(bottom) are varied. We choose to vary geometry and materials

jointly in the middle row since it is difficult to modify geometry

without affecting materials. This is a side-effect of changing object

visibility in the observation views across a batch.

4.2 Adaptive partitioning

The main drawback of a statically-partitioned representation is

that it strictly defines the number of bits used to store each scene

component. This constraint, which is not present in monolithic

representations, is undesired. Instead of using fixed partitioning (e.g.

the lighting partition occupies the first third of the representation),

we allow moving the partition boundaries to adjust their sizes.

For a scene representation with k partitions, we add a trainable tu-

ple s := (s1, . . . , sk ); si ∈ R, to the scene encoder, which defines the

sizes of partitions. For the i-th partition, the left boundary b−(i) and
the right boundary b+(i) are computed by summing up (softmaxed)

size parameters of preceding partitions: b−(i) = ∥R∥ ·
∑i−1
j=1 σ (s)j ,

and adding the size of the i-th partition: b+(i) = b−(i) + ∥R∥ · σ (s)i ,
respectively. The softmax function σ ensures that the learned sizes

partition unity.

To allow gradient-based optimization of s, we use fuzzy parti-

tion boundaries. A given dimension d of the representation located

within a boundary region is shared by multiple partitions: a center

partition p, and left and right neighboring partitions, p− and p+,

Lighting partition Geometry partition Material partition Null partition

U
-
n
e
t
g
e
n
e
r
a
t
o
r

0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

1M 0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

1M

P
i
x
e
l
g
e
n
e
r
a
t
o
r

0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

1M 0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

1M

(a) Adaptive partitioning (b) Adaptive w/ null partition (black)

Fig. 10. Same as in Figure 9 but trained on the ArchViz dataset.

respectively. The contribution of dimension d to each partition is

given by the following weights:

wp (d) = 1 −wp− (d) −wp+ (d) , (1)

wp− (d) = 1 − S
(
α(d − b−(p))

)
, (2)

wp+ (d) = S
(
α(d − b+(p))

)
, (3)

where S is the sigmoid function used to model the fuzzy boundaries;

see Figure 8. The parameter α controls the spread of the sigmoid;

we progressively increase α during training to approach a step

transition in the limit, resulting in a disjoint partitioning.

We treat the representation vector as a circular domain, where

the last and first partitions are adjacent. The first partition then

acts as the right neighbor of the last partition, and vice versa. All

partitions have the same initial size set to ∥R∥/(k + 1).

Analysis and Discussion. As the optimization progresses, the parti-

tions trade dimensions to best distribute the bits for storing relevant

scene properties, as shown in Figures 9 and 10. Initially, the lighting

partition grows at the cost of other partitions. This is likely due to

the loss function being more sensitive to pixel brightness than to

color hue. Once the lighting is predicted sufficiently well, the models

focus on extracting material information to correctly predict colors.

When converged, the material partition is typically larger than the

lighting partition as lighting in our scenes can be represented with

fewer dimensions.

The geometry partition initially shrinks as the generators can

rely on the G-buffer (e.g. position and normal buffers). It grows back

once lighting effects due to objects that are not directly visible by

the camera (e.g. reflections) start dominating the loss. Comparing

the U-net generator (top row) and the pixel generator (bottom row)

we see that the pixel generator forces the encoder to put more

information into the geometry partition. This is to be expected as it

cannot rely on pixel neighborhoods like the U-net. In general, both

convolutional approaches (U-net and GQN) utilized the geometry

partition less in all our experiments.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

39:8 • Anon. Submission Id: papers_525

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

0 50k 100k 150k 200k
0

100

200

300

400

∥R ∥ − ∥R∅ ∥ ∥R ∥=128→49 ∥R ∥=256→51 ∥R ∥=512→57

Fig. 11. The null partition allows compressing the scene representation. We

plot the total size of the non-null partitions, ∥R ∥ − ∥R∅ ∥, during training

for three models with 128, 256, and 512 available dimensions. The images

(right) rendered after 400k iteration (with the representations shrunk to

49, 51, and 57) have comparable, but lower quality than uncompressed

representation (cf. Figure 12).

∥R ∥=128→49 ∥R ∥=256→51 ∥R ∥=512→57 Uncompressed Reference

Fig. 12. The lossy compression of representations from Figure 11 (β =
4 · 10−4) manifests as the loss of material information for the teapot.

β = 4 · 10−4 β = 4 · 10−5 β = 4 · 10−6 Reference

∥R ∥=256→51 ∥R ∥=256→180 ∥R ∥=256→228

Fig. 13. Quality of generated images as a function of β , which scales the

loss term induced by the total size of the non-null partitions. The differences

are best visible on the teapot and on shadows.

4.3 Null partition

Adaptive partitioning allows trading bits of the representation be-

tween partitions. However, the scene representation will always

use all the available space, even in cases when it could be well-

represented using fewer bits. We address this by adding a null parti-
tion R∅ , which does not influence the image generator, and serves

only as a reservoir of unused (available) dimensions.

In order to incentivize the optimization to grow the null partition,

and thereby compress the scene representation, we add a penalty

term β(∥R∥ − ∥R∅ ∥) to the loss function, which is proportional to

the number of dimensions in all other partitions.

Analysis and Discussion. The right columns of Figures 9 and 10

showhow the presence of the null partition impacts the optimization.

The partition sizes at 1M iterations better represent the volume of

extracted lighting, geometry, and material information than the

uncompressed plots (left) as the model utilizes fewer dimensions to

represent them.

The presence of the null partition removes the burden of a-priori

guessing the optimal size of the neural scene representation. One can

over-allocate the space conservatively and rely on the optimization

to shrink or grow the non-null partitions appropriately. We confirm

this in Figure 11 that plots the total number of lighting, geometry,

and material dimensions in three models that initially allocate 128,

256, and 512 dimensions for the representation. All models gradually

reduce the number of utilized dimensions to similar counts (49, 51,

and 57 dimensions after 400k training iterations); the remaining

dimensions are assigned to the null partition. The rendering quality

is comparable between the three models, but lower than in the case

of uncompressed representation. Figure 12 shows an inset where

the compressed representations do not capture the material of the

teapot. The tradeoff between the compression ratio and the loss of

information can be controlled by adjusting β , as shown in Figure 13.

5 ANALYSIS AND ATTRIBUTION

The partitioning of the scene representation allows us to attribute

the artifacts and poor image quality to specific information that is

missing or underrepresented in the representation. In this section,

we utilize the gradient × input attribution method [Shrikumar et al.

2016] to measure the sensitivity of generated images to the neural

scene representation, the observations, and the G-buffer.

In cases where we compute the attribution of a collection of

output values (e.g. for an image patch or an entire partition of

the representation) we compute the gradient × input products for

individual elements and sum their absolute values to obtain a single

attribution scalar.

5.1 Attribution of Partition Activations

In Figure 14, we aggregate the attribution of partitions in the scene

representation to the beauty and position channels of the observa-

tions. The false-color intensity shows the aggregate attribution of

one partition to each pixel in the observations.

Activations in the lighting partition are attributed primarily to

the ceiling light fixture, if visible, since its position and intensity are

randomized in the dataset. In the beauty channel observations we

can see that the activations are mainly attributed to regions where

the emitters are directly visible. These regions contain information

on the brightness of the light sources. In the position channel of

the observations we see activations on the entire light fixture and

the floor. We hypothesize that the structure of shadow features on

the floor (beauty channel) in conjunction with their corresponding

locations (position channel) contribute to the identification of the

emitters positions, especially in cases when the emitters are not

visible in any of the observations. The relatively weak contribution

of the wall emitter in the position channel of observation 2 (right

part of the image) to the lighting partition is due to its fixed position;

only its intensity is randomized.

Activations in the geometry partition are attributed to regions

and objects that move during training except for the walls, which

are easy to identify as their positions are fixed across all training

examples. Activations in regions where the light sources are directly

visible indicate that the encoder might be performing some form

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

Compositional Neural Scene Representations for Shading Inference • 39:9

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

Observation 1 Observation 2 Observation 3

I
n
p
u
t

L
i
g
h
t
i
n
g

G
e
o
m
e
t
r
y

M
a
t
e
r
i
a
l
s

Beauty Position Beauty Position Beauty Position

Fig. 14. Attribution of activations in the lighting, geometry, and material

partition of the scene representation extracted from beauty and position

channels of three observations (top row). In each row below we provide

false-colored attributions aggregated over all dimensions in each partition.

Bright values indicate large impact of the pixel on the partition.

of shape from shading or shape from shadow calculations. How-

ever, such behavior can also be attributed to extracting the emitters

geometric positions.

Activations in the material partition are attributed to regions

with randomized materials (walls, mirror frame, table, chairs, and

the teapot), but also to the emitters. This is because the intensity

and position of the emitters is needed to correctly extract material

parameters without baking illumination effects into them.

5.2 Attribution of Generated Colors

In Figure 15 we visualize the attribution (gradient × input) of pre-

dicted colors to the neural scene representation (middle) and to the

observations (left columns) that the representation was extracted

from. We use the pixel generator to obtain the generated image.

Reflections. The orange patch focuses on a reflection of a light

fixture seen through amirror surface. Since the corresponding pixels

of the G-buffer contain information only about the mirror, and no

information about the reflected objects, the generator needs to rely

on the scene representation to produce colors of the reflected light

fixture. Note that the reflection is in neither of the observations, but

the lighting fixture itself is directly observed and the corresponding

pixels in the observations have large impact on the reflection; their

attribution is high. This indicates that the network is capable of

synthesizing view-dependent reflections.

The red patch is placed on a mirror teapot, which reflects large

portions of the scene, including the light fixture. The colors in the

red patch are thus attributed to all partitions of the representation

as reflections require all scene components. In the observations the

colors are strongly attributed to the light source as it illuminates

the reflected surfaces, but also to the teapot itself when visible.

Materials. The blue patch focuses on the textured wall. The gen-

erated colors should depend on the incident illumination and the

material of the wall. This is confirmed by the representation attribu-

tion, where the lighting partition (yellow background) and material

partition (red background) have high attribution values, and also by

the observations, where the attribution is high on the light fixture

and the walls. Since all textures used during training were periodic,

the texture pattern can be detected from any region of the wall,

although some regions are preferred over others; we attribute this

to biases in the stochastic placement of the camera.

Shadows. The green patch focuses on a shadow boundary due to

the table and the light fixture. The representation attributions show

that the lighting and geometry partitions are mainly responsible

for the synthesis of this shadow region. The material partition is

not attributed because we used the same glossy gray material for

all floors in the ArchViz dataset. The floor material is thus likely

embedded in the generator and the encoder was not forced to ex-

tract it. As expected, the shadow boundary is attributed to the light

fixture and the pixel region around the table and the chairs in the

observations.

5.3 Attribution to Representation and G-buffer

We now study whether the generator relies more on the scene

representation or the G-buffer.

In the top row of Figure 16 we demonstrate that this balance is

specific to the architecture of the generator by studying the quality

of synthesized shadows. The scene contains a cylindrical shadow

caster. In the left configuration, the cylinder is in the camera frustum

of the novel view and therefore captured by the G-buffer. The gen-

erators can thus rely on the representation, but also on the G-buffer

to identify the shape and position of the shadow caster. In the right

configuration, the caster is outside of the frustum and its position

and shape can only be inferred from the neural scene representation.

The bar charts below the images attribute the predicted colors

in the red patches to (i) the partitions of the representation (top

stacked bars) and (ii) the position and normal channels of the G-

buffer (bottom stacked bars). The bar charts indicate that the pixel

generator relies primarily on the neural scene representation; the

geometry partition (blue bar) is the largest. In contrast, the U-net

generator barely utilizes the geometry partition and relies signif-

icantly more on the G-buffer (green and black bars). This poses a

problem when the shadow caster is outside the camera frustum: the

G-buffer contains no information about the caster and the U-net

generator is unable to predict the shadow accurately.

The results of this comparison are not entirely unexpected, con-

sidering that convolutional architectures, which source information

from pixel neighborhoods, will rely more on the G-buffer in our case.

Pixel generators, which access one pixel at a time only, force the

encoder to put more information about the geometry into the scene

representation (as already suggested by Figures 9 and 10) and their

performance is thus less impacted by the content of the G-buffer.

The other drawback of the convolutional U-net is the artificial

shrinking of shadows in cases where the novel view resolution is

larger than the one the model was trained on (cv. Figure 6, bottom

image).

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

39:10 • Anon. Submission Id: papers_525

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

���������������

����������������
�������������������������

���������������������������
������������ ������������ �����������


	��
��
���
�

����
��
���

��
��

���
�

����
��
���

�
���
���
�

����
��
���

������ �������� ������ �������� ������ ��������

Fig. 15. We attribute the colors of four patches of generated image (left) to dimensions in the neural scene representation (middle), and to the beauty and

position channels of the three observations (right) that the representation was extracted from. Each bar in the attribution histograms shows the contribution

of one dimension of the representation to the patch; the bar height corresponds to the aggregate attribution. On the right, we propagate the attribution

through each partition to individual observations and their channels. A blue tint, for instance, indicates that an observation pixel contributed geometry

information (through the geometry partition) to the generated patch; the brightness corresponds to the aggregate attribution.

In-view shadow caster Out-of-view

Pixel U-net Pixel generator U-net generator

B
e
a
u
t
y

Lighting partition Geometry partition Material partition

A
t
t
r
i
b
.

G-buffer position G-buffer normal

Fig. 16. Shadow synthesis in a scene configuration where the shadow caster

is visible from the novel view (left pair) and when the shadow caster is out of

the view (right pair). Both pixel and U-net generators are able to synthesize

shadows of visible shadow casters. When the shadow caster is not visible,

the U-net is unable to synthesize a shadow since it relies primarily on the

G-buffer. The bar charts attribute colors in the red square to individual

partitions and components of the G-buffer.

Summary. The analysis in this section revealed poor performance

of direct illumination shadows. Figure 16 illustrated the importance

of encoding a sufficient amount of geometric information in the

geometry partition of the representation, especially in the case of

U-net generators; these tend to rely on the G-buffer too much and

fail to synthesize shadows due to out-of-view shadow casters.

6 ADDITIONAL IMPROVEMENTS AND RESULTS

In this section, we describe a mechanism for increasing the amount

of specific information in the scene representation, and present

additional results and comparisons.

6.1 Auxiliary Shadow Generator

We employ an auxiliary generator [Philip et al. 2019] that is trained

concurrently with the main generator, but focuses on the task of

synthesizing shadows. Specifically, the generator is trained to pro-

duce grayscale images of (partial) visibility of light sources. The

loss function of the generator is the same as the loss function of the

main generator; except we evaluate it on reference shadow images.

The losses are summed together.

Adding the auxiliary generator can be interpreted as changing the

loss function, but it has the key benefit of impacting only the scene

encoder of the original model; it keeps the original generator (and its

loss) intact. Since both generators use the same scene representation

during training, the auxiliary generator merely steers the scene

encoder to extract geometry and lighting information.

Figure 17 shows examples of improved shadow synthesis of a

pixel generator trained with an auxiliary shadow generator. Fig-

ure 18 confirms the expected growth of the geometry partition to

accommodate additional geometric information. The lighting parti-

tion also marginally increases. This comes at the cost of the material

partition. As a result, materials tend to be captured with lower accu-

racy. This can be observed on some of the objects (e.g. prediction of

material roughness is less accurate). Adding an auxiliary generator

thus does not necessarily lead to better overall results—quantitative

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

Compositional Neural Scene Representations for Shading Inference • 39:11

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

Baseline + shadow generator Reference

Fig. 17. Adding an auxiliary shadow (pixel) generator steers the encoder

to focus more on geometric and lighting information, which improves the

synthesis of shadows, albeit at the cost of encoding materials.

Lighting partition Geometry partition Material partition

U
-
n
e
t
g
e
n
e
r
a
t
o
r

0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1M 0 50k 100k 150k
0.0

0.1

0.2

0.3

0.4

0.5

0.6

1M

(a) Beauty generator (b) Beauty & shadow generators

Fig. 18. A model with a single pixel generator (left) can be steered towards

extracting more geometry information (blue) by adding an auxiliary shadow

generator (right). At 1M iterations the auxiliary generator resulted in the

geometry partition to grow to 52% (instead of 27% in (a)) at the cost of the

material partition, which shrunk to 24% (instead of 52% in (a)).

metrics remained unaffected in this case—but rebalances the focus

of the encoder.

6.2 Quantitative Evaluation

For each dataset, we hand-picked 16 scenes with difficult shading

and several objects. These scenes were not used during training. We

compare the performance of different models on these scenes after

one million training iterations using three different error functions:

mean absolute percentage error (MAPE), PieAPP [Prashnani et al.

2018] and LPIPS [Zhang et al. 2018]. For PieAPP and LPIPS metrics

we first tonemap the high dynamic range images into low dynamic

ranges using gamma correction, quantize to 8-bits precision per

channel and clip values above 255.

In Figure 19 we report the average metrics across the 16 scenes

for models with: (i) a monolithic scene representation, (ii) stati-

cally partitioned representation, and (ii) our adaptively partitioned

representation. The static partitioning typically yields the worst

results as the static sizes do not reflect on the entropy of individual

scene components and over-constrain the problem. Our adaptive

partitioning scheme relaxes the constraints and recovers some of

the lost performance of the, typically best-performing monolithic

representation.

Monolithic Static partitioning Adaptive partitioning

MAPE PieAPP LPIPS
0.43 1.22 0.150.51 1.46 0.190.48 1.15 0.18

MAPE PieAPP LPIPS
0.09 0.44 0.050.10 0.46 0.040.09 0.42 0.05

PrimitiveRoom dataset ArchViz dataset

Fig. 19. Average metrics of the pixel generator model with no partitioning,

static partitioning, and our adaptive partitioning (higher means better).

GQN generator U-net generator Pixel generator

MAPE PieAPP LPIPS
0.66 1.77 0.220.43 1.25 0.180.52 0.90 0.16

MAPE PieAPP LPIPS
0.28 1.45 0.140.11 0.63 0.060.09 0.50 0.04

PrimitiveRoom dataset ArchViz dataset

Fig. 20. Average metrics of different generators on 16 selected scenes ren-

dered with a 64 × 64 resolution (higher means better).

64 × 64 128 × 128 256 × 256 Reference

P
i
x
e
l

U
-
n
e
t

Fig. 21. Pixel generator stability across resolution changes. For each gener-

ator, we used one neural scene representation obtained from observations

with 64 × 64 resolution. The pixel and U-net generators were trained to

synthesize 64 × 64 images, and then used at higher resolution. For the pixel

generator, visual differences are due to the varying resolution of its input

G-buffers, whereas the U-net generator suffers from shrinking shadows as

the resolution increases and various other artifacts.

In Figure 20 we report average metrics of the GQN, U-net and

pixel generators. We observe that the pixel generator is the top

performing generator according to all metrics followed closely by

the U-net generator. The GQN generator placed last; we would

like to note that this approach has not been designed for image-

to-image translation, which could explain its worse performance.

These results confirm our qualitative evaluation in Section 3.5.

As stated by Sitzmann et al. [2019], a key feature of the pixel

generator is its resolution independence. We confirm this statement

in Figure 21, which compares the outputs of the pixel and U-net

generators at various resolutions, when both where trained to gen-

erate images at a fixed 64 × 64 resolution. Note, in particular, how

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

39:12 • Anon. Submission Id: papers_525

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

(a) Reference direct illum. (b) Predicted indirect illum. (c) Reference indirect illum. (a)+(b) (a)+(c)

Fig. 22. Synthesizing indirect illumination. We provide a pixel generator with the scene representation, G-buffers and the direct illumination buffer, leaving

only the indirect illumination to be synthesized. The observations from which the scene representation was extracted consisted of the beauty buffer and the

G-buffers, but did not include the direct illumination. Results show that interreflections are correctly synthesized by the generator, for instance between the

teapot and the table (top and bottom row) or the pillow and the sofa (bottom row). Interreflections between distant surfaces, such as the yellow tint of the

ceiling (top row) due to light bouncing on the table underneath, are also synthesized.

Scene A Scene B Scene B w/ lighting from A Scene C Scene D Scene C /w materials from D

P
r
e
d
i
c
t
i
o
n

R
e
f
e
r
e
n
c
e

Fig. 23. Generated examples (top row) where lighting and material representation partitions are transferred across scenes. On the left, we show a relighting

example obtained after transferring the lighting partition of Scene A to the lighting partition of Scene B. On the right, we show another example obtained after

replacing the material partition of Scene C with the one from Scene D. The bottom row contains corresponding rendered references for each configuration.

the shadows generated by the pixel generator are stable across res-

olutions. In contrast, shadows synthesized by the U-net generator

shrink as the resolution increases. The wall texture synthesized

by the pixel generator remains blurry at higher resolutions, since

training was done on 64 × 64 observations, but becomes severely

distorted with the U-net generator.

6.3 Modeling Indirect Illumination

One shortcoming of our current data-driven image synthesis pipeline

is that high frequency variations, as well as fine features, cannot

be reproduced with sufficient fidelity. This limitation is not unique

to our method and a common solution, used for instance in the

irradiance caching algorithm [Ward et al. 1988], is to synthesize

only indirect illumination as it tends to vary more smoothly.

For this application, we provide the direct illumination buffer of

the novel view to the generator (in addition to the other channels

of the G-buffer), leaving only the indirect illumination to be syn-

thesized. However, the direct illumination buffer is not provided

with the observations. This way, we enforce the scene encoder to

separate out the indirect component to enable its synthesis by the

generator. In this context, our framework is capable of producing

highly convincing results, as illustrated in Figure 22. We used a pixel

generator to ensure that indirect illumination could not be inferred

using image-space approximation [Nalbach et al. 2017]. Our two

test scenes feature interreflection between the teapot and the table

that is correctly synthesized. Similarly, the predicted interreflections

between the pillows and the sofa (bottom row) match the reference.

Lastly, indirect illumination over long distances, such as the yellow

tint on the ceiling (top row) due to light bouncing off the yellow

table underneath, is also synthesized by our framework.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

Compositional Neural Scene Representations for Shading Inference • 39:13

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

Lighting 1 Lighting 2

Fig. 24. Lighting partition interpolation, where the interpolation endpoints

were from extracted from lighting partitions of two other scenes, shows that

indirect color bleeding and specular highlights are correctly synthesized

even though the material partition remains constant. This proves that the

model has learned to properly separate materials from lighting.

6.4 Relighting and Material Transfer

In this section we exploit the compositionality of our neural scene

representation to perform scene edits directly in the latent represen-

tation space. The semantic partitioning into lighting, geometry, and

material components allows applications such as material transfer

across scenes, or relighting.

In Figure 23 we transfer material and lighting components be-

tween different scene representations, which were constructed from

observations of different scenes. The scenes differ in more aspects

than the one being transferred. This makes the transfer tasks chal-

lenging for monolithic representations, that do not have a clear

separation of individual components. On the left-hand side, Scene A

and Scene B differ in lighting, materials, and geometry. On the right-

hand side, Scene C and Scene D have differences in lighting and

materials (geometry is identical).

We begin with a relighting application where we replace the

lighting partition in the representation of Scene B with the lighting

partition from Scene A. We then feed the composited representation

with the G-buffer of Scene B into the pixel generator. The generated

image is shown in the third column (top); reference renderings are

included in the bottom row.We observe that the backlit teapot is now

lit from the front and the highlights and shadows are repositioned

correctly.

On the right-hand side, we present a material transfer applica-

tion, where we substitute materials of Scene C with materials from

Scene D. Analogously to before, we replace the material partition of

Scene C with the corresponding partition from Scene D, and pass the

composite to the pixel generator. The resulting image on the right

shows that material properties have been transferred accurately,

their appearance adapted to new illumination conditions, and they

impact indirect illumination as expected; the ceiling and the floor

have slightly different color tint.

In both transfers shown in Figure 23, we can see that the generated

images of novel scene configurations retain the quality of images of

the original scenes.

In Figure 24, we perform a linear interpolation between two light-

ing configurations to demonstrate that highlights and shadowsmove

gradually, as if the light source was moving, instead of blending

intensities of two light sources. Please see the supplementary video

for additional animations.

Obs. 1 Obs. 2 Obs. 3 Prediction Reference

Fig. 25. Despite the orange wall is not visible in the observations, the model

is capable of extracting its color from indirect lighting in the observations.

Obs. 1 Obs. 2 Obs. 3 Prediction Reference

Fig. 26. An example of poor generalization of the model to a scene with

“unknown“ materials; gray color was never used for the walls in the training

dataset, only for the floor and the ceiling. The model incorrectly maps the

gray color of the walls in the observations to shades of green and pink.

7 DISCUSSION AND FUTURE WORK

Difficult cases and generalization. Figure 25 shows a challenging
case for the encoder: the observations do not capture the orange

wall that is viewed in the novel view. Nevertheless, the encoder

is capable of extracting its material parameters from the indirect

illumination on the floor. On the other hand, if themodel is presented

with configurations that it did not encounter during training, such

as the gray walls in Figure 26, it is prone to projecting these onto

configurations experienced during training rather than generalizing

gracefully.

Implicit versus explicit disentanglement. It has been shown that

neural scene encoders can naturally produce representations that

are disentangled; see e.g. the scene algebra experiments demon-

strated by [Eslami et al. 2018]. We observed this in our experiments

as well. For instance, changing a single texture and computing the

difference in scene representations had significant values only in

one dimension (see the supplemental video). This one dimension

in the representation fully controlled the pattern of the wall tex-

ture. This suggests that the image generator developed a parametric

texture synthesizer, which is controlled by (at least) the identified

dimension. Interestingly though, sweeping through the meaning-

ful range of values in this dimension produced only a subset of

the textures used in the training dataset. The remaining patterns

were produced by activations in other dimensions. Explicit parti-

tioning and disentanglement thus still provides more direct and

exact control.

Validity of design decisions. We made the deliberate choice to use

classical rendering algorithms only for a very specific set of image

buffers. Our primary desire was to not provide any material and

lighting information in the G-buffer, such that we can better analyze

the inner workings of the model. Only geometry was captured by

both, the G-buffer and the neural scene representation, which al-

lowed contrasting the performance of the U-net and pixel generators

in Figure 16.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch



1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

39:14 • Anon. Submission Id: papers_525

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

Utilizing the classical renderer to obtain additional surface pa-

rameters, such as albedo and roughness, or intersections of specular

reflection rays improved the quality in our experiments. Figures

1 and 22 demonstrated the benefits of including direct illumina-

tion renders in the G-buffer. One must however ensure that the

model does not drift towards using the G-buffer exclusively and

that the information is appropriately present also in the latent scene

representation, e.g. by using auxiliary generators.

The other decision, which is worth revisiting in the future, is the

choice to extract the scene representation from a set of image buffers

(observations). The observations have the benefit of including all

the visual effects, which we strive to synthesize, but other forms

of input, e.g. voxel representations, unstructured sets of radiance

estimates, light fields, or textual descriptions could suit particular

applications better.

8 CONCLUSION

We presented a method for augmenting classical rendering with

neural scene representations. We extended the approach of [Eslami

et al. 2018] by allowing it to use a G-buffer (for both the observations

and the novel view), and combined it with the pixel generator [Sitz-

mann et al. 2019] and U-net generator [Ronneberger et al. 2015];

these two adjustments enabled obtaining good-quality results after

only days of training.

We then adopted the approach of Kulkarni et al. [2015] to partition

the representation, and extended it to permit sizing the partitions

adaptively according to the entropy of each scene component. By

adding an null partition we enabled (lossily) compressing the rep-

resentation. The adaptive partitioning provided means for gaining

new insights in the data flow of the model. Specifically, it allowed us

to attribute the resulting colors to individual pixels in the observa-

tions and, importantly, reasoning whether a pixel in an observation

impacted the final color through the lighting, material, or geometry

partition. Based on these insights, we proposed adding an auxiliary

generator to steer the representation extraction towards missing or

underrepresented information; the subsequent analysis of partition

sizes confirmed that the auxiliary generator had the intended im-

pact. Yet, the results generated by models presented in this paper

suffer from visual artifacts if used to synthesize all shading. We thus

investigated a scenario, where the neural renderer synthesized col-

ors due to indirect illumination only; the obtained images featured

quality sufficient for many practical applications.

Addressing the quality, however, should still remain a priority for

future work as artifacts may not go away by merely increasing the

size of networks and datasets. We believe that additional constraints

and principles of light transport will be necessary to yield realisti-

cally looking images. Understanding of the model’s inner workings

will be paramount for injecting additional constraints; our work

presents an important step in that direction.

REFERENCES

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and Markus Gross. 2018. Towards better

understanding of gradient-based attribution methods for Deep Neural Networks.

In International Conference on Learning Representations. https://openreview.net/

forum?id=Sy21R9JAW

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

Chakravarty R. Alla Chaitanya, Anton S. Kaplanyan, Christoph Schied, Marco Salvi,

Aaron Lefohn, Derek Nowrouzezahrai, and Timo Aila. 2017. Interactive Recon-

struction of Monte Carlo Image Sequences Using a Recurrent Denoising Au-

toencoder. ACM Trans. Graph. 36, 4, Article Article 98 (July 2017), 12 pages.

https://doi.org/10.1145/3072959.3073601

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and

Pieter Abbeel. 2016. InfoGAN: Interpretable Representation Learning by

Information Maximizing Generative Adversarial Nets. In Advances in
Neural Information Processing Systems 29, D. D. Lee, M. Sugiyama, U. V.

Luxburg, I. Guyon, and R. Garnett (Eds.). Curran Associates, Inc., 2172–

2180. http://papers.nips.cc/paper/6399-infogan-interpretable-representation-

learning-by-information-maximizing-generative-adversarial-nets.pdf

Paul Debevec. 1998. Rendering Synthetic Objects into Real Scenes: Bridging Traditional

and Image-Based Graphics with Global Illumination and High Dynamic Range

Photography. In Proceedings of the 25th Annual Conference on Computer Graphics
and Interactive Techniques (SIGGRAPH ’98). Association for Computing Machinery,

New York, NY, USA, 189–198. https://doi.org/10.1145/280814.280864

Paul Debevec, Tim Hawkins, Chris Tchou, Haarm-Pieter Duiker, Westley Sarokin, and

Mark Sagar. 2000. Acquiring the Reflectance Field of a Human Face. In Proceedings
of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH ’00). ACM Press/Addison-Wesley Publishing Co., USA, 145–156. https:

//doi.org/10.1145/344779.344855

Valentin Deschaintre, Miika Aittala, Fredo Durand, George Drettakis, and Adrien

Bousseau. 2019. Flexible SVBRDF Capture with a Multi-Image Deep Network.

Computer Graphics Forum 38, 4 (2019), 1–13. https://doi.org/10.1111/cgf.13765

arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13765

Mengnan Du, Ninghao Liu, and Xia Hu. 2019. Techniques for Interpretable Machine

Learning. Commun. ACM 63, 1 (Dec. 2019), 68–77. https://doi.org/10.1145/3359786

S. M. Ali Eslami, Danilo Jimenez Rezende, Frederic Besse, Fabio Viola, Ari S. Morcos,

Marta Garnelo, Avraham Ruderman, Andrei A. Rusu, Ivo Danihelka, Karol Gregor,

David P. Reichert, Lars Buesing, Theophane Weber, Oriol Vinyals, Dan Rosenbaum,

Neil Rabinowitz, Helen King, Chloe Hillier, Matt Botvinick, Daan Wierstra, Koray

Kavukcuoglu, and Demis Hassabis. 2018. Neural scene representation and render-

ing. Science 360, 6394 (2018), 1204–1210. https://doi.org/10.1126/science.aar6170

arXiv:https://science.sciencemag.org/content/360/6394/1204.full.pdf

Karol Gregor, Frederic Besse, Danilo Jimenez Rezende, Ivo Danihelka, and Daan Wier-

stra. 2016. Towards Conceptual Compression. In Advances in Neural Information
Processing Systems 29, D. D. Lee, M. Sugiyama, U. V. Luxburg, I. Guyon, and R. Gar-

nett (Eds.). Curran Associates, Inc., 3549–3557. http://papers.nips.cc/paper/6542-

towards-conceptual-compression.pdf

Pedro Hermosilla, Sebastian Maisch, Tobias Ritschel, and Timo Ropinski. 2018. Deep-

learning the Latent Space of Light Transport. cgfegsr 38 (2018), 207–217.
Irina Higgins, Loïc Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew M

Botvinick, Shakir Mohamed, and Alexander Lerchner. 2017. beta-VAE: Learning

Basic Visual Concepts with a Constrained Variational Framework. In ICLR.
Simon Kallweit, Thomas Müller, Brian Mcwilliams, Markus Gross, and Jan Novák.

2017. Deep Scattering: Rendering Atmospheric Clouds with Radiance-Predicting

Neural Networks. ACM Trans. Graph. 36, 6, Article Article 231 (Nov. 2017), 11 pages.
https://doi.org/10.1145/3130800.3130880

Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen. 2017. Progressive growing

of gans for improved quality, stability, and variation. arXiv preprint arXiv:1710.10196
(2017).

Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Optimization.

arXiv:1412.6980 (June 2014).
Tejas D. Kulkarni, William F. Whitney, Pushmeet Kohli, and Joshua B. Tenenbaum. 2015.

Deep Convolutional Inverse Graphics Network. In Proceedings of the 28th Interna-
tional Conference on Neural Information Processing Systems - Volume 2 (NIPS’15). MIT

Press, Cambridge, MA, USA, 2539–2547. arXiv:https://arxiv.org/pdf/1503.03167.pdf

https://dl.acm.org/doi/10.5555/2969442.2969523

Stephen Lombardi, Tomas Simon, Jason Saragih, Gabriel Schwartz, Andreas Lehrmann,

and Yaser Sheikh. 2019. Neural Volumes: Learning Dynamic Renderable Volumes

from Images. ACM Trans. Graph. 38, 4, Article Article 65 (July 2019), 14 pages.

https://doi.org/10.1145/3306346.3323020

Wojciech Matusik. 2003. A data-driven reflectance model. Ph.D. Dissertation. Mas-

sachusetts Institute of Technology.

Thomas Müller, Brian McWilliams, Fabrice Rousselle, Markus Gross, and Jan Novák.

2019. Neural Importance Sampling. ACM Trans. Graph. 38, 5, Article 145 (Oct. 2019),
19 pages. https://doi.org/10.1145/3341156

Oliver Nalbach, Elena Arabadzhiyska, Dushyant Mehta, Hans-Peter Seidel, and Tobias

Ritschel. 2017. Deep Shading: Convolutional Neural Networks for Screen-Space

Shading. 36, 4 (2017).

Phong Nguyen-Ha, Lam Huynh, Esa Rahtu, and Janne Heikkilä. 2019. Predicting Novel

Views Using Generative Adversarial Query Network. CoRR abs/1904.05124 (2019).

arXiv:1904.05124 http://arxiv.org/abs/1904.05124

Thu Nguyen-Phuoc, Chuan Li, Lucas Theis, Christian Richardt, and Yong-Liang Yang.

2019. HoloGAN: Unsupervised Learning of 3D Representations FromNatural Images.

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch

https://openreview.net/forum?id=Sy21R9JAW
https://openreview.net/forum?id=Sy21R9JAW
https://doi.org/10.1145/3072959.3073601
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
http://papers.nips.cc/paper/6399-infogan-interpretable-representation-learning-by-information-maximizing-generative-adversarial-nets.pdf
https://doi.org/10.1145/280814.280864
https://doi.org/10.1145/344779.344855
https://doi.org/10.1145/344779.344855
https://doi.org/10.1111/cgf.13765
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13765
https://doi.org/10.1145/3359786
https://doi.org/10.1126/science.aar6170
http://arxiv.org/abs/https://science.sciencemag.org/content/360/6394/1204.full.pdf
http://papers.nips.cc/paper/6542-towards-conceptual-compression.pdf
http://papers.nips.cc/paper/6542-towards-conceptual-compression.pdf
https://doi.org/10.1145/3130800.3130880
http://arxiv.org/abs/https://arxiv.org/pdf/1503.03167.pdf
https://dl.acm.org/doi/10.5555/2969442.2969523
https://doi.org/10.1145/3306346.3323020
https://doi.org/10.1145/3341156
http://arxiv.org/abs/1904.05124
http://arxiv.org/abs/1904.05124


1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

1620

1621

1622

1623

1624

1625

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

Compositional Neural Scene Representations for Shading Inference • 39:15

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673

1674

1675

1676

1677

1678

1679

1680

1681

1682

1683

1684

1685

1686

1687

1688

1689

1690

1691

1692

1693

1694

1695

1696

1697

1698

1699

1700

1701

1702

1703

1704

1705

1706

1707

1708

1709

1710

In The IEEE International Conference on Computer Vision (ICCV).
Thu H Nguyen-Phuoc, Chuan Li, Stephen Balaban, and Yongliang Yang. 2018. Ren-

derNet: A deep convolutional network for differentiable rendering from 3D shapes.

In Advances in Neural Information Processing Systems 31, S. Bengio, H. Wallach,

H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Eds.). Curran Associates,

Inc., 7891–7901. http://papers.nips.cc/paper/8014-rendernet-a-deep-convolutional-

network-for-differentiable-rendering-from-3d-shapes.pdf

Kyle Olszewski, Sergey Tulyakov, Oliver Woodford, Hao Li, and Linjie Luo. 2019.

Transformable Bottleneck Networks. The IEEE International Conference on Computer
Vision (ICCV) (Nov 2019).

Julien Philip, Michaël Gharbi, Tinghui Zhou, Alexei Efros, and George Drettakis. 2019.

Multi-view Relighting Using a Geometry-Aware Network. tog 38, 4 (July 2019).

http://www-sop.inria.fr/reves/Basilic/2019/PGZED19

Ekta Prashnani, Hong Cai, Yasamin Mostofi, and Pradeep Sen. 2018. PieAPP: Perceptual

Image-Error Assessment Through Pairwise Preference. In The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

Konstantinos Rematas and Vittorio Ferrari. 2019. Neural Voxel Renderer: Learning an

Accurate and Controllable Rendering Tool. arXiv:cs.CV/1912.04591

Peiran Ren, Jiaping Wang, Minmin Gong, Stephen Lin, Xin Tong, and Baining Guo.

2013. Global Illumination with Radiance Regression Functions. ACM Trans. Graph.
32, 4, Article 130 (July 2013), 12 pages. https://doi.org/10.1145/2461912.2462009

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. 2015. U-Net: Convolutional

Networks for Biomedical Image Segmentation. In Medical Image Computing and
Computer-Assisted Intervention – MICCAI 2015. Springer International Publishing,
Cham, 234–241.

Dan Rosenbaum, Frederic Besse, Fabio Viola, Danilo J. Rezende, and S. M. Ali Es-

lami. 2018. Learning models for visual 3D localization with implicit mapping.

arXiv:cs.CV/1807.03149

Avanti Shrikumar, Peyton Greenside, Anna Shcherbina, and Anshul Kundaje. 2016.

Not Just a Black Box: Learning Important Features Through Propagating Activation

Differences. arXiv:cs.LG/1605.01713

Vincent Sitzmann, Michael Zollhoefer, and Gordon Wetzstein. 2019. Scene Represen-

tation Networks: Continuous 3D-Structure-Aware Neural Scene Representations.

In Advances in Neural Information Processing Systems 32, H. Wallach, H. Larochelle,

A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran Associates,

Inc., 1119–1130. http://papers.nips.cc/paper/8396-scene-representation-networks-

continuous-3d-structure-aware-neural-scene-representations.pdf

Maxim Tatarchenko, Alexey Dosovitskiy, and Thomas Brox. 2015. Single-view to

Multi-view: Reconstructing Unseen Views with a Convolutional Network. CoRR
abs/1511.06702 (2015). arXiv:1511.06702 http://arxiv.org/abs/1511.06702

Justus Thies, Michael Zollhöfer, and Matthias Nieundefinedner. 2019. Deferred Neural

Rendering: Image Synthesis Using Neural Textures. ACM Trans. Graph. 38, 4, Article
Article 66 (July 2019), 12 pages. https://doi.org/10.1145/3306346.3323035

Joshua Tobin, Wojciech Zaremba, and Pieter Abbeel. 2019. Geometry-Aware Neural

Rendering. In Advances in Neural Information Processing Systems 32, H. Wallach,

H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.). Curran

Associates, Inc., 11555–11565. http://papers.nips.cc/paper/9331-geometry-aware-

neural-rendering.pdf

Delio Vicini, Vladlen Koltun, and Wenzel Jakob. 2019. A Learned Shape-Adaptive

Subsurface Scattering Model. ACM Trans. Graph. 38, 4, Article Article 127 (July

2019), 15 pages. https://doi.org/10.1145/3306346.3322974

Jorg Wagner, Jan Mathias Kohler, Tobias Gindele, Leon Hetzel, Jakob Thaddaus Wiede-

mer, and Sven Behnke. 2019. Interpretable and Fine-Grained Visual Explanations

for Convolutional Neural Networks. In The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

Gregory J. Ward, Francis M. Rubinstein, and Robert D. Clear. 1988. A Ray Tracing

Solution for Diffuse Interreflection. In Proceedings of the 15th Annual Conference
on Computer Graphics and Interactive Techniques (SIGGRAPH ’88). Association for

Computing Machinery, New York, NY, USA, 85–92. https://doi.org/10.1145/54852.

378490

Matthew D Zeiler and Rob Fergus. 2013. Visualizing and Understanding Convolutional

Networks. arXiv:cs.CV/1311.2901

Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. 2018.

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric. In The
IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Quan Zheng and Matthias Zwicker. 2019. Learning to Importance Sample in Primary

Sample Space. Computer Graphics Forum 38, 2 (2019), 169–179. https://doi.org/10.

1111/cgf.13628

ACM Trans. Graph., Vol. 9, No. 4, Article 39. Publication date: August 2018.

1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

8

9

10

11

inch

http://papers.nips.cc/paper/8014-rendernet-a-deep-convolutional-network-for-differentiable-rendering-from-3d-shapes.pdf
http://papers.nips.cc/paper/8014-rendernet-a-deep-convolutional-network-for-differentiable-rendering-from-3d-shapes.pdf
http://www-sop.inria.fr/reves/Basilic/2019/PGZED19
http://arxiv.org/abs/cs.CV/1912.04591
https://doi.org/10.1145/2461912.2462009
http://arxiv.org/abs/cs.CV/1807.03149
http://arxiv.org/abs/cs.LG/1605.01713
http://papers.nips.cc/paper/8396-scene-representation-networks-continuous-3d-structure-aware-neural-scene-representations.pdf
http://papers.nips.cc/paper/8396-scene-representation-networks-continuous-3d-structure-aware-neural-scene-representations.pdf
http://arxiv.org/abs/1511.06702
http://arxiv.org/abs/1511.06702
https://doi.org/10.1145/3306346.3323035
http://papers.nips.cc/paper/9331-geometry-aware-neural-rendering.pdf
http://papers.nips.cc/paper/9331-geometry-aware-neural-rendering.pdf
https://doi.org/10.1145/3306346.3322974
https://doi.org/10.1145/54852.378490
https://doi.org/10.1145/54852.378490
http://arxiv.org/abs/cs.CV/1311.2901
https://doi.org/10.1111/cgf.13628
https://doi.org/10.1111/cgf.13628

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Model Overview
	3.1 Scene encoder
	3.2 Image Generator
	3.3 Auxiliary Image Features
	3.4 Datasets and Optimization
	3.5 Quality Assessment

	4 Adaptive Disentanglement and Attribution
	4.1 Static partitioning
	4.2 Adaptive partitioning
	4.3 Null partition

	5 Analysis and Attribution
	5.1 Attribution of Partition Activations
	5.2 Attribution of Generated Colors
	5.3 Attribution to Representation and G-buffer

	6 Additional Improvements and Results
	6.1 Auxiliary Shadow Generator
	6.2 Quantitative Evaluation
	6.3 Modeling Indirect Illumination
	6.4 Relighting and Material Transfer

	7 Discussion and Future Work
	8 Conclusion
	References

