
Dmitry Zhdan (NVIDIA), 2020.03.18

FAST DENOISING WITH
SELF-STABILIZING
RECURRENT BLURS

2

AGENDA

Problem statement

Introduction

Ingredient #1 - recurrent blur

Ingredient #2 - accurate temporal accumulation

Ingredient #3 - hierarchical history reconstruction

Ingredient #4 - choosing sampling space

Ingredient #5 - choosing blur weights

Cooking diffuse & specular denoisers

3

PROBLEM STATEMENT

4

TYPICAL DENOISER INPUT (RAY TRACING OUTPUT)

Amazon Lumberyard Bistro, Open Research Content Archive (ORCA)

5

DENOISER OUTPUT

Amazon Lumberyard Bistro, Open Research Content Archive (ORCA)

6

INPUT / OUTPUT
Indirect
diffuse

Direct and Indirect
specular

Amazon Lumberyard Bistro, Open Research Content Archive (ORCA)

7

DENOISER IN ACTION (VIDEO)

Amazon Lumberyard Bistro, Open Research Content Archive (ORCA)

https://docs.google.com/file/d/1UBX_pdB3Pc_vpmF3FT-iB05obZFsGJj-/preview

8

INTRODUCTION

9

USEFUL DEFINITIONS AND ACRONYMS

AO - ambient occlusion

SO - specular occlusion

Normalized hit distance - logically it’s AO or SO, mathematically = saturate(hitT / maxHitT)

SH - spherical harmonics (first 4 coefficients in my case)

Roughness - linear roughness, m = roughness 2

GGX-D - GGX specular lobe dominant direction [1]

RPP - rays per pixel

NoV - dot(pixelNormal, viewVector)

10

FUN THOUGHTS ABOUT DENOISING

Any blur works as a denoiser...

…but it’s a slippery way

Anything except temporal accumulation makes the algorithm “biased”…

…but temporal accumulation introduces lag, how to preserve physical correctness?

For low RPP signals…

…denoising is a tradeoff between temporal lag and blurriness

If denoising is not DL/ML based…

…it’s a bunch of blur and temporal accumulation passes

11

ALGORITHM: PREREQUISITES

Denoiser accepts as inputs only radiance (material information is not used)

Diffuse and specular signals must be separated

Better input signal - better denoising results:

Diffuse - cos-distribution or explicit importance sampling

Specular - Visible Normals Distribution Function sampling [2]

12

ALGORITHM: BASIC PRINCIPLES

A unified approach for diffuse and specular denoising

Based on recurrent blur → uses only a few samples per blur pass

Relies on temporal accumulation → but it’s a tunable parameter

Does hierarchical signal reconstruction in regions with discarded history using mipmap chains → very stable if a
disocclusion is detected

Adaptive blur radius depends on number of successfully accumulated frames → no temporal or spatial variance tracking

Method is biased → kinda “psycho-physical” where there is no chance to be physical

13

ALGORITHM: PERFORMANCE

2060
@720p

2060
@1080p

2080
@1080p

2080
@1440p

2080 Ti
@1080p

2080 Ti
@1440p

Diffuse 1.12 2.44 1.40 2.48 0.99 1.82

Specular 0.87 1.73 1.22 2.08 1.04 1.54

Sun shadow 0.23 0.51 0.32 0.60 0.24 0.44

Total (ms) ~2.2 ~4.7 ~3.0 ~5.2 ~2.3 ~3.8

Preliminary results

14

INGREDIENT #1 -
RECURRENT BLUR

15

NON-RECURRENTLY BLURRED VARIANTS

Blur

Accumulate

Accumulate

Blur

Post-accumulation

Both variants don’t mix signals with different frequencies (noisy input and clean output)

Pre-accumulation

16

BASIC PRINCIPLE OF RECURRENT BLUR [3]

Mixes signals with various frequencies (final - clean & input - noisy)

A blur with a “background” (a “clean” output from the previous frame)

Allows to redistribute spatial sampling in time due to recursive nature

30 FPS = 8 x 30 = 240 samples / sec (cumulative effect)

Using Poisson Disk distribution with only 8 samples works well

Accumulation

Blur

Recurrent blur

17

POST-ACCUMULATION: DOWNSIDES

Blur

Accumulate

We blur the input signal without “background” 😞

If the history buffer is rejected… it becomes a nightmare, because at
the moment of blur we don’t know which regions will be discarded
(╯°□°)╯︵ ┻━┻

Potentially more blur passes are needed

Potentially a wider blur is needed

18

PRE-ACCUMULATION: DOWNSIDES

Accumulate

Blur

We have a “background” now, but it’s not the final image

We still blur the input signal without background if history buffer is rejected (╯°
□°)╯︵ ┻━┻

Potentially more blur passes are needed

Potentially a wider blur is needed

19

RECURRENT BLUR

The previous frame is the best we have. Why not use it?

Looks odd because we cook high and low frequencies in one cauldron

If history is rejected we have the same problem, but there is a solution (see
Hierarchical History Reconstruction section)

We have a clean background now

Accumulation

Blur

20

STABILIZATION OF RECURRENT BLUR

Constant blur radius leads to massive over-blurring (do you remember “Half Life 2” main menu?). How to avoid that? 🤔

Number of successfully accumulated frames can be used to control blur radius:

- accumulation has just started (after disocclusion) → Largest

- a lot of frames are accumulated (close to the maximum) → Smallest

Pseudo code [4]:

float oldCount = ReprojectFromPreviousFrame(t_AccumulatedFramesNum);

float newCount = min(oldCounts * MAX_FRAME_NUM + 1.0, MAX_FRAME_NUM);

newCount = occlusion ? 0 : newCount;

// later can be used for blur radius scaling

float blurRadiusScale = 1.0 / (1.0 + newCount);

// 5 < MAX_FRAME_NUM < 32 - we need to solve the integral but we don’t want to introduce significant temporal lag

21

NUMBER OF ACCUMULATED FRAMES VISUALIZATION

https://docs.google.com/file/d/19eaPNw5rF9ec12edlIxaQq6XKG4iJtis/preview

22

STABILIZATION OF RECURRENT BLUR
Non-stabilized (const radius)~Reference (no spatial filtering)Stabilized (adaptive radius)

float blurRadiusScale = 1.0 / (1.0 + N), where N - number of successfully accumulated frames

23

ADAPTIVE BLUR RADIUS

After 2 frames of
accumulation After 4 frames... After 8 frames... After 16 frames... After 32 frames

If history gets discarded we see blur instead of noise

24

INGREDIENT #2 - ACCURATE TEMPORAL
ACCUMULATION

25

EXPONENTIAL VS LINEAR ACCUMULATION WEIGHTS
Exponential accumulation speed (an example) = { 1.0 if a disocclusion is detected, ~0.05 if everything is good }

But… it means that on 60 fps it will take some time to converge from scratch, because there are only two speeds – slow
and “reset”. It can be improved by using linear weights!

Exponential weights Linear weights

While exponential
weights force the
history buffer to
become stuck in the
past...

...linear weights do
averaging across
frames

dis-occluded regions

No spatial filtering!
The camera is strafing!

26

ACCUMULATION WITH LINEAR WEIGHTS - HOW?

Temporal accumulation:

history[n] = lerp(history[n - 1], curr, speed)

Linear accumulation speed:

speed = 1/(1 + N) , N = number of accumulated frames

Proof (N = 2):

history[0] = curr0 * (1/1) = curr0 (disocclusion, aka history reset)

history[1] = history[0] * (1/2) + curr1 * (1/2) = curr0 * (1/2) + curr1 * (1/2) = (curr0 + curr1) / 2

history[2] = history[1] * (2/3) + curr2 * (1/3) = [curr0 * (1/2) + curr1 * (1/2)] * (2/3) + curr2 * (1/3) =

= (curr0 + curr1 + curr2) / 3

27

GHOSTING FREE TEMPORAL REPROJECTION - INTRO

If all the samples of the bilinear footprint are not
occluded → Bilinear filter = OK

If at least one sample is out due to disocclusion
detection → Bilinear filter != OK

Bilinear filtering with custom weights can help!

?

prevUv
History
texture

28

BILINEAR FILTERING WITH CUSTOM WEIGHTS
struct Bilinear { float2 origin; float2 weights; };

Bilinear GetBilinearFilter(float2 uv, float2 texSize)

{

 Bilinear result;

 result.origin = floor(uv * texSize - 0.5);

 result.weights = frac(uv * texSize - 0.5);

 return result;

}

float4 GetBilinearCustomWeights(Bilinear f, float4 customWeights)

{

 float4 weights;

 weights.x = (1.0 - f.weights.x) * (1.0 - f.weights.y);

 weights.y = f.weights.x * (1.0 - f.weights.y);

 weights.z = (1.0 - f.weights.x) * f.weights.y;

 weights.w = f.weights.x * f.weights.y;

 return weights * customWeights;

}

float4 ApplyBilinearCustomWeights(float4 s00, float4 s10, float4 s01, float4 s11, float4 w, bool normalize = true)

{

 float4 r = s00 * w.x + s10 * w.y + s01 * w.z + s11 * w.w;

 return r * (normalize ? rcp(dot(w, 1.0)) : 1.0);

}

Nothing unusual

Expand 3 lerp-s into separate weights
for each sample of the 2x2 footprint.

Multiply by user provided weights

Apply 2x2 bilateral filter (it’s just a
weighted sum)

29

BILINEAR FILTERING WITH CUSTOM WEIGHTS - DERIVATIONS

Fully matches normal bilinear filtering if user provided weights = 1

It’s a 2x2 bilateral filter by the definition

Using binary weights allows to get rid of ghosting in temporal accumulation passes

s = (s00 * f00 + s10 * f00 + s01 * f00) / (f00 + f10 + f01),

where fXY are corresponding bilinear weights

s

s00 s10

s01

30

GHOSTING FREE TEMPORAL REPROJECTION
 // Previous viewZ and accumulation speed

 Bilinear bilinearFilterAtPrevPos = GetBilinearFilter(saturate(pixelUvPrev), gScreenSize);

 float2 gatherUv = (float2(bilinearFilterAtPrevPos.origin) + 1.0) * gInvScreenSize;

 float4 viewZprev = gIn_Prev_ViewZ.GatherRed(gNearestClamp, gatherUv).wzxy;

 float4 accumSpeedPrev = gIn_Prev_AccumSpeed.GatherRed(gNearestClamp, gatherUv).wzxy;

 // Compute disocclusion basing on plane distance

 float3 Xprev = X + motionVector;

 float3 Xvprev = mul(gWorldToViewPrev, Xprev);

 float NoXprev = dot(N, Xprev);

 float NoVprev = NoXprev / Xvprev.z;

 float4 planeDist = abs(NoVprev * viewZprev - NoXprev);

 float4 occlusion = step(gDisocclusionThreshold, planeDist * invDistToPoint);

 occlusion = saturate(float(isInScreen) - occlusion);

 // Sample history

 float4 weights = GetBilinearCustomWeights(bilinearFilterAtPrevPos, occlusion);

 // ... read s00, s10, s01, s11 using point filtering

 float4 history = ApplyBilinearCustomWeights(s00, s10, s01, s11, weights);

 // Accumulation speed

 accumSpeedPrev = min(accumSpeedPrev + 1.0, MAX_ACCUM_FRAME_NUM);

 float accumSpeed = ApplyBilinearCustomWeights(accumSpeedPrev.x, accumSpeedPrev.y, accumSpeedPrev.z, accumSpeedPrev.w, weights);

Reproject and read 2x2
footprints of previous viewZ
and accumulation speed
textures

Transform the current point
to the previous view space
and compute disocclusion
factors using plane distance
(see Slide 44), cut off values
if relative delta >= 0.5-1.5%

Read the bilinear footprint,
modify bilinear weights with
occlusion info and apply the
weights (Slide 28)

31

INGREDIENT #3 - HIERARCHICAL HISTORY
RECONSTRUCTION

32

HIERARCHICAL HISTORY RECONSTRUCTION - IDEA

We have 1rpp signal, what we can get from it? We can trade-off resolution to RPP:

Mip #0 = 1 rpp, pixel = 1x1 (input)

Mip #1 = 4 rpp, pixel = 2x2

Mip #2 = 16 rpp, pixel = 4x4

Mip #3 = 64 rpp, pixel = 8x8

Mip #4 = 256 rpp, pixel = 16x16 (lower mips have significantly reduced visibility information)

Mips are generated for radiance and viewZ (viewZ delta is used to compute weights during upsampling)

33

HIERARCHICAL HISTORY RECONSTRUCTION - IDEA

Input (Mip 0) Mip 1 Mip 2 Mip 3 Mip 4

Details Stability of the
image

Just idea visualization with naive linear upsampling (the denoiser uses bilateral upsampling)!

34

HIERARCHICAL HISTORY RECONSTRUCTION - IDEA

Frame 4 Frame 3 Frame 2 Frame 1 Frame 0
(history reset)

Only bilateral upsampling for the data in selected mip level is demonstrated (no recurrent blurring)!

35

HIERARCHICAL HISTORY RECONSTRUCTION

Mip 0 Mip 1 Mip 2 Mip 3 Mip 4
float normAccumulatedFrameNum = saturate(gIn_AccumulatedFrameNum[pixelPos] / MAX_FRAME_NUM_WITH_HISTORY_FIX);

if (normAccumulatedFrameNum == 1.0)

 return; // No output

uint mipLevel = 4.0 * (1.0 - normAccumulatedFrameNum) * roughness;

float2 mipSize = gScreenSize / (1 << mipLevel);

Bilinear filter = GetBilinearFilter(pixelUv, mipSize);

float4 bilinearWeights = GetBilinearCustomWeights(filter, 1.0);

float realZ = gIn_ViewZ[pixelPos]; // it's an SRV with 5 mips, base level = 0

float4 z = ...; // read unfiltered Z data from mip = mipLevel

float4 bilateralWeights = GetBilateralWeight(z, realZ, UPSAMPLING_VIEWZ_SENSITIVITY);

float4 w = bilinearWeights * bilateralWeights;

float4 s00, s10, s01, s11;

... ; // read unfiltered radiance data (an SRV with 4 mips, base level = 1, base level = 0 - UAV)

float4 blurry = ApplyBilinearCustomWeights(s00, s10, s01, s11, w);

gOut_Radiance[pixelPos] = blurry;

No disocclusion = no work (read/write into the same UAV)

Mip level = F(number of accumulated frames, roughness)

Process a block of 2x2 (or more) pixels using a bilateral
filter (bilinear filtering with custom weights in my case, but
the same idea can be applied to cubic filter)

Progression:

Frame 0 - 2x2 (mip 4) = 32x32 real pixels touched

Frame 1 - 2x2 (mip 3) = 16x16 real pixels touched

Frame 2 - 2x2 (mip 2) = 8x8 real pixels touched

… (current results go into the feedback loop on each iteration)

36

HIERARCHICAL HISTORY RECONSTRUCTION
History fix is OFF History fix is ON

The camera is fast strafing!

37

INGREDIENT #4 - CHOOSING
SAMPLING SPACE

38

DIFFUSE AND SPECULAR SAMPLING - OBVIOUS EXAMPLES

p0

n0 RV

p0

n0

Mirror reflections Diffuse

Screen plane

Blur plane

Blur planeSurface Surface

Diffuse - want to blur in the tangent plane to preserve tiny details under glancing angles [3]

Almost mirror specular - want to blur in a plane which is perpendicular to the view vector (screen space for
simplicity) to match its nature

How to generalize all the cases into a single sampling model?

Reflected world

39

GGX DOMINANT DIRECTION

float3 GetSpecularDominantDirection(float3 N, float3 V, float roughness)

{

 // See [5]

 float f = (1.0 - roughness) * (sqrt(1.0 - roughness) + roughness);

 float3 R = reflect(-V, N);

 float3 dir = lerp(N, R, f);

 return normalize(dir);

}

Reference GGX-D
Roughness = 0.2

Reference GGX-D
Roughness = 0.5

// See [2]

// Section 4.2: parameterization of the projected area

// trimFactor: 1 - full lobe, 0 - true mirror

float r = sqrt(saturate(rnd.x * trimFactor));

float phi = rnd.y * Math::Pi(2.0);

float t1 = r * cos(phi);

float t2 = r * sin(phi);

Same effect can be achieved by “trimming”: VNDF importance sampling:

40

UNIFYING DIFFUSE AND SPECULAR SAMPLING

p0

n0 GGX-DReflected GGX-D

Generalized model

Screen plane

Blur plane

Surface

void GetKernelBasis(float3 X, float3 N, float roughness, float worldRadius, out float3 T, out float3 B)

{

 float3 V = -normalize(X); // Assuming view space

 float3 D = GetSpecularDominantDirection(N, V, roughness);

 float3 R = reflect(-D, N);

 // Such basis construction is needed for anisotropy (see Slide 62)

 T = normalize(cross(N, R)); // IMPORTANT: doesn’t handle the case when N = R!

 B = cross(R, T);

 T *= worldRadius;

 B *= worldRadius;

}

We can blur in a plane which is perpendicular to the reflected GGX
dominant direction!

p0 - point of interest (kernel center)
n0 - normal at kernel center

41

UNIFYING DIFFUSE AND SPECULAR SAMPLING

Screen space sampling

Generalized sampling

S
pe

cu
la

r (
ro

ug
hn

es
s

=
1)

42

INGREDIENT #5 - CHOOSING
SAMPLE WEIGHTS

43

SAMPLE WEIGHT

Sample weight = Geometry weight • Normal weight • Roughness Weight

GGX-D

Reflected GGX-D

n0

T

B

Blur plane

p0

Poisson disk distribution (8 samples)

p0 - point of interest (kernel center)
n0 - normal at kernel center
p - real sample position
n - sample normal
T and B - define sampling plane

Reflected GGX-D = reflect(-GGX-D, n0)
cross(T, B) = Reflected GGX-D
dot(T, n0) == 0
cross(GGX-D, n0) gives T direction

current sample with properties:
p - position
n - normal
roughness - roughness

p

n

44

SAMPLE WEIGHT - GEOMETRY [3]

p0

n0

p

camera camera

p0

p

n0

p.z == p0.z and PlaneDist(T, p) == 0 (p is accepted) p.z < p0.z, while PlaneDist(T, p) == 0 (under glancing angles Z
comparison leads to rejection of valid samples)

Why plane distance works better than viewZ comparison?

Plane T = {p0, n0}

Based on plane distance - distance between the current sample “p” and the tangent plane {p0, n0} (see [3], slide 59)

45

SAMPLE WEIGHT - GEOMETRY

// View space positions can be reconstructed from “screen coordinates” and “viewZ”

float GetGeometryWeight(float3 p0, float3 n0, float3 p, float planeDistNorm)

{

 // where planeDistNorm = accumSpeedFactor / (1.0 + centerZ);

 // It represents { 1 / "max possible allowed distance between a point and the plane" }

 float3 ray = p - p0;

 float distToPlane = dot(n0, ray);

 float w = saturate(1.0 - abs(distToPlane) * planeDistNorm);

 return w;

}

Based on plane distance - distance between the current sample “p” and the tangent plane {p0, n0} (see [3], slide 59)

46

SAMPLE WEIGHT - NORMAL

float GetNormalWeight(float3 n0, float3 n, float roughness)

{

 float a0 = STL::ImportanceSampling::GetSpecularLobeHalfAngle(roughness);

 a0 = a0 * CloseToZeroIfAccumulationGoesWell(numberOfAccumulatedFrames) + STL::Math::DegToRad(0.5); // Optional

 float cosa = saturate(dot(n0, n));

 float a = STL::Math::AcosApprox(cosa);

 float w = STL::Math::LinearStep(a0, 0.0, a);

 return w;

}

The idea is to reject samples if the angle between two normals is higher than the specular lobe half angle, which
can be computed as:

halfAngleInDegrees = 90.0 * m / (1.0 + m), where m = roughness * roughness

Make the angle more narrow over time

a < a0 ? 0 : linear rescale to [0; 1]

47

n0

SAMPLE WEIGHT - NORMAL

half angle = 90 * roughness 2 / (1 + roughness 2)

Roughness

Half angle

p0

n

n0

p0

n

Roughness = 1.0, angle = 45o,
sample “n” is accepted

Roughness = 0.4, angle = 12o,
sample “n” is rejected

0 1

45

lobe half angle

lobe half angle

48

SAMPLE WEIGHT - ROUGHNESS

float GetRoughnessWeight(float roughness0, float roughness)

{

 float norm = roughness0 * roughness0 * 0.99 + 0.01;

 float w = abs(roughness0 - roughness) * rcp(norm);

 return saturate(1.0 - w);

}

Roughness weight ignoredRoughness weight

This normalization forces to ignore
samples with significantly higher

roughness than at the kernel center

49

COOKING DIFFUSE DENOISER

50

INPUTS / OUTPUTS

Inputs:

Incoming radiance in SH (2 x RGBA16f)

RGBA16f - SH.c1, AO

RGBA16f - SH.c0, chroma, viewZ (fp16)

ViewZ (R32f)

Normal (RGBA8)

Motion vector (2D or 3D - RG16f or RGBA16f)

Outputs:

Denoised radiance in SH and AO (same layout as input)

Nothing unusual, all these
textures are parts of
G-buffer

51

PIPELINE

Uses constant radius, pass is needed to
fix outliers (see next slide)

Linear weights, up to 32
frames (input parameter)

Ultra fast single pass generation of first 4
mips in shared memory (averaging) +
history reconstruction in discarded regions

Adaptive radius (depends on number
of accumulated frames)

Adaptive radius (depends on number of
accumulated frames + adaptively scales
if intensity delta between reprojected
history and the final value is high)

Accumulation

Mip generation and
history fix

Pre blur

Post blur

Blur

Temporal
stabilization

Temporal stabilization != temporal accumulation (no
additional lag, TAA like filter but uses wider variance
clamping if possible)

52

PRE-BLUR - WHY? (WITH NICE CHARTS)

Input signal Reprojected previous frame

Pre-blur allows to blur out pixels with significantly changed radiance

53

SPHERICAL HARMONICS - WHY?

SH off SH on

SH helps to preserve normal map details and increases “readability” of diffuse in general…
… but adds overhead

(signal to SH conversion can be found here [3])

54

DIFFUSE DENOISER - TAKEAWAYS

Recurrent blur allows to use low sample count in sparse blur passes

Free AO denoising (one texture channel is dedicated to AO, no additional logic)

Pre- and post- blur passes are optional, but real signals dictate the opposite

SH increases “readability” of diffuse

Chaining temporal accumulations can significantly increase temporal lag, hard to tune

Hierarchical history reconstruction allows to avoid using very wide blurs in dis-occluded regions

55

COOKING SPECULAR DENOISER

56

INPUTS / OUTPUTS

Inputs:

Incoming radiance and SO (RGBA16f)

ViewZ (R32f)

Normal and roughness (RGBA8)

Motion vector (2D or 3D - RG16f or RGBA16f)

Outputs:

Denoised radiance and SO (same layout as input)

Nothing unusual, all these
textures are parts of
G-buffer

57

SPECULAR ACCUMULATION USING SURFACE MOTION

Naive accumulation using surface motion doesn’t work!

We can introduce a new entity - parallax

Parallax - represents angle between previous and current view
vectors for the same surface point

// Coordinates in world space

float3 movementDelta = X - (Xprev - gCameraDelta);

// ~Sine of angle between old and new view vector in world space

float parallax = length(movementDelta) / (distToPoint * frameTime);

NoV = dot(N, V) represents “sensitivity” to parallax - more
sensitive under glancing angles (accumulation speed becomes
faster)

Accumulation speed = F(parallax, NoV, roughness)

In other words, we don’t touch MVs we adopt accumulation
speed!

Vprev Vcurr

this angle
is smaller

58

SPECULAR ACCUMULATION USING SURFACE MOTION
Psychological model for specular accumulation - accumulate using surface motion where our eyes are not sensitive

SPEC_ACCUM_CURVE controls aggressiveness of history rejection depending on viewing angle

Smaller values - less accumulation under glancing angles

SPEC_ACCUM_BASE_POWER controls sensitivity to parallax in general

Smaller values - more aggressive accumulation

float GetMaxAllowedAccumulatedFrameNum(float roughness, float NoV, float parallax)

{

 float acos01sq = saturate(1.0 - NoV); // ~ ”normalized acos” ^ 2

 float a = pow(acos01sq, SPEC_ACCUM_CURVE);

 float b = 1.001 + roughness * roughness;

 float angularSensitivity = (b + a) / (b - a);

 float power = SPEC_ACCUM_BASE_POWER * (1.0 + parallax * angularSensitivity);

 return MAX_ACCUM_FRAME_NUM * pow(roughness, power);

}

59

PIPELINE

Accumulation

Mip generation and
history fix

Pre blur

Temporal
stabilization

Blur

Post blur

Uses constant radius, pass is needed to fix
outliers

Linear weights, up to 32 frames (input parameter),
accumulation speed = F(parallax, NoV, roughness)

Ultra fast single pass generation of first 4 mips in
shared memory (averaging) + history
reconstruction in discarded regions

Adaptive radius (depends on number of
accumulated frames)

Temporal stabilization != temporal accumulation (no
additional lag, TAA like filter but uses wider variance
clamping if possible)

Adaptive radius (depends on number of
accumulated frames)

60

USING HIT DISTANCE TO CONTROL BLUR RADIUS

 float d = length(Xv);

 float f = hitDist / (hitDist + d);

 blurRadius *= lerp(K * roughness, 1.0, f);

Reflections are sharper when the reflected world is closer to the ray origin

Hit distance can be used to control blur radius:

hitDist - hit distance (denoised in all passes except pre-blur)

Xv - pixel position in view space

f - always in range [0; 1]

K - constant in range (0; 1)

61

ANISOTROPIC SAMPLING

Isotropic sampling Anisotropic sampling

62

ANISOTROPIC SAMPLING
void GetKernelBasis(float3 X, float3 N, float roughness, float worldRadius, float normalizedAccumFrameNum, out float3 T, out float3 B)

{

 // Same as on Slide 40

 float angle = saturate(STL::Math::AcosApprox(abs(N.z)) / STL::Math::Pi(0.5)); // assuming normal is in view space...

 float skewFactor = lerp(1.0, roughness, angle);

 T *= lerp(1.0, skewFactor, normalizedAccumFrameNum); // unnormalized!

}

GGX-D

Reflected GGX-D

n0

T (minor axis, scaled)

B (major axis)

Blur plane

p0

T gets scaled more under glancing angles

Skew factor depends on roughness

If accumulation goes badly kernel shape moves towards
isotropic (in the world space, still anisotropic in the
screen space)

63

SPECULAR DENOISER - TAKEAWAYS

Free SO denoising (one texture channel is dedicated to SO, no additional logic)

Pre- and post- blur passes are optional, but real signals dictate the opposite

Temporal stabilization is a must have (stabilization doesn’t increase temporal lag)

Hierarchical history reconstruction allows to avoid using very wide blurs in dis-occluded regions

SO only denoising = the simplest poor-man solution for IBL visibility:

Roughness = 0.1 Roughness = 0.4

64

FUTURE WORK

Avoiding constant radius usage in pre-blur pass

Improving temporal lag

Reducing extra blurriness of reflections

Research possibility of dropping SH and still preserving IQ (seems to be possible, but harder in motion)

Separating reprojection and accumulation, doing reprojection first allows to estimate temporal variance in pre-blur pass

Playing with low discrepancy sampling

Using experience from more game integrations to improve denoiser!

More optimizations and ideas!

THANKS!
Evgeny Makarov (NVIDIA)

Ivan Fedorov (NVIDIA)
Oles Shyskovtsov (4A Games)
Alexey Panteleev (NVIDIA)
Maksim Eisenstein (NVIDIA)

QUESTIONS?
dzhdan@nvidia.com

66

REFERENCES

[1] - https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf

[2] - http://jcgt.org/published/0007/04/01/paper.pdf

[3] - https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9985-exploring-ray-traced-future-in-metro-exodus.pdf

[4] - https://developer.nvidia.com/sites/default/files/akamai/gamedev/files/gdc12/GDC12_Bavoil_Stable_SSAO_In_BF3_With_STF.pdf (slide 39)

[5] - https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf (page 69)

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
http://jcgt.org/published/0007/04/01/paper.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9985-exploring-ray-traced-future-in-metro-exodus.pdf
https://developer.download.nvidia.com/video/gputechconf/gtc/2019/presentation/s9985-exploring-ray-traced-future-in-metro-exodus.pdf

