Scaling PyData with Dask & RAPIDS

Center for Machine Learning
Introduction

Kyle Nicholson

- Senior Software Engineer in Development Tools & Accelerators at the Center For Machine Learning
- Currently working on distributed and accelerated data science with Dask + Rapids
- Built and maintained a model logging library similar in function to MLFlow
- Dipping my toes into open source development
- Pursuing M.S. Computer Science at Georgia Tech
- B.S. Computer Engineering at Penn State
Introduction

What are we going to cover today?

The **challenges and potential to distribute and accelerate** financial and credit data analysis to build machine learning models, and how to **align an organization behind powerful open source tools** to **optimize value generation** across a large enterprise.

Themes

- Identifying the symptoms of lacking scalability
- Utilizing OSS to deliver value faster
- Leveraging GPUs for accelerated data science
- Contributing to better your business & the community
A day in the life...
Data Science at Capital One
Data

On an enterprise journey to **deliver highly accurate business insights** by **consuming, processing, and analyzing** vast amounts of data faster

Lots of Data
- Very large data sets in a wide variety of formats
- Data governance and federated access
- Highly regulated environment to protect customer data

Drive for Faster Analysis
- Large data science community to produce business insights
- Enterprise initiatives to optimize data analysis
- C4ML stood up to bolster enterprise ML capabilities

Need Distribution & Acceleration
- Need for simple, repeatable ways to stand-up large infrastructure
- Huge interest in leveraging GPUs to accelerate compute
- Many efforts to build custom solutions across the institution

This data landscape has created a large Data Science community at Capital One
Large community of Data Scientists at Capital One with a wide variety of use cases, experience, skill sets, and programmatic preferences

Programming Language Prevalence
- A majority of data scientists utilize Python to get their jobs done
- A smaller subset of the community uses Java and Scala
- These languages often accompanied by Spark in GitHub repos

Scaling Python at Capital One
- Mostly by rewriting Python code to scale with Apache Spark
- Vertical scaling with very large memory and multi-core instances
- Custom solutions to scale Python for specific use cases

Needed a more flexible yet robust way to scale Python computational libraries
Challenges
OSS Contribution Process

Enterprise Contribution Process
- Developer training on enterprise best practices for making contributions
- PRs reviewed internally by the enterprise leadership, Legal and Cyber Security
- Approved PRs published on public GitHub
- Iterations reviewed internally
- Trusted contributor status given at the repository level after a few PRs merged

Dask & RAPIDS Contribution Process
- Developer training on enterprise best practices and C4ML governance policy
- PRs reviewed by C4ML following the governance policy developed with OS team
- Approved PRs published on public GitHub
- Iterations reviewed internally
- Trusted contributor status given at the organization level
- Legal and the OS team audit periodically
Cloud Deployment Challenges

We operate in a restricted cloud environment.

- Restricted AWS Environment
 - We can only use whitelisted services
- No access to publicly hosted package repositories
 - Our internal package repositories only mirror common repositories
 - Can take upwards of 6 months for repositories to get mirrored
 - We must find other ways of installing key software
 - This is getting better, we are trying to improve the process
Dask Use Case - Deep Dive
Machine Learning Pipeline

<table>
<thead>
<tr>
<th>sample</th>
<th>to_csv</th>
<th>read_csv</th>
<th>feature engineering</th>
<th>to_csv</th>
<th>read_csv</th>
<th>merge</th>
<th>to_csv</th>
<th>read_csv</th>
<th>train</th>
<th>to_csv</th>
<th>read_csv</th>
<th>score</th>
</tr>
</thead>
</table>

Airflow-orchestrated model training pipeline with a downsampled data set on a very large compute instance

```python
>>> import pandas as pd

>>> df = pd.read_csv("training.csv")

>>> df = preprocess_data(df)

>>> model = xgb.train(df, ...)
```

XGBoost Model Stats

- **40GB** training data set
- **~2.5 hour** training time per ensemble
- **~2.5 weeks** pipeline training
Initial Scaling with Dask

Utilized Dask dataframe to parallelize the sampling portion of the pipeline

Original Pipeline Stats

- Dataset merging is a compute-intensive problem and primed for distributed computing
- 300+ serialized joins in the data generation script
- 7 days to process ~1 TB dataset

Pipeline Stats w/ Dask

- 80 Dask workers
- 680 GB of distributed memory
- 15 hour processing time
- 91% decrease in run time
Further Scaling with Dask

More Dask dataframes and dask-ml to parallelize feature selection and model tuning on highly utilized portions of the pipeline.

Pipeline Stats

- Code used by many teams to build models
- Created shared Dask infrastructure
- Horizontal scaling and infrastructure agnostic
- Improved performance by parallel parameter searches
- Training on larger than memory datasets
Scaling with RAPIDS

Use Dask and RAPIDS to scale XGB training on single-node, multi-GPU clusters

Pipeline Stats

40GB training data set / 4% of total

100x speed up of training time for this dataset and model

~97% reduction in training cost for this dataset and model
Scaling with RAPIDS

Use XGB training code as a real-world benchmark to test on multi-node, multi-GPU clusters

<table>
<thead>
<tr>
<th>dataset</th>
<th># nodes</th>
<th>node type</th>
<th># GPUs</th>
<th>training size</th>
<th>test size</th>
<th>time</th>
<th>training cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 GB</td>
<td>1</td>
<td>x1.32xlarge</td>
<td>0</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2 - 3 hrs</td>
<td>$26.68 - $40.01</td>
</tr>
</tbody>
</table>

Initial benchmark
Scaling with RAPIDS

Use XGB training code as a real-world benchmark to test on multi-node, multi-GPU clusters

<table>
<thead>
<tr>
<th>dataset</th>
<th># nodes</th>
<th>node type</th>
<th># GPUs</th>
<th>training size</th>
<th>test size</th>
<th>time</th>
<th>training cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 GB</td>
<td>1</td>
<td>x1.32xlarge</td>
<td>0</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2 - 3 hrs</td>
<td>$26.68 - $40.01</td>
</tr>
<tr>
<td>40 GB</td>
<td>1</td>
<td>p3dn.24xlarge</td>
<td>8</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2m 1s</td>
<td>$1.02</td>
</tr>
<tr>
<td>40 GB</td>
<td>1</td>
<td>p3.16xlarge</td>
<td>8</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2m 23s</td>
<td>$0.82</td>
</tr>
</tbody>
</table>
Scaling with RAPIDS

Use XGB training code as a real-world benchmark to test on multi-node, multi-GPU clusters

<table>
<thead>
<tr>
<th>dataset</th>
<th># nodes</th>
<th>node type</th>
<th># GPUs</th>
<th>training size</th>
<th>test size</th>
<th>time</th>
<th>training cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 GB</td>
<td>1</td>
<td>x1.32xlarge</td>
<td>0</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2 - 3 hrs</td>
<td>$26.68 - $40.01</td>
</tr>
<tr>
<td>40 GB</td>
<td>1</td>
<td>p3dn.24xlarge</td>
<td>8</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2m 1s</td>
<td>$1.02</td>
</tr>
<tr>
<td>40 GB</td>
<td>1</td>
<td>p3.16xlarge</td>
<td>8</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2m 23s</td>
<td>$0.82</td>
</tr>
<tr>
<td>1.15 TB</td>
<td>12**</td>
<td>p3dn.24xlarge</td>
<td>96</td>
<td>288 GB</td>
<td>127 GB</td>
<td>52m 21s</td>
<td>$326.85</td>
</tr>
</tbody>
</table>
Scaling with RAPIDS

Use XGB training code as a real-world benchmark to test on multi-node, multi-GPU clusters

<table>
<thead>
<tr>
<th>dataset</th>
<th># nodes</th>
<th>node type</th>
<th># GPUs</th>
<th>training size</th>
<th>test size</th>
<th>time</th>
<th>training cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>40 GB</td>
<td>1</td>
<td>x1.32xlarge</td>
<td>0</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2 - 3 hrs</td>
<td>$26.68 - $40.01</td>
</tr>
<tr>
<td>40 GB</td>
<td>1</td>
<td>p3dn.24xlarge</td>
<td>8</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2m 1s</td>
<td>$1.02</td>
</tr>
<tr>
<td>40 GB</td>
<td>1</td>
<td>p3.16xlarge</td>
<td>8</td>
<td>13 GB</td>
<td>6 GB</td>
<td>2m 23s</td>
<td>$0.82</td>
</tr>
<tr>
<td>1.15 TB</td>
<td>12**</td>
<td>p3dn.24xlarge</td>
<td>96</td>
<td>288 GB</td>
<td>127 GB</td>
<td>52m 21s</td>
<td>$326.85</td>
</tr>
<tr>
<td>1.15 TB</td>
<td>2**</td>
<td>p3dn.24xlarge</td>
<td>16</td>
<td>288 GB</td>
<td>127 GB</td>
<td>22m 47s</td>
<td>$54.47</td>
</tr>
</tbody>
</table>
Experiments with RAPIDS

<table>
<thead>
<tr>
<th>sample</th>
<th>to_csv</th>
<th>read_csv</th>
<th>feature engineering</th>
<th>to_csv</th>
<th>read_csv</th>
<th>merge</th>
<th>to_csv</th>
<th>read_csv</th>
<th>train</th>
<th>to_csv</th>
<th>read_csv</th>
<th>score</th>
</tr>
</thead>
</table>

Exploring the performance of scaling the amount of data on a single p3dn.24xlarge Instance

A graph demonstrating how train time is affected by data size on a single instance with multiple GPUs

- 500,000 to 30,000,000 rows and 493 feature columns (4GB to 240GB)
- Train time scales linearly with data size on a single instance as expected

Data Scaling

A graph demonstrating how train time is affected by data size on a single instance with multiple GPUs
Experiments with RAPIDS

Exploring the performance of scaling the number of GPUs with regards to a static data size

GPU Scaling

- 112GB of data, close to 90% of the maximum amount of data that 4 32GB GPUs can hold
- Two tests:
 - Single Instance, test 4 and 8 GPUs
 - Multi Instance, test from 4 to 16 GPUs at an interval of 4 GPUs
- ~42% increase in training time with 4 GPUs on a single instance vs 4 GPUs split across two Instances
- ~84% increase in training time with 8 GPUs on a single instance vs 8 GPUs split across two Instances

A graph comparing the effect of the number of GPUs on training time using 112 GB of data.
Optimal State
Optimal Pipelines

Library / Package (i.e. Jupyter Notebook)
Hosted Service (i.e. Operational REST API)

Pipeline / Workflow
(based on sklearn API)

Dask DataFrame / Array
(Pandas/CuDF or Numpy/CuPy)
Adopting the sklearn API

Single Core

```python
>>> import pandas as pd
>>> df = pd.read_csv("training.csv")
>>> X = df.drop(target, axis=1)
>>> y = df[[target]]

>>> from package.model_selection import CustomCV
>>> clf = xgb.XGBClassifier()

>>> ccv = CustomCV(clf)
>>> ccv.fit(X, y,
...     early_stopping_rounds=4,
...     eval_metric=["auc", "logloss"]
... )
```

Dask

```python
>>> import dask.dataframe as dd
>>> df = dd.read_csv("training.csv")
>>> X = df.drop(target, axis=1)
>>> y = df[[target]]

>>> from package.model_selection import CustomCV
>>> clf = dxgb.XGBClassifier()

>>> ccv = CustomCV(clf)
>>> ccv.fit(X, y,
...     early_stopping_rounds=4,
...     eval_metric=["auc", "logloss"]
... )
```

RAPIDS

```python
>>> import dask_cudf as cdd
>>> df = cdd.read_csv("training.csv")
>>> X = df.drop(target, axis=1)

>>> from package.model_selection import CustomCV
>>> clf = xgb.XGBClassifier(**params)

>>> ccv = CustomCV(clf)
>>> ccv.fit(X, y,
...     early_stopping_rounds=4,
...     eval_metric=["auc", "logloss"]
... )
```

Scale by changing a few lines of code