
Jeff Pool, Senior Architect

ACCELERATING SPARSITY IN THE
NVIDIA AMPERE ARCHITECTURE

2

Sparsity Review

Motivation

Taxonomy

Challenges

NVIDIA A100 GPU 2:4 Sparsity

Sparsity pattern

Sparse Tensor Cores

Inference Speedups

Training Recipe

Recipe steps

Empirical evaluation

Implementation in frameworks

OUTLINE

3

SPARSITY – INFERENCE ACCELERATION
VS TRAINING ACCELERATION

Focus of this talk is Inference acceleration

• Including training methods that enable accelerated inferencing with no loss of accuracy

Using sparsity to accelerate training is very interesting – but not the focus of this talk!

• At the end of the talk, we’ll touch briefly on accelerating training

4

SPARSITY REVIEW

5

SPARSITY: ONE OF MANY OPTIMIZATION TECHNIQUES

Optimization goals for inference:

• Reduce network model size

• Speed up network model execution

Observations that inspire sparsity investigations

• Biology: neurons are not densely connected

• Neural networks:

• Trained model weights have many small-magnitude values

• Activations may have 0s because of ReLU

Figure: “DSD: Dense-Sparse-Dense Training for Deep Neural Networks” S. Han et al.

6

SPARSITY AND PERFORMANCE

Do not store or process 0 values -> smaller and hopefully faster model

• Eliminate (prune) connections: set some weights to 0

• Eliminate (prune) neurons

• Etc.

But, must also:

• Maintain model accuracy

• Efficiently execute on hardware to gain speedup

7

PRUNING/SPARSITY IS AN ACTIVE RESEARCH AREA

8

SPARSITY TAXONOMY

Structure:

• Unstructured: irregular, no pattern of zeros

• Structured: regular, fixed set of patterns to choose from

Granularity:

• Finest: prune individual values

• Coarser: prune blocks of values

• Coarsest: prune entire layers

9

STATE OF SPARSITY RESEARCH

Lots of research in two areas:

• High amounts (80-95%) unstructured, fine-grained sparsity

• Coarse-grained sparsity for simpler acceleration

Challenges not resolved for these approaches:

• Accuracy loss

• High sparsity often leads to accuracy loss of a few percentage points, even after advanced training techniques

• Absence of a training approach that works across different tasks and networks

• Training approaches to recover accuracy vary from network to network, often require hyper-parameter searches

• Lack of speedup

• Math: unstructured data struggles to take advantage of modern vector/matrix math instructions

• Memory access: unstructured data tends to poorly utilize memory buses, increases latency due to dependent sequences of reads

• Storage overheads: metadata can consume 2x more storage than non-zero weights, undoing some of compression benefits

10

SPARSITY SUPPORT INTRODUCED
IN NVIDIA AMPERE ARCHITECTURE

11

SPARSITY IN A100 GPU

Fine-grained structured sparsity for Tensor Cores

• 50% fine-grained sparsity

• 2:4 pattern: 2 values out of each contiguous block of 4 must be 0

Addresses the 3 challenges:

• Accuracy: maintains accuracy of the original, unpruned network

• Medium sparsity level (50%), fine-grained

• Training: a recipe shown to work across tasks and networks

• Speedup:

• Specialized Tensor Core support for sparse math

• Structured: lends itself to efficient memory utilization

= zero value

2:4 structured-sparse matrix

12

SPARSE TENSOR CORES

Applicable for:

• Convolutions

• Matrix multiplies (linear layers, MLPs, recurrent cells, transformer blocks, etc.)

Inputs: sparse weights, dense activations

Output: dense activations

Compressed format for the sparse matrix:

• Do not store two 0s in each block of 4 values -> 50% of original storage

• If a block contains more than two 0s, some of the 0s will be stored

• Metadata to index the remaining 2 values – needed for accessing the dense activations

• 2 bits per value

• 12.5% overhead for fp16, compared to 100-200% for CSR format

13

2:4 COMPRESSED MATRIX FORMAT
At most 2 non-zeros in every contiguous group of 4 values

Compressed Matrix:

Data: ½ size

Metadata: 2b per non-zero element

16b data => 12.5% overhead

8b data => 25% overhead

C/2

Sparse matrix W Compressed matrix W

C/2

Non-zero

data values

2-bits

indices

RR

C

14

B: Dense, KxN

TENSOR CORE OPERATION

Dense Tensor Cores (FP16)

16x16 * 16x8 matrix multiplication

Replicated and repeated to support large M, N, K

Tiling a Large GEMM

16x16

16x8

16x8

A: Dense, MxK

C: Dense, MxN

15

B: Dense, KxN

TENSOR CORE OPERATION

Dense Tensor Cores (FP16)

16x32 * 32x8 matrix multiplication – 2 cycles

16x32

32x8

16x8

A: Dense, MxK

C: Dense, MxN

Larger Tile = More Cycles

16

B: Dense, KxN

TENSOR CORE OPERATION

A: Sparse, MxK

C: Dense, MxN

16x3216x32 16x8

Pruned Weight Matrix

32x8

17

B: Dense, KxN

A: Sparse, MxK

TENSOR CORE OPERATION
Pruned and Compressed Weight Matrix

C: Dense, MxN

16x8

32x8

16x32

18

B: Dense, KxN

A: Sparse, MxK/2

TENSOR CORE OPERATION
Tiling a Large, Sparse GEMM

16x16 32

C: Dense, MxNCompressed!

16x8

32x8

19

B: Dense, KxN

TENSOR CORE OPERATION

A: Sparse, MxK/2

C: Dense, MxNCompressed!

Select
using Sparse Tensor Cores

16x16 16x8

Sparse Tensor Cores – Hardware Magic

32x8

20

B: Dense, KxN

Sparse Tensor Cores (FP16)

16x32 * 32x8 effective matrix multiplication – 1 cycle

2x the work with the same instruction throughput

TENSOR CORE OPERATION

16x16

A: Sparse, MxK/2

C: Dense, MxNCompressed!

16x8

Sparse Tensor Cores

32x8

21

TENSOR CORE MATH THROUGHPUT

INPUT OPERANDS ACCUMULATOR TOPS

Dense Sparse

vs. FFMA Vs. FFMA

FP32 FP32 19.5 - -

TF32 FP32 156 8X 16X

FP16 FP32 312 16X 32X

BF16 FP32 312 16X 32X

FP16 FP16 312 16X 32X

INT8 INT32 624 32X 64X

INT4 INT32 1248 64X 128X

BINARY INT32 4992 256X -

2x with Sparsity

22

SPARSE TENSOR CORES
Measured GEMM Performance with Current Software

M N K Speedup

1024 8192 1024 1.44x

1024 16384 1024 1.73x

4096 8192 1024 1.53x

4096 16384 1024 1.78x

GEMM sizes selected from BERT-Large

23

SPARSE TENSOR CORES
Measured Convolution Performance With Current Software

N C K H,W R,S Speedup

32 1024 2048 14 1 1.52x

32 2048 1024 14 1 1.77x

32 2048 4096 7 1 1.64x

32 4096 2048 7 1 1.75x

256 256 512 7 3 1.85x

Kernel sizes selected from ResNeXt-101_32x16d/ResNet-50

24

NETWORK DATA TYPE SCENARIO PERFORMANCE

BERT-Large INT8
BS=256, SeqLen=128 6200 seq/s

BS=1-256, SeqLen=128 1.3X-1.5X

NETWORK PERFORMANCE
End to End Inference Speedup

25

NETWORK DATA TYPE SCENARIO PERFORMANCE

BERT-Large INT8
BS=256, SeqLen=128 6200 seq/s

BS=1-256, SeqLen=128 1.3X-1.5X

ResNeXt-101_32x16d

FP16
BS=256 2700 images/second

BS=1-256 Up to 1.3X

INT8
BS=256 4400 images/second

BS=1-256 Up to 1.3X

NETWORK PERFORMANCE
End to End Inference Speedup

26

NETWORK DATA TYPE SCENARIO PERFORMANCE

BERT-Large INT8
BS=256, SeqLen=128 6200 seq/s

BS=1-256, SeqLen=128 1.3X-1.5X

ResNeXt-101_32x16d

FP16
BS=256 2700 images/second

BS=1-256 Up to 1.3X

INT8
BS=256 4400 images/second

BS=1-256 Up to 1.3X

NETWORK PERFORMANCE
End to End Inference Speedup

27

NETWORK PERFORMANCE
BERT-Large

1.8x GEMM Performance -> 1.5x Network Performance
Some operations remain dense:

Non-GEMM layers (Softmax, Residual add, Normalization, Activation functions, …)
GEMMs without weights to be pruned – Attention Batched Matrix Multiplies

28

CONVOLUTION SPEEDUPS

Tensor Core operationTensor Core operation

Layers of ResNeXt-101

Some layers are less compute-limited than others

29

TRAINING RECIPE

30

GOALS FOR A TRAINING RECIPE

Maintains accuracy

Is applicable across various tasks, network architectures, and optimizers

Does not require hyper-parameter searches

31

2) Prune for 2:4 sparsity

RECIPE FOR 2:4 SPARSE NETWORK TRAINING

1) Train (or obtain) a dense network

Dense weights

2:4 sparse weights

Retrained 2:4
sparse weights

1) Train (or obtain) a dense network

2) Prune for 2:4 sparsity

3) Repeat the original training procedure

• Same hyper-parameters as in step-1

• Initialize to weights from step-2

• Maintain the 0 pattern from step-2: no need to recompute the mask

32

RECIPE STEP 2: PRUNE WEIGHTS

Single-shot, magnitude-based pruning

For each 1x4 block of weights:

• Set 2 weights with the smallest magnitudes to 0

Layer weights to prune: conv, linear

Dense matrix W

33

RECIPE STEP 2: PRUNE WEIGHTS
At Most 2 Non-zeros in Every Contiguous Group of 4 Values

Fine-grained

structured pruning

2:4 sparsity: 2 non-

zero out of 4 entries

Dense matrix W Structured-sparse matrix W

= zero value

X X

34

RECIPE STEP 2: PRUNE WEIGHTS
At Most 2 Non-zeros in Every Contiguous Group of 4 Values

Fine-grained

structured pruning

2:4 sparsity: 2 non-

zero out of 4 entries

Dense matrix W Structured-sparse matrix W

= zero value

X X

35

RECIPE STEP 2: PRUNE WEIGHTS
At Most 2 Non-zeros in Every Contiguous Group of 4 Values

Fine-grained

structured pruning

2:4 sparsity: 2 non-

zero out of 4 entries

Dense matrix W Structured-sparse matrix W

= zero value

36

RECIPE STEP 3: RETRAIN

Pruning out 50% of the weight values reduces model accuracy

Retraining recovers accuracy

• Adjusts the remaining weights to compensate for pruning

• Requirement intuition:

• Need enough updates by optimizer to compensate for pruning

• Updates need high-enough learning rates to compensate

Simplest retraining:

• Repeat the training session, starting with weight values after pruning (as opposed to random initialization)

• All the same training hyper-parameters

• Do not update weights that were pruned out

37

EXAMPLE LEARNING RATE SCHEDULE

Le
ar

n
in

g
R

at
e Dense Training Sparse Retraining

Step 1 Step 3Step 2

38

STEP 3 FOR NETWORKS TRAINED IN MULTIPLE PHASES

Some networks are trained in multiple phases

• Pretrain on one task and dataset, then train (fine-tune) on another task and dataset

• Examples:

• Retinanet for object detection: 1) train for classification on ImageNet, 2) train for detection on COCO

• BERT for question answering: 1) train for language modeling on BooksCorpus/Wikipedia, 2) train for question answering on SQuAD

In some cases Step 3 can be applied to only the last phase of original training

• Shortens retraining to recover accuracy

• Generally requires that the last phase(s):

• Perform enough updates

• Use datasets large enough to not cause overfitting

• When in doubt – retrain from the earliest phase, carry the sparsity through all the phases

39

STEP3: DETECTOR EXAMPLE
Detection Dataset is Large Enough to Provide Enough Updates and Not Overfit

LR

Phase 1: Dense Pre-Train Sparse Retrain: Phase 2Phase 2: Dense Fine-Tune

Backbone, ImageNet Detection Heads, COCO
+Backbone

Detection Heads, COCO
+Backbone

Step 1 Step 3Step 2

40

STEP3: BERT SQUAD EXAMPLE
Squad Dataset and Fine-tuning is Too Small to Compensate for Pruning on its Own

Le
ar

n
in

g
R

at
e

Phase 1:
Pretrain language model

Le
ar

n
in

g
R

at
e

Phase2:
Finetune for SQuAD

Phase 1: Sparse
Pretrain language model

Phase2: Sparse
Finetune for SQuAD

Phase 1:
Pretrain language model

Step 1 Step 3Step 2

41

Apply Sparsity Before Quantizing

Quantization

Generate a floating-point network

Apply quantization (calibration, fine-tuning)

Quantization+Sparsity

Generate a floating-point network

Prune

Apply quantization (calibration, fine-tuning)

SPARSITY AND QUANTIZATION

42

SPARSITY AND QUANTIZATION

Post-training calibration follows the sparse fine-tuning

• S22075: Integer Quantization for DNN Inference Acceleration

Le
ar

n
in

g
R

at
e Dense Train Sparse Retrain

Calibrate

Le
ar

n
in

g
R

at
e Dense Train

Calibrate

Post-Training Quantization

Step 1 Step 3Step 2

43

SPARSITY AND QUANTIZATION

Fine-tune for sparsity before fine-tuning for quantization

Quantization Aware Training

• S22075: Integer Quantization for DNN Inference Acceleration

LR
/s

p
ar

si
ty

Dense Train Fine-
Tune
for INT8

LR
/s

p
ar

si
ty

Dense Train Sparse Retrain Sparse
Fine-Tune
for INT8

Step 1 Step 3Step 2

44

ACCURACY EVALUATION

45

ACCURACY

Tested 34 networks, covering a variety of AI domains, with the described recipe

Run one test without sparsity and one test with sparsity, compare results

Results : accuracy is ~same (within prior observed run-to-run variation of networks)

FP16 networks trained with mixed precision training

INT8 networks generated by:

1st: Retrain a sparse FP16 network first

2nd: Apply traditional quantization techniques:

Post-training calibration

Quantization-Aware fine-tuning

Overview

46

IMAGE CLASSIFICATION

Network

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

ResNet-34 73.7 73.9 0.2 73.7 -

ResNet-50 76.6 76.8 0.2 76.8 0.2

ResNet-101 77.7 78.0 0.3 77.9 -

ResNeXt-50-32x4d 77.6 77.7 0.1 77.7 -

ResNeXt-101-32x16d 79.7 79.9 0.2 79.9 0.2

DenseNet-121 75.5 75.3 -0.2 75.3 -0.2

DenseNet-161 78.8 78.8 - 78.9 0.1

Wide ResNet-50 78.5 78.6 0.1 78.5 -

Wide ResNet-101 78.9 79.2 0.3 79.1 0.2

Inception v3 77.1 77.1 - 77.1 -

Xception 79.2 79.2 - 79.2 -

VGG-16 74.0 74.1 0.1 74.1 0.1

VGG-19 75.0 75.0 - 75.0 -

ImageNet

47

IMAGE CLASSIFICATION

Network

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

ResNet-50 (SWSL) 81.1 80.9 -0.2 80.9 -0.2

ResNeXt-101-32x8d (SWSL) 84.3 84.1 -0.2 83.9 -0.4

ResNeXt-101-32x16d (WSL) 84.2 84.0 -0.2 84.2 -

SUNet-7-128 76.4 76.5 0.1 76.3 -0.1

DRN-105 79.4 79.5 0.1 79.4 -

ImageNet

48

SEGMENTATION/DETECTION

Network

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

MaskRCNN-RN50 37.9 37.9 - 37.8 -0.1

SSD-RN50 24.8 24.8 - 24.9 0.1

FasterRCNN-RN50-FPN-1x 37.6 38.6 1.0 38.4 0.8

FasterRCNN-RN50-FPN-3x 39.8 39.9 -0.1 39.4 -0.4

FasterRCNN-RN101-FPN-3x 41.9 42.0 0.1 41.8 -0.1

MaskRCNN-RN50-FPN-1x 39.9 40.3 0.4 40.0 0.1

MaskRCNN-RN50-FPN-3x 40.6 40.7 0.1 40.4 0.2

MaskRCNN-RN101-FPN-3x 42.9 43.2 0.3 42.8 0.1

RetinaNet-RN50-FPN-1x 36.4 37.4 1.0 37.2 0.8

RPN-RN50-FPN-1x 45.8 45.6 -0.2 45.5 0.3

COCO 2017, bbox AP

RN = ResNet Backbone
FPN = Feature Pyramid Network
RPN = Region Proposal Network

49

NLP - TRANSLATION

Network Metric

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

GNMT BLEU 24.6 24.9 0.3 24.9 0.3

FairSeq Transformer BLEU 28.2 28.5 0.3 28.3 0.1

Levenstein Transformer Validation Loss 6.16 6.18 -0.2 6.16 -

EN-DE WMT’14

50

NLP – LANGUAGE MODELING
Transformer-XL, BERT

Network Task Metric

Accuracy

Dense FP16 Sparse FP16 Sparse INT8

Transformer-XL enwik8 BPC 1.06 1.06 - - f

BERT-Base SQuAD v1.1 F1 87.6 88.1 0.5 88.1 0.5

BERT-Large SQuAD v1.1 F1 91.1 91.5 0.4 91.5 0.4

51

COMPARING 2:4 TO OTHER ALTERNATIVES

Alternatives for 50% smaller models:

• Reduce layer width: model still dense, requires no special hardware

• Block-sparsity: easier to accelerate

• Unstructured fine-grained sparsity: upper bound on accuracy

Let’s compare with 2:4 structured sparsity

52

BERT-LARGE CASE STUDY
Simpler Networks

Note: Validation loss is not final accuracy,
but it can show general trends in network
quality.

53

BERT-LARGE CASE STUDY
Simpler Networks – From Scratch

Halving the hidden size of encoders gives
a smaller, dense network that is simple to
accelerate, but the network itself is
much worse.

54

BERT-LARGE CASE STUDY
Simpler Networks – Fine-Tuned

Pruning the full network to 50% sparsity
with 32x32 blocks then fine tuning can be
accelerated on most parallel hardware,
but the network performs poorly.

Note: For this and the following pruning
techniques, we use the same model size -
no growing the model as we prune.

55

BERT-LARGE CASE STUDY
Simpler Networks – Fine-Tuned

Structured Sparsity is easy to accelerate
with A100 and converges to nearly the
same loss – final accuracy on SQuAD v1.1
is equivalent to dense.

56

BERT-LARGE CASE STUDY
Simpler Networks – Fine-Tuned

Completely unstructured, fine-grained
sparsity has similar loss compared to
enforcing a 2:4 structure, but at only 50%
sparse, it is incredibly hard to exploit.

57

BERT-LARGE CASE STUDY
Simpler Networks – Fine-Tuned

75% unstructured sparsity could be
accelerated with standard techniques,
but it is still tricky.

However, it does not approach the quality
of the dense baseline.

58

BERT-LARGE CASE STUDY
Simpler Networks – Fine-Tuned

Of these options, 2:4 structured sparsity
is the only technique that both maintains
network quality and is easy to accelerate
on A100

59

ASP: AUTOMATIC SPARSITY
FOR RETRAINING IN FRAMEWORKS

60

GENERATE A STRUCTURED SPARSE NETWORK

Conceptually simple – 3 step recipe

Simple in practice – 3 lines of code

NVIDIA’s APEX library

AMP = Automatic Mixed Precision

ASP = Automatic SParsity

APEX’s Automatic SParsity: ASP

61

GENERATE A STRUCTURED SPARSE NETWORK
APEX’s Automatic SParsity: ASP

import torch

device = torch.device('cuda’)

model = TheModelClass(*args, **kwargs) # Define model structure

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

x, y = DataLoader(…) #load data samples and labels to train the model

for t in range(500):

y_pred = model(x)

loss = loss_fn(y_pred, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

torch.save(model.state_dict(), ‘dense_model.pth’)

O
ri

gi
n

al
 P

yT
o

rc
h

 t
ra

in
in

g
lo

o
p

62

GENERATE A STRUCTURED SPARSE NETWORK
APEX’s Automatic SParsity: ASP

import torch

from apex.contrib.sparsity import ASP

device = torch.device('cuda’)

model = TheModelClass(*args, **kwargs) # Define model structure

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

x, y = DataLoader(…) #load data samples and labels to train the model

for t in range(500):

y_pred = model(x)

loss = loss_fn(y_pred, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

torch.save(model.state_dict(), ‘pruned_model.pth’) # checkpoint has weights and masks

P
yT

o
rc

h
 s

p
ar

se
 f

in
e

-t
u

n
in

g
lo

o
p NVIDIA’s Sparsity library

63

GENERATE A STRUCTURED SPARSE NETWORK
APEX’s Automatic SParsity: ASP

import torch

from apex.contrib.sparsity import ASP

device = torch.device('cuda’)

model = TheModelClass(*args, **kwargs) # Define model structure

model.load_state_dict(torch.load(‘dense_model.pth’))

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

x, y = DataLoader(…) #load data samples and labels to train the model

for t in range(500):

y_pred = model(x)

loss = loss_fn(y_pred, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

torch.save(model.state_dict(), ‘pruned_model.pth’) # checkpoint has weights and masks

P
yT

o
rc

h
 s

p
ar

se
 f

in
e

-t
u

n
in

g
lo

o
p NVIDIA’s Sparsity libraryLoad the trained model

64

GENERATE A STRUCTURED SPARSE NETWORK
APEX’s Automatic SParsity: ASP

import torch

from apex.contrib.sparsity import ASP

device = torch.device('cuda’)

model = TheModelClass(*args, **kwargs) # Define model structure

model.load_state_dict(torch.load(‘dense_model.pth’))

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

ASP.prune_trained_model(model, optimizer)

x, y = DataLoader(…) #load data samples and labels to train the model

for t in range(500):

y_pred = model(x)

loss = loss_fn(y_pred, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

torch.save(model.state_dict(), ‘pruned_model.pth’) # checkpoint has weights and masks

P
yT

o
rc

h
 s

p
ar

se
 f

in
e

-t
u

n
in

g
lo

o
p NVIDIA’s Sparsity libraryLoad the trained model

Init mask buffers, tell optimizer
to mask weights and gradients,

compute sparse masks:
Universal Fine Tuning

65

GENERATE A STRUCTURED SPARSE NETWORK
APEX’s Automatic SParsity: ASP

import torch

from apex.contrib.sparsity import ASP

device = torch.device('cuda’)

model = TheModelClass(*args, **kwargs) # Define model structure

model.load_state_dict(torch.load(‘dense_model.pth’))

optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9) # Define optimizer

ASP.prune_trained_model(model, optimizer)

x, y = DataLoader(…) #load data samples and labels to train the model

for t in range(500):

y_pred = model(x)

loss = loss_fn(y_pred, y)

optimizer.zero_grad()

loss.backward()

optimizer.step()

torch.save(model.state_dict(), ‘pruned_model.pth’) # checkpoint has weights and masks

P
yT

o
rc

h
 s

p
ar

se
 f

in
e

-t
u

n
in

g
lo

o
p

3 Lines!

66

DIRECTIONS FOR FURTHER
RESEARCH

67

SHORTEN RETRAINING

For some networks we were able to shorten retraining (Step-3) to a fraction of Step-1

However, these shortened hyper-parameters didn’t apply to all networks

Further research: investigate shorter, universal recipes

Network

Fine-Tuning Epochs Accuracy

Baseline Reduced Dense FP16 Sparse FP16 Short Sparse INT8

ResNet-50 90 15 76.6 76.8 76.6

Inception v3 90 30 77.1 77.1 77.0

DenseNet-161 90 15 78.8 78.8 78.8

68

ACCELERATE TRAINING WITH SPARSITY

Sparse Tensor Cores can accelerate Step-3 (sparse retraining)

Can we eliminate Step-1?

• Recipe for training with sparsity from scratch (randomly initialized weights)

Research questions:

• How long to train densely (“dense warmup”)?

• Whether to periodically re-prune, if so: how frequently?

• How to use sparsity to accelerate weight gradient computation?

• Input matrices are dense (activations and activation gradients), output is weight gradients (could be sparse)

Lots of active research, but still lacking a simple, general recipe

69

70

SUMMARY
Structured Sparsity gives Fast, Accurate Networks

We moved fine-grained weight sparsity from research to production

Fine-grained structured sparsity is:

- 50% sparse, 2 out of 4 elements are zero

- Accurate with our 3-step universal fine-tuning recipe

- Simple recipe: train dense, prune, re-train sparse

- Across many tasks, networks, optimizers

- Fast with the NVIDIA Ampere Architecture’s Sparse Tensor Cores

- Up to 1.85x in individual layers

- Up to 1.5x in end-to-end networks

• S22082: Mixed-Precision Training of Neural Networks

• S21929: Tensor Core Performance on NVIDIA GPUs: The Ultimate Guide

• S21819: Optimizing Applications for NVIDIA Ampere GPU Architecture

5/20 2:45pm PDT

5/21 9:00am PDT

5/21 10:15am PDT

