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OUTLINE

Understanding performance limits: math and memory

Our recommendations for getting the most out of your GPU

Enable Tensor Cores

Understand the calculations being done

Choose dimensions to fill the GPU efficiently

Pick the best implementation for your situation

(…and see the guide for more!)

https://docs.nvidia.com/deeplearning/performance/index.html

https://docs.nvidia.com/deeplearning/performance/index.html
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HARDWARE ACCELERATION FOR ML

Tensor Cores are specialized hardware for deep learning

Perform matrix multiplies quickly

Tensor Cores are available on Volta, Turing, and NVIDIA A100 GPUs

NVIDIA A100 GPU introduces Tensor Core support for new datatypes 
(TF32, Bfloat16, and FP64)

Deep learning calculations benefit, including:

Fully-connected / linear / dense layers

Convolutional layers

Recurrent layers

Why Tensor Cores?
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UNDERSTANDING 
PERFORMANCE
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WHAT LIMITS PERFORMANCE?
Math vs Memory (vs Latency)

Which series of operations is most likely to effectively use Tensor Cores?

conv conv conv FC

bias norm relu dropout
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WHAT LIMITS PERFORMANCE?
Math vs Memory (vs Latency)

Math-heavy ops (like convolutional, fully-connected, and recurrent layers) tend to be limited 
by calculation speed and thus benefit from Tensor Cores

Those with less calculation (like bias, normalization, activation, and dropout layers) tend to 
be limited by memory access speed and thus do not benefit from Tensor Cores

conv conv conv FC

bias norm relu dropout

Math-limited

Memory-limited
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WHAT LIMITS PERFORMANCE?
GPU Basics

Calculation is done in parallel on streaming 
multiprocessors (SMs)

A100: 19.5 dense TFLOPS for FP32, no Tensor Cores

156 dense TFLOPS for TF32, with Tensor Cores

312 dense TFLOPS for FP16, with Tensor Cores

Data and instructions are accessed from DRAM through 
the shared L2 cache

A100: 1.555 TB/s from DRAM

L2 cache is faster, but space is limited
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ARITHMETIC INTENSITY

Math-limited if time spent on math is greater than time spent on fetching from memory

𝑇𝑚𝑎𝑡ℎ > 𝑇𝑚𝑒𝑚

# 𝑜𝑝𝑠

𝑚𝑎𝑡ℎ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
>

# 𝑏𝑦𝑡𝑒𝑠

𝑚𝑒𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

Or equivalently, if

# 𝑜𝑝𝑠

# 𝑏𝑦𝑡𝑒𝑠
>
𝑚𝑎𝑡ℎ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑚𝑒𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

At the operation level



9

ARITHMETIC INTENSITY

For FP16 inference with a FC layer with 4096 inputs and outputs and 𝑁𝑏𝑎𝑡𝑐ℎ batch size:

𝐴𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 =
# 𝑜𝑝𝑠

# 𝑏𝑦𝑡𝑒𝑠
=

(𝑁𝑜𝑢𝑡 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ) ∙ (𝑁𝑖𝑛) ∙ (2)

(𝑁𝑖𝑛 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ + 𝑁𝑖𝑛 ∙ 𝑁𝑜𝑢𝑡 +𝑁𝑜𝑢𝑡 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ) ∙
# 𝑏𝑦𝑡𝑒𝑠
𝑒𝑙𝑒𝑚𝑒𝑛𝑡

=
4096 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ

4096 + 2 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ
𝐹𝐿𝑂𝑃𝑆/𝐵

By comparison, for A100 (still with FP16):

𝐺𝑃𝑈 𝐹𝐿𝑂𝑃𝑆/𝐵 𝑟𝑎𝑡𝑖𝑜 =
𝑚𝑎𝑡ℎ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑚𝑒𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ
=
312 𝑇𝐹𝐿𝑂𝑃𝑆

1.555 𝑇𝐵/𝑠
= 201 𝐹𝐿𝑂𝑃𝑆/𝐵

For a fully-connected layer



10

ARITHMETIC INTENSITY

Inference with this fully-connected layer can be 
limited by either math or memory, depending on 
batch size

Math-limited when:

# 𝑜𝑝𝑠

# 𝑏𝑦𝑡𝑒𝑠
>
𝑚𝑎𝑡ℎ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑚𝑒𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

or

4096 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ
4096 + 2 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ

> 201 𝐹𝐿𝑂𝑃𝑆/𝐵

At the operation level
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ARITHMETIC INTENSITY

Inference with this fully-connected layer can be 
limited by either math or memory, depending on 
batch size

Math-limited when:

# 𝑜𝑝𝑠

# 𝑏𝑦𝑡𝑒𝑠
>
𝑚𝑎𝑡ℎ 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

𝑚𝑒𝑚 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

or

4096 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ
4096 + 2 ∙ 𝑁𝑏𝑎𝑡𝑐ℎ

> 201 𝐹𝐿𝑂𝑃𝑆/𝐵

At the operation level

Math-limitedMemory-limited
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END-TO-END PERFORMANCE

Amdahl’s law: speeding up one part of an end-to-end computation can only have so much 
effect on total execution time

We focus on calculation-heavy layers because they often comprise a majority of execution time

But it’s also important to be aware of time spent on memory-limited layers!

At the model level

conv relu

co

nv
norm relu

norm

time

6x

overall < 2x
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KEY IDEAS SO FAR

GPUs perform calculations in parallel with SMs and access memory through a shared L2 cache

Calculation speed is best when math can be split evenly between SMs

Memory speed is best when data is reused from the L2 cache

Models are composed of math-limited and memory-limited operations

Tensor Cores effectively speed up math-limited ops

(There are options for speeding up memory-limited ops as well!)

Arithmetic intensity is a good first-order estimate of whether an op is math-limited

End-to-end performance is affected by both math-limited and memory-limited ops
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GETTING THE MOST 
OUT OF YOUR GPU
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MATRIX MULTIPLY ABSTRACTION

Tensor Cores accelerate dot-product operations

Fully-connected layers

Convolutional layers

Recurrent layers

These can also be thought of as matrix multiplies

Often not literally

“Implicit” matrix multiplies; math is equivalent to a matrix 
multiply, but input and output matrices are not explicitly 
created in memory

How do we represent DL operations?

A

B

CM

K

K

N

N

M

C = alpha * A * B + beta * C

GEneralized Matrix Multiply (GEMM)
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MATRIX MULTIPLY ABSTRACTION
For fully-connected and convolutional layers

weights

acti-

vation

outoutput
features

input features

input
features

batch

Fully Connected / Dense / Linear

(PyTorch mappings, TensorFlow swaps weights and activations)

activation

filter

out

batch 
x

image height 
x

image width

input channels x filter 
height x filter width

input channels x filter 
height x filter width

output channels

Convolution
(implicit GEMM algorithm, 

matrices are never actually created)
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ENABLING TENSOR CORES

For cuBLAS:

Performance is better when dimensions (M, N, and K) are multiples of 128 bits

For cuBLAS 11.0 and higher, Tensor Cores can be used regardless

For cuDNN:

Performance is better when dimensions (for convolution, input and output channel counts) are 
multiples of 128 bits

For cuDNN 7.6.3 and higher, dimensions will be automatically padded to allow Tensor Cores to be 
enabled

Alignment and functional requirements
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ENABLING TENSOR CORES
Alignment and functional requirements

Tensor Cores can be 

used for…

cuBLAS version < 11.0

cuDNN version < 7.6.3

cuBLAS version ≥ 11.0

cuDNN version ≥ 7.6.3

INT8 Multiples of 16 Always
(but better perf with multiples of 16)

FP16 Multiples of 8 Always
(but better perf with multiples of 8)

TF32 N/a Always
(but better perf with multiples of 4)

In practice, the requirements can be less strict than this, but following these alignments for 

all dimensions ensures Tensor Cores are enabled and running efficiently
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ENABLING TENSOR CORES

An example: calculations are fastest (durations are lowest) when K is divisible by 8

GEMMs with K not divisible by 8 show 2-4x speedup here with cuBLAS 11 (leveraging Tensor 
Cores) compared to cuBLAS 10

Alignment and functional requirements

FP16 precision.  Tesla V100-DGXS-16GB.
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AM I USING TENSOR CORES?

View kernel names and stats with nsys profile <application> (or nvprof <application>)

Kernels that use Tensor Cores tend to look like:

volta_fp16_s884cudnn_fp16_...

turing_fp16_s1688gemm_fp16_...

ampere_h16816gemm_...

ampere_xmma_implicit_gemm_f16f16f16_..._16x8x16_...

cutlass_tensorop_f16_s1688gemm_f16_...

This isn’t universal- some kernels have names that don’t follow these forms- but it’s useful as 
a first check

Check kernel names
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EFFICIENT PARALLELIZATION

Threads are grouped into thread blocks that work 
cooperatively

Thread blocks produce tiles of the output matrix

Tiled outer product approach: sum partial products 
over the K dimension to complete the output tile

How do GPUs split up operations?
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EFFICIENT PARALLELIZATION

Tile sizes are typically (but not always) powers of 2

For best efficiency:

Larger tiles are more efficient

Dividing the output matrix into tiles evenly means no 
wasted work

How do GPUs split up operations?

A100 GPU, cuBLAS v11.0
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EFFICIENT PARALLELIZATION

As a consequence of how work is parallelized, some output matrix sizes are more efficient 
than others

Output matrices are divided into tiles

Tiles have fixed sizes, so it’s possible that a matrix will not divide evenly into any tiles of any size

Created tiles are divided among SMs on the GPU for calculation

The number of SMs is fixed, so it’s possible that the tiles will not divide evenly among SMs

When we say “quantization” in this presentation, we’re referring to this effect (rather than 
any effect relating to precisions)

Choosing matrix dimensions with attention to tile size and SM count is a great way to 
improve performance!

What do we mean by quantization?
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EFFICIENT PARALLELIZATION

Let’s talk about a hypothetical GPU with 10x10 tiles 
and 16 SMs

For a 40x40 matrix:

The perfect case

10

10

40

40
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EFFICIENT PARALLELIZATION

Let’s talk about a hypothetical GPU with 10x10 tiles 
and 16 SMs

For a 40x40 matrix:

Matrix dimensions are divisible by tile size

40 / 10 = 4 tiles exactly on each side

Number of tiles created is divisible by SM count

16 tiles / 16 SMs = 1 tile per SM exactly

This is a best-case scenario

The perfect case

10

10

40

40

1 full wave

evenly divisible

evenly divisible
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EFFICIENT PARALLELIZATION

Still on a hypothetical GPU with 10x10 tiles and 16 SMs

Consider instead a 40x31 matrix:

Matrix dimensions are not divisible by tile size

31 / 10 = 3 full tiles plus one mostly-empty tile per column

Number of tiles created is divisible by SM count

16 tiles / 16 SMs = 1 tile per SM exactly

Work wasted on empty portions of tiles

Tile quantization

10

10

31

40

1 full wave, 
still

evenly divisible

not evenly 
divisible
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EFFICIENT PARALLELIZATION

Still on a hypothetical GPU with 10x10 tiles and 16 SMs

Consider instead a 40x50 matrix:

Matrix dimensions are divisible by tile size

50 / 10 = 5 tiles exactly per column

Number of tiles created is not divisible by SM count

20 tiles / 16 SMs = 16 tiles divided evenly between SMs

+ 4 “tail” tiles processed while 12 SMs are idle

Work wasted while SMs are idle

Wave quantization

10

10

50

40

1 full wave 1 tail wave 
(75% idle)

not evenly 
divisible

evenly 
divisible
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EFFICIENT PARALLELIZATION

Still on a hypothetical GPU with 10x10 tiles and 16 SMs

Consider instead a 40x41 matrix:

Matrix dimensions are not divisible by tile size

41 / 10 = 4 full tiles + 1 nearly-empty tile per column

Number of tiles created is not divisible by SM count

20 tiles / 16 SMs = 16 tiles divided evenly between SMs

+ 4 “tail” tiles processed while 12 SMs are idle

Work wasted on both tile and wave inefficiency

Both tile and wave quantization

10

10

41

40

1 full wave 1 tail wave 
(75% idle)

not evenly 
divisible

not evenly 
divisible
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EFFICIENT PARALLELIZATION
Tile quantization example

A concrete example: pick dimensions to be multiples of tile dimensions for best efficiency

(To demonstrate the effect clearly, 256x128 tiles were used for all N; in practice, cuBLAS
would select narrower tiles to mitigate performance drop)

A100 GPU, cuBLAS v11.0
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EFFICIENT PARALLELIZATION
Wave quantization example

A concrete example: for best efficiency, make sure the number of tiles is a multiple of the 
GPU’s SM count

(Like the previous example, 256x128 tiles were used for all N)

A100 GPU, cuBLAS v11.0
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EFFICIENT PARALLELIZATION

Transformer networks include a block of feed-forward 
fully-connected layers

Batches with 3456 or 6912 tokens divide perfectly, 
assuming 128x128 tiles

𝑇𝑖𝑙𝑒𝑠 =
4096

128
×

𝑡𝑜𝑘𝑒𝑛𝑠 𝑝𝑒𝑟 𝑏𝑎𝑡𝑐ℎ

128

3456 tokens = 864 tiles = 8 full waves

4096 tokens = 1024 tiles = 9 full waves + a 52-tile tail

In fact, training is more efficient (~7%) with 3456 
tokens than it is with larger batches of 4096

At work with Transformer

A100 GPU, cuBLAS v11.0
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EXPLORE ALTERNATIVE IMPLEMENTATIONS

What about memory-limited layers and other operations where we can’t tweak parameters for 
better performance?

Persistent implementations hold data in on-chip memory instead of loading it repeatedly

This speeds up operations that are memory-limited

(But also requires that data can fit in on-chip memory)

Recurrent layers can use persistent weights

Non-persistent recurrent layers read each weight from off-chip memory multiple times; if a weight 
is needed repeatedly, it will be read repeatedly

Persistent recurrent layers access weights once, then retain them in on-chip memory for further 
use (although weights must be small enough to fit!)

Choose the right version of an operation for your situation
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EXPLORE ALTERNATIVE IMPLEMENTATIONS

Persistence is advantageous for small problem sizes, where memory is a limiting factor

PyTorch enables persistence automatically when it can benefit performance

Persistence with recurrent layers

Tesla V100-SXM3-32GB GPU, cuDNN v7.6, PyTorch v1.5
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EXPLORE ALTERNATIVE IMPLEMENTATIONS

Persistence can improve performance for 
recurrent layers; weights are cached on-chip

Here, hidden sizes over 1024 for LSTM layers 
mean that the weights are too large to be 
cached, so the non-persistent implementation is 
used instead

In other words, if minibatch size is small and 
non-negotiable, choosing hidden size of 1024 or 
less will allow you to take advantage of 
persistence

Persistence with recurrent layers

Tesla V100-SXM3-32GB GPU, cuDNN v7.6, PyTorch v1.5
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TENSOR CORES CHEAT SHEET
Make sure Tensor Cores can run efficiently by aligning key dimensions to 128 bits

For fully-connected layers: input, output, and batch size

For convolutional layers: input and output channel counts

For recurrent layers: minibatch size and hidden sizes

Provide enough work to fill the GPU

Choose key dimensions larger than 256, and at least one substantially larger, to be math-limited

Aim for good tile and wave efficiency, especially when at least one dimension is small

Choose key dimensions to be multiples of 64/128/256

Ensure the number of tiles is a multiple of the SM count

If you can’t follow every guideline, following as many as possible still helps performance!

https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-
started/index.html#checklists

https://docs.nvidia.com/deeplearning/performance/dl-performance-getting-started/index.html#checklists



