

5G MEETS DEEP LEARNING, RAY TRACING, AND GPUS

Ahmed Alkhateeb, Assistant Professor, Arizona State University

Adriana Flores Miranda, NVIDIA

Nima PourNejatian, NVIDIA

NVIDIA

AGENDA

Introduction

5G key aspects MIMO limitations Why Deep Learning overcomes limitations Deep Learning in 5G applications

Auto-Precoder

Environment-aware joint channel estimation and precoding for mmWave MIMO

Demo and Results

An example based on accurate 3D ray-tracing simulations

TREND: 4G IS MATURING WHILE 5G IS UNDER WAY **Global Wireless Telecommunications Carriers Industry**

296 operators in 100 countries that have been investing in 5G

39 operators with 5G launches (either mobile or FWA, some with limited availability)

Source: GSA, August 2019

© GeoNames, HERE, MSFT, Microsoft, Thinkware Extract, Wikipedia

5G OPPORTUNITY

7M+

Macro 4G Base Stations to be upgraded to 5G

1M

IoT Devices / KM²

100 Gbps

Bandwidth

< 1ms

Latency = AI at the Edge

TELCO'S CHALLENGES 5G mmWave, Massive MIMO, and AI

CHALLENGE

STRATEGIES

- ✓ 5G, mmWave, and Massive MIMO
- ✓ Software Defined Networks

WHY MASSIVE MIMO AND 5G MMWAVE

Benefits And Requirement

User data rate per channel (bps) is limited by:

 $R \leq \frac{N_{MIMO} BW}{N_{users}} \log_2(1+SNIR)$

How 5G enables 10Gbps+ data rates?

- Massive MIMO: Higher N_{MIMO}
- 5G mmWave:
 - Higher BW (from 20 MHz in 4G to 800 MHz in 5G mmWave)
 - Directional Beamforming:
 - Higher *SNIR*
 - Lower *N_{users}* sharing the beam resources

CHALLENGES WITH SCALING UP MIMO IN 5G AND BEYOND Channel acquisition and hardware power consumption

High cost and power consumption at fully-digital architectures

High channel training in FDD massive MIMO

≥ NVIDIA.

DEEP LEARNING IN 5G DL can overcome MIMO limitations

Channels are defined by the various elements of the environment

Hard to characterize analytically

Environment geometry, materials, TX/RX locations, etc

Deep Learning Model To learn f(inputs)

We propose to leverage ML models to learn this mapping function

 $\mathbf{h} = f(\text{environment geometry, TX/RX locations,...})$

Channel h beamforming vector channel covariance

Papers, datasets, and codes are **DEEP LEARNING APPLICATIONS IN 5G** available at <u>www.DeepMIMO.net</u>

Deep learning enables reliable and highly-mobile massive MIMO applications

Enabling distributed (cell-free) massive MIMO systems

Papers, datasets, and codes are **DEEP LEARNING APPLICATIONS IN 5G** available at <u>www.DeepMIMO.net</u>

Deep learning enables reliable and highly-mobile mmWave applications

Papers, datasets, and codes are **DEEP LEARNING APPLICATIONS IN 5G** available at <u>www.DeepMIMO.net</u>

Deep learning supports practical large-scale MIMO transceivers

Environment and hardware-aware codebook learning

Enabling MIMO systems with low-resolution ADCs

Deep learning for hybrid beam prediction and channel estimation

≥ NVIDIA.

11

AUTO-PRECODER

BACKGROUND AND MOTIVATION Why hybrid analog-digital architectures?

Hybrid analog/digital architectures achieve high data rates with reasonable complexity

Hybrid analog/digital

📀 NVIDIA.

BACKGROUND AND MOTIVATION Channel estimation is challenging!

Leveraging hybrid architectures requires developing efficient channel estimation solutions

Channel is seen through the RF lens

Analog circuits add strict constraints

🕺 NVIDIA.

BACKGROUND AND MOTIVATION Classical channel estimation approaches for hybrid architectures

that may never be used

Classical Compressive Sensing Approach

Sensing the channel with random beam patterns

Sparse channel reconstruction using approaches such as OMP

Prior channel observations are not leveraged

BACKGROUND AND MOTIVATION Classical channel estimation approaches for hybrid architectures

How can deep learning help?

that may never be used

Classical Compressive Sensing Approach

Sensing the channel with random beam patterns

are not leveraged

ανισιδ

mmWave channel estimation .. followed by hybrid precoding design

Neural network weights realize measurement beams focusing on important directions

Channel reconstruction leverages prior observation

17

mmWave channel estimation .. followed by hybrid precoding design

Proposed "Auto-precoder": Optimizes measurements and leverages prior observations

AUTO PRECODER

Joint channel sensing and precoder prediction

AUTO PRECODER

Joint channel sensing and precoder prediction

 \mathbf{F} ►W

20

HYBRID BEAM PREDICTION Joint channel sensing and hybrid beam prediction

X. Li, and A. Alkhateeb "Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems" Asilomar 2019 (arXiv: https://arxiv.org/abs/1905.13212)

Papers, datasets, and codes are available at <u>www.DeepMIMO.net</u>

21

≥ NVIDIA.

REAL WORLD DEPLOYMENT

THE NEED FOR RAY-TRACING

Studying the performance of the proposed deep learning approaches needs channel datasets

Generated channels should capture the dependency on the environment

Accurate 3D ray-tracing simulators could be the solution

REMCOM WIRELESS INSITE: AN ACCURATE RAY-TRACING TOOL **REMC**M[®]

Accurate 3D ray-tracing

Advanced propagation models

Ray-tracing results have been validated with measurements at both sub-6GHz and mmWave

MIMO capabilities

DEEPMIMO: A DEEP-LEARNING DATASET FOR MIMO SYSTEMS

https://www.deepmimo.net/

Captures the dependence on environment, locations, etc.

Generic/parametrized for system & channels

The DeepMIMO dataset enables a wide range of machine learning tasks

The DeepMIMO dataset of scenario 'R' and parameters \mathcal{S}

Channel matrices between every TX and RX

In addition to other features such as TX/RX locations

a Victoria Taqueria

onvention Cente

San Jose Museum of Quilts & Textiles

annel	BS Beams	Mobile User Beams
	\mathbf{F}	\mathbf{W}

annel	BS Beams	Mobile User Beams
	\mathbf{F}	\mathbf{W}

annel	BS Beams	Mobile User Beams
	\mathbf{F}	\mathbf{W}

annel	BS Beams	Mobile User Beams
	\mathbf{F}	\mathbf{W}

annel	BS Beams	Mobile User Beams
	\mathbf{F}	\mathbf{W}

RESULTS

TRANSMIT BEAM ACCURACY 90%+ Accuracy in Beam Perdition with A Few Pilots

NO. PILOTS

64

RECEIVER BEAM ACCURACY 90%+ Accuracy in Beam Perdition with A Few Pilots

ACHIEVABLE DATA RATES Performance: With a few measurements, 4X higher data rate

TRAINING TIME

Parameters: Batch Size of 64 and 15 Epoch Counts

Training Time (seconds)

CPU: Xeon E5-2630 v4 @2.2GHz

GPU: Tesla V100-DGXS-16GB

INFERENCE TIME Per each UE

Inference Time (msec)

TRADITIONAL (CHANNEL ESTIMATION, PRECODING FOR 8 STREAMS) DEEP LEARNING: AUTO-PRECODER CPU (XEON E5-2630 V4 @2.2GHZ)

0.31

DEEP LEARNING: AUTO-PRECODER GPU (TESLA V100-DGXS-16GB)

50

TAKEAWAYS 5G Meets Deep Learning, Ray Tracing, and GPUs

- 5G mmwave massive MIMO is promising but have limitations
- Channel acquisition overhead is a key challenge
- Deep Learning has the potential of predicting these channel and beams and thus removing the overhead
- Ray tracing is needed to construct realistic and accurate dataset
- Our proposed solution prior channel observations to optimize the sensing beams to focus where the users are and predict the beams effectively without channel estimation
- The proposed hybrid beam prediction outperforms traditional methods with few measurements
- This is done in less time than traditional methods thanks to accelerated inference on GPUs.

QUESTIONS How to contact us

- Ahmed Alkhateeb: alkhateeb@asu.edu
- Adriana Flores: adrianaf@nvidia.com
- Nima Pour Nejatian: npour@nvidia.com

Papers, datasets, and codes are available at <u>www.DeepMIMO.net</u>

