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Introduction

5G key aspects

MIMO limitations

Why Deep Learning overcomes limitations

Deep Learning in 5G applications

Auto-Precoder

Environment-aware joint channel estimation and 
precoding for mmWave MIMO

Demo and Results

An example based on accurate 3D ray-tracing 
simulations

AGENDA
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TREND: 4G IS MATURING WHILE 5G IS UNDER WAY

296 operators in 100 countries that have been 
investing in 5G

Global Wireless Telecommunications Carriers Industry

39 operators with 5G launches (either mobile or FWA, 
some with limited availability)

Source: GSA, August 2019
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7M+ 1M 100 Gbps < 1ms
Macro 4G Base Stations 
to be upgraded to 5G

IoT Devices / KM2 Bandwidth Latency
= AI at the Edge

5G OPPORTUNITY
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TELCO’S CHALLENGES
5G mmWave, Massive MIMO, and AI

STRATEGIESCHALLENGE

✓ 5G, mmWave, and Massive MIMO

✓ Artificial Intelligence

✓ Software Defined Networks  

✓ Edge Computing

Traffic per 
Customer

Cost per Customer

Revenue per Customer
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WHY MASSIVE MIMO AND 5G MMWAVE
Benefits And Requirement

5G mmWave, Massive MIMO signal 

processing while meeting the low 

latency requirement

Higher FLOPS Lower FLOPS

Lower Latency

M
IM

O
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a
y
e
r

User data rate per channel (bps) is limited by:

𝑅 ≤ 𝑁𝑀𝐼𝑀𝑂 𝐵𝑊
𝑁𝑢𝑠𝑒𝑟𝑠

𝑙𝑜𝑔2(1+𝑆𝑁𝐼𝑅)

▪ Massive MIMO: Higher 𝑁𝑀𝐼𝑀𝑂
▪ 5G mmWave: 

▪ Higher 𝐵𝑊 (from 20 MHz in 4G to 800 MHz in 5G 

mmWave )

▪ Directional Beamforming:

▪ Higher 𝑆𝑁𝐼𝑅
▪ Lower 𝑁𝑢𝑠𝑒𝑟𝑠 sharing the beam resources

How 5G enables 10Gbps+ data rates? 

Key Objective
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CHALLENGES WITH SCALING UP MIMO IN 5G AND BEYOND
Channel acquisition and hardware power consumption
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DEEP LEARNING IN 5G
DL can overcome MIMO limitations

We propose to leverage ML models to learn this mapping function
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DEEP LEARNING APPLICATIONS IN 5G
Deep learning enables reliable and highly-mobile massive MIMO applications
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DEEP LEARNING APPLICATIONS IN 5G
Deep learning enables reliable and highly-mobile mmWave applications
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DEEP LEARNING APPLICATIONS IN 5G
Deep learning supports practical large-scale MIMO transceivers
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AUTO-PRECODER 
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BACKGROUND AND MOTIVATION
Why hybrid analog-digital architectures?

Hybrid analog/digital architectures achieve high data rates with reasonable complexity

+

w
RF

+

w
RF
ww

RF

Combiner

N

RF Chain + ADC 

rx

Analog-only Hybrid analog/digitalFully-digital
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BACKGROUND AND MOTIVATION
Channel estimation is challenging!

Channel is seen 
through the RF lens

Analog circuits add 
strict constraints

Leveraging hybrid architectures requires developing efficient channel estimation solutions
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BACKGROUND AND MOTIVATION
Classical channel estimation approaches for hybrid architectures

Sensing the channel with random 
beam patterns

Sparse channel reconstruction 
using approaches such as OMP

Random beams sense directions 
that may never be used

Prior channel observations 
are not leveraged 

Classical Compressive Sensing Approach

Limitations



16

BACKGROUND AND MOTIVATION
Classical channel estimation approaches for hybrid architectures

Sensing the channel with random 
beam patterns

Sparse channel reconstruction 
using approaches such as OMP

Random beams sense directions 
that may never be used

Prior channel observations 
are not leveraged 

Classical Compressive Sensing Approach

Limitations
How can deep learning help?



17

AUTO PRECODER
Key Idea

mmWave channel estimation .. followed by hybrid precoding design

Neural network weights realize measurement 
beams focusing on important directions

Channel reconstruction leverages prior 
observation

Single-
layer

Perceptron

“Channel Estimator” 
Neural Network

Sparse Reconstruction Algorithm 
Ex: OMP

Beamforming
Design
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AUTO PRECODER
Key Idea

Beamforming
Design

Sparse Reconstruction Algorithm 
Ex: OMP

Single-
layer

Perceptron

mmWave channel estimation .. followed by hybrid precoding design

Proposed “Auto-precoder”: Optimizes measurements and leverages prior observations

“Precoder” 
Neural Network
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AUTO PRECODER
Joint channel sensing and precoder prediction

Beamforming
Design

Sparse Reconstruction Algorithm 
Ex: OMP

Channel sensing
with       &     .
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AUTO PRECODER
Joint channel sensing and precoder prediction

Beamforming
Design

Sparse Reconstruction Algorithm 
Ex: OMP

Channel sensing
with       &     .

“channel sensing” 
Neural Network

“Beam Prediction” 
Neural Network
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HYBRID BEAM PREDICTION
Joint channel sensing and hybrid beam prediction

Learns optimized 

measurements at 

both TX and RX

Predicts TX and RX 

hybrid beams

X. Li, and A. Alkhateeb "Deep Learning for Direct Hybrid Precoding in Millimeter Wave Massive MIMO Systems” 
Asilomar 2019 (arXiv: https://arxiv.org/abs/1905.13212)
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REAL WORLD DEPLOYMENT
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THE NEED FOR RAY-TRACING

Studying the performance of the proposed deep learning approaches needs channel datasets

Generated channels should capture the dependency on the environment

Accurate 3D ray-tracing simulators could be the solution
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REMCOM WIRELESS INSITE: AN ACCURATE RAY-TRACING TOOL

Accurate 3D ray-tracing
Advanced propagation 

models
MIMO capabilities

Ray-tracing results have been validated with measurements at both sub-6GHz and 

mmWave
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DEEPMIMO: A DEEP-LEARNING DATASET FOR MIMO SYSTEMS
https://www.deepmimo.net/

The DeepMIMO dataset enables a wide range of machine learning tasks

https://www.deepmimo.net/
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1-DATA COLLECTION: MMWAVE PRECODING PREDICTION
Data Collection and Evaluation Using Accurate 3D Ray Tracing
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1-DATA COLLECTION: MMWAVE PRECODING PREDICTION
Data Collection and Evaluation Using Accurate 3D Ray Tracing

Top View

mmWave BS

mmWave BS
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1-DATA COLLECTION: MMWAVE PRECODING PREDICTION
Data Collection and Evaluation Using Accurate 3D Ray Tracing

Top View

Estimated Channel BS Beams Mobile User Beams

Hybrid Precoding
Design

Dataset Construction 

mmWave BS
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1-DATA COLLECTION: MMWAVE PRECODING PREDICTION
Data Collection and Evaluation Using Accurate 3D Ray Tracing

Top View

Estimated Channel BS Beams Mobile User Beams

Hybrid Precoding
Design

Dataset Construction 

mmWave BS
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2. TRAINING: MMWAVE PRECODING PREDICTION
Training the Auto-Precoder Neural Network Model

Top View

mmWave BS

The collected dataset is used to train the NN end-to-end



39
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2. TRAINING: MMWAVE PRECODING PREDICTION
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Top View
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2. TRAINING: MMWAVE PRECODING PREDICTION
Training the Auto-Precoder Neural Network Model

Top View

mmWave BS

The collected dataset is used to train the NN end-to-end
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RESULTS
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TRANSMIT BEAM ACCURACY
90%+ Accuracy in Beam Perdition with A Few Pilots
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RECEIVER BEAM ACCURACY
90%+ Accuracy in Beam Perdition with A Few Pilots
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ACHIEVABLE DATA RATES
Performance: With a few measurements, 4X higher data rate 

4
X
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TRAINING TIME
Parameters: Batch Size of 64 and 15 Epoch Counts

2,493

119

CPU: Xeon E5-2630 v4 @2.2GHz GPU:  Tesla V100-DGXS-16GB

Training Time (seconds)

20X 

Speedup!
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INFERENCE TIME
Per each UE

11.77

1.50

0.31

TRADITIONAL
(CHANNEL ESTIMATION, 

PRECODING FOR 8 STREAMS)

DEEP LEARNING: AUTO-PRECODER
CPU (XEON E5-2630 V4 @2.2GHZ)

DEEP LEARNING: AUTO-PRECODER
GPU (TESLA V100-DGXS-16GB)

Inference Time (msec)
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TAKEAWAYS

• 5G mmwave massive MIMO is promising but have limitations

• Channel acquisition overhead is a key challenge

• Deep Learning has the potential of predicting these channel and beams and thus removing the 
overhead

• Ray tracing is needed to construct realistic and accurate dataset

• Our proposed solution – prior channel observations to optimize the sensing beams to focus where 
the users are and predict the beams effectively without channel estimation

• The proposed hybrid beam prediction outperforms traditional methods with few measurements

• This is done in less time than traditional methods thanks to accelerated inference on GPUs.

5G Meets Deep Learning, Ray Tracing, and GPUs
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QUESTIONS

•Ahmed Alkhateeb: alkhateeb@asu.edu

•Adriana Flores: adrianaf@nvidia.com

•Nima Pour Nejatian: npour@nvidia.com

How to contact us

mailto:alkhateeb@asu.edu
mailto:adrianaf@nvidia.com
mailto:npour@nvidia.com



