
Andy Adinets

A FASTER RADIX SORT
IMPLEMENTATION

2

Introduction
Radix sort

Optimizations
What makes our radix sorting implementation faster

Results
Performance comparisons, conclusion

AGENDA

3

LEAST SIGNIFICANT DIGIT RADIX SORT

Sorts n keys of w bits each

complexity O(w * n)

Sequence of passes

k bits (1 digit) at a time

Each pass

stable partition (counting sort)

of the whole array

main GPU primitive

Algorithm

w bits

k bits per pass

least to most significant

4

LEAST SIGNIFICANT DIGIT RADIX SORT

Stable sort

preserves the order of elements with the same key

State-of-the-art in GPU sorting

cub::DeviceRadixSort::Sort{Keys,Pairs}[Descending]()

thrust::{sort,stable_sort}[_by_key]() (when it uses cub::DeviceRadixSort)

Information

5

PARTITION

Split input into tiles

Upsweep (N reads)

per-block histogram

ScanBins

exclusive prefix sum of all digit counts

Downsweep (N reads, N writes)

partition keys by digit value in shared memory

write to global memory

As performed currently

... ...

1 tile = 5K-10K keys

1 thread block
many tiles

... ...

tiles

digit values (bins)

... ...
start of digit

for block

output

input

digit=0 digit=1 digit=2 digit=3

digit counts

memory accesses: 3N

want: 2N

6

DECOUPLED LOOK-BACK

D. Merrill, M. Garland, Single-Pass Prefix Scan with Decoupled Look-back

For prefix sums

4

Scan-then-propagate. The global scan implementations
within CUDPP [10, 23] and Thrust [3] are examples of high-radix
Brent-Kung data flow, recursively dispatching kernels of block-
sized scan networks followed by kernels of block-sized fan
propagation. Discounting the negligible I/O of inner levels, they
incur ~4n global data movement, with the outermost kernels
reading and writing ~n items each.
Reduce-then-scan. The global scan implementations within

MatrixScan [12], B40C [1], MGPU [2], and by Ha and Han [16]
are examples of reduce-then-scan dataflow, dispatching kernels of
block-sized reduction networks followed by kernels of block-
sized scan networks. MatrixScan does this recursively, whereas
the other implementations employ a raking strategy in which the
upsweep and downsweep thread blocks process multiple input
tiles each, necessitating only a single root scan kernel.

As illustrated in Fig. 3, the input is partitioned evenly among
G thread blocks, where G is the number of blocks that can be

actively resident on the processor (and is uncorrelated to n). In
the first kernel, each thread block reduces the tiles of its partition
in an iterative, serial fashion. Then the small list of G block-
aggregates is itself scanned. In the third kernel, each thread block
iteratively computes a prefix scan across the tiles of its partition,
seeded with the appropriate block-prefix computed by the scan of
block-aggregates. By switching the behavior of the first upsweep
thread block from reduction to scan, Ha and Han are able to elide
the last block of the upsweep kernel and the first block of the
downsweep kernel. The global data movement is ~3n (~2n items
read, ~n items written).
Chained-scan. As an alternative, the chained-scan

parallelization [27] is a single-pass approach in which thread
blocks are each assigned a tile of input, and a serial dependence
chain exists between thread blocks. Each thread block will wait
on the inclusive prefix of its predecessor to become available.
The global data movement is ~2n (n items read, n items written).

Fig. 3. Three-kernel reduce-then-scan parallelization among G thread blocks (~3n global data movement)

Fig. 4. Single-pass chained-scan prefix scan among G thread blocks (~2n global data movement)

Fig. 5. Single-pass adaptive look-back prefix scan among G thread blocks (~2n global data movement)

reduce

reduce

x0 xb-1 xb…

B0
…reduce reduce reduce

…

reduce

…

B1

reduce reduce reduce

…

reduce

…

B2

reduce reduce reduce

…

reduce

…

BG-1

reduce reduce reduce

…

reduce

…

B1

…

scan

… …

reduce

…

B2

…

scan scan scan

… …

reduce

x0 xb-1 xb…

B0

…

scan scan scan

… …
y0 yb-1 yb

B0

reduce

…

BG-1

…

scan scan scan

… …

scan

…

up
sw

ee
p

pa
ss

do
w

ns
w

ee
p

pa
ss

ro
ot

 s
ca

n

scan scan

B0
B1

B2
BG-1

x0 x1 x2

y0 y1 y2

…

…

…

prefix0:0
prefix0:1

prefix0:2

prefix0:p-2

reduce
reduce

reduce

reduce
scan

scan
scan

scan

BG-1B2B1B0

x0 x1 x2

y0 y1 y2

…

…

aggregate0

incl-prefix0
decoupling
look-back

aggregate1

incl-prefix1

aggregate2

incl-prefix2

reduce reduce reduce reduce

scan scan scan scan

Status flag: {P|A|X} Status flag: {P|A|X} Status flag: {P|A|X} Status flag: {P|A|X}

https://research.nvidia.com/publication/single-pass-parallel-prefix-scan-decoupled-look-back

7

DECOUPLED LOOK-BACK

For >= 230 keys, invoke multiple kernels

Only handles per-digit prefix sum

still need the starting position for each digit

For partition

1 0 1 0 1 0 1 0

value (30 bits)

int32

(global) prefix ready (local) aggregate ready

2k-way partition: 2k decoupled look-backs

distribute digit values between threads

8

ONESWEEP
Histogram Pass + Decoupled Look-back

... ...

... ...

tiles

digit values (bins)

... ...
offset from
digit start

output

input

digit=0 digit=1 digit=2 digit=3

offsets from
digit starts

whole-array
histograms

once each pass

global digit
starts

input

N reads
N reads
N writes

digit counts
for tile

independent of array ordering

9

LARGER PASSES, FEWER PASSES

larger passes => larger histograms

more shared memory

more global memory operations

uint32: 4 passes x 8 bits

4 passes5 passes

8 bits6 bits7 bits

11N
memory operations

9N
memory operations

10

STABLE RANKING

Partition keys by current digit

in shared memory

preserves the order of the keys with the same digit

Implementation in cub

https://github.com/thrust/cub/blob/master/cub/block/block_radix_rank.cuh

As performed in cub

https://github.com/thrust/cub/blob/master/cub/block/block_radix_rank.cuh

11

ORDER OF KEYS FOR RANKING

idx -> (warp, item, lane)

row-major

Match-based ranking in cub

item 0

item 1

item M-1

...

warp 0

lane 0 lane 31

warp 1 warp BLOCK_WARPS-1

...... ...

...input

12

PEER DIGIT PREFIX

in parallel for different digit values

As computed in cub

match_any(digit)

peer_mask

digit=1 digit=1 digit=1

int peer_mask = match_any(digit)

int peer_digit_prefix =

__popc(peer_mask & LaneMaskLt());
rank[item] = peer_digit_prefix

sequence of __ballot_sync()

1 per digit bit

0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 00 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 11 1 1 1 1 1 1 1 1LaneMaskLt()

&

digit=1

0 1 00 0 0 0 0 0 1 0 0

=

__popc()

2peer_digit_prefix

peer_digit_prefix
for this lane

lane 31 lane 0

13

STABLE RANKING (2)

Warp digit prefix

warp-private digit histogram

incremented by leader

add to rank

Within thread block

exclusive prefix sum of warp digit counts

add to rank

As performed in cub

14

STABLE RANKING

Want digit counts earlier

to unblock other thread blocks

Compute them earlier, move match() to later

warp-private histograms with atomicAdd()

sum them up => digit counts

modify the rest of the algorithm accordingly

Optimized for decoupled look-back

15

FASTER MATCH

__shared__ int shared_match_masks[WARPS][DIGITS]; // init with 0
int* match_masks = shared_match_masks[warp];

...

atomicOr(match_masks[digit], 1 << lane);
__syncwarp(~0);
int peer_mask = match_masks[digit];
int leader = (WARP_THREADS – 1) - __clz(peer_mask); // highest-order bit set

...
// update counters, __shfl_sync() at the end

if (lane_id == leader) match_masks[bin] = 0;
__syncwarp(~0);

Using atomicOr()

Mask of threads in the warp with the same digit value

16

DIRECT WRITE-OUT

Split data between warps

Each thread computes the key's digit value and writes the key to global memory

Problem

misalignment => unnecessary transactions

Writing keys to global memory

shared memory

global memory

... ...

iteration j iteration j+1

digit value d-1 digit value d digit value d+1

......

32B multiple
4 transactions

17

ALIGNED WRITE-OUT

if (lane_id == 31 && global_idx % 8 != 7)

last (global_idx % 8 + 1) threads don't write

pick up in the next iteration

Writing keys to global memory

shared memory

global memory

... ...

iteration j iteration j+1

digit value d-1 digit value d digit value d+1

......

32B multiple
3 transactions

18

OPTIMIZATIONS

Decoupled look-back (3N -> 2N memory operations per pass)

Larger passes, fewer passes (6-7 bits x 5 passes -> 8 bits x 4 passes)

Compute digit counts earlier

helps with decoupled look-back

Minor optimizations

match based on atomicOr()

optimized writeout (32-bit keys)

For onesweep

19

SETUP

CUDA 10.1.243

V100-SXM2

cub

https://github.com/thrust/cub

commit 6552e4d429c194e11962feb638abf87bcf220af0 (Feb 20, 2020)

onesweep

implemented inside cub

Sort 64M random elements

For performance comparison

https://github.com/thrust/cub

20

PERFORMANCE COMPARISON

16.615

8.657

4.859
4.319

2.416
1.851

7.999

4.261

2.896
2.324

1.354 1.218
0

2

4

6

8

10

12

14

16

18

uint32 keys uint32 keys, uint32 values uint32 keys, uint64 values uint64 keys uint64 keys, uint32 values uint64 keys, uint64 values

Sp
ee

d,
 G

ke
y/

s

onesweep vs current cub

onesweep current cub

V100, 64M elements

1.5x-2x faster

21

OPTIMIZATIONS

Match characteristics of Partition and Downsweep

1 tile / thread block

better performance

ScanBins -> DeviceScan::ExclusiveSum()

faster for large arrays of digit counts

Updated policy settings

23 items / thread

256 threads / block

match-based ranking also for 6 bits

For current cub sorting

22

EFFECTS OF INDIVIDUAL OPTIMIZATIONS

Optimization Improvement Performance, Gkey/s
current cub version 7.999
+ changes from the previous slide + 30.8% 10.460
+ decoupled look-back
(cub's match-based ranking, 23 items/thread)

+ 32.5% 13.862

+ 8 bits / pass + 11.0% 15.393
+ compute digit counts earlier + 3.4% 15.917
+ atomicOr()-based match + 1.9% 16.213
+ aligned writeout (46 items/thread) (onesweep) + 2.5% 16.615

Sort 64M uint32 keys, V100

23

CONCLUSION

Onesweep is being integrated into cub

Some beta-testers

GPU-Accelerated Genome Assembly: A Deep Dive into Clara Genomics Analysis SDK [S21968]

Feel free to contact me with questions or comments

aadinets@nvidia.com

https://www.nvidia.com/en-us/gtc/session-catalog/%3Fsearch=S21968
http://nvidia.com

