Adasum: Adaptive Summation of Gradients for Deep Learning

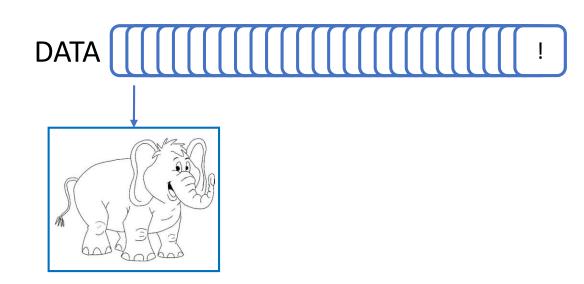
Saeed Maleki, Madan Musuvathi, Todd Mytkowicz, Olli Saarikivi

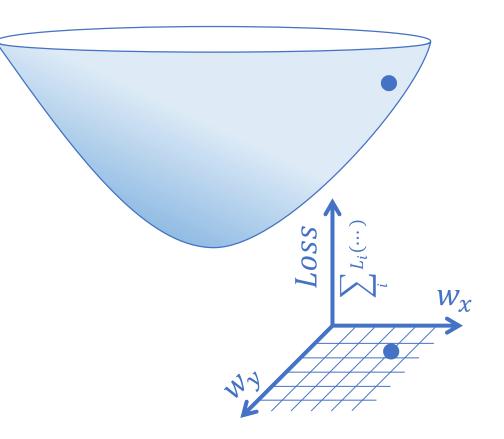
Microsoft Research

Emad Barsoum, Sergii Dymchenko, Jaliya Ekanayake, Vadim Eksarevskiy, Maxim Lukiyanov, Tianju Xu Microsoft

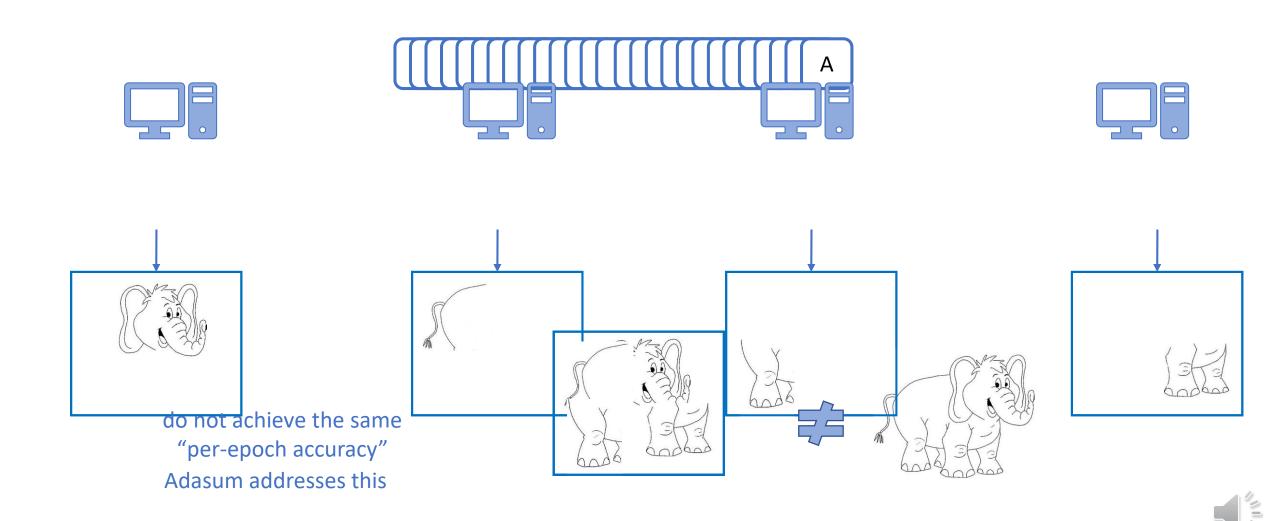
Motivation: Neural Network Training is Inherently Sequential

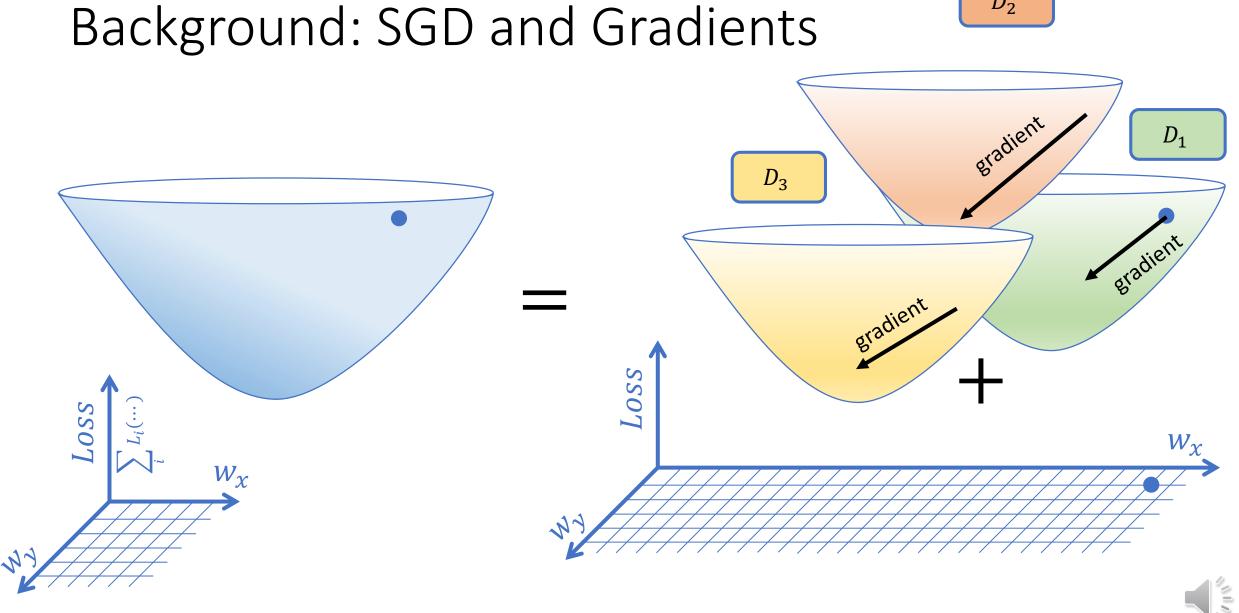
- Stochastic Gradient Descent (SGD)
 - Workhorse for training a neural network
 - Inherently sequential



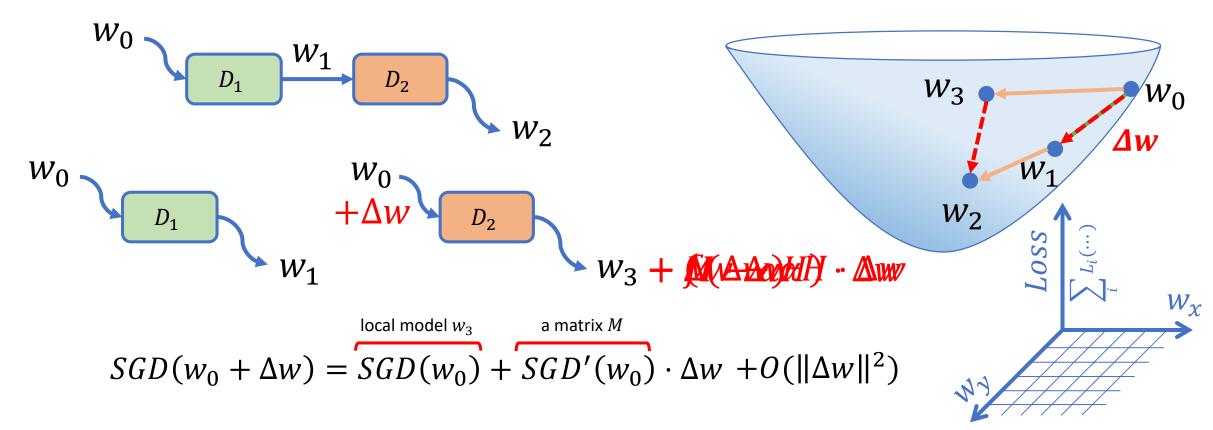


Motivation: More parallelism = less accuracy

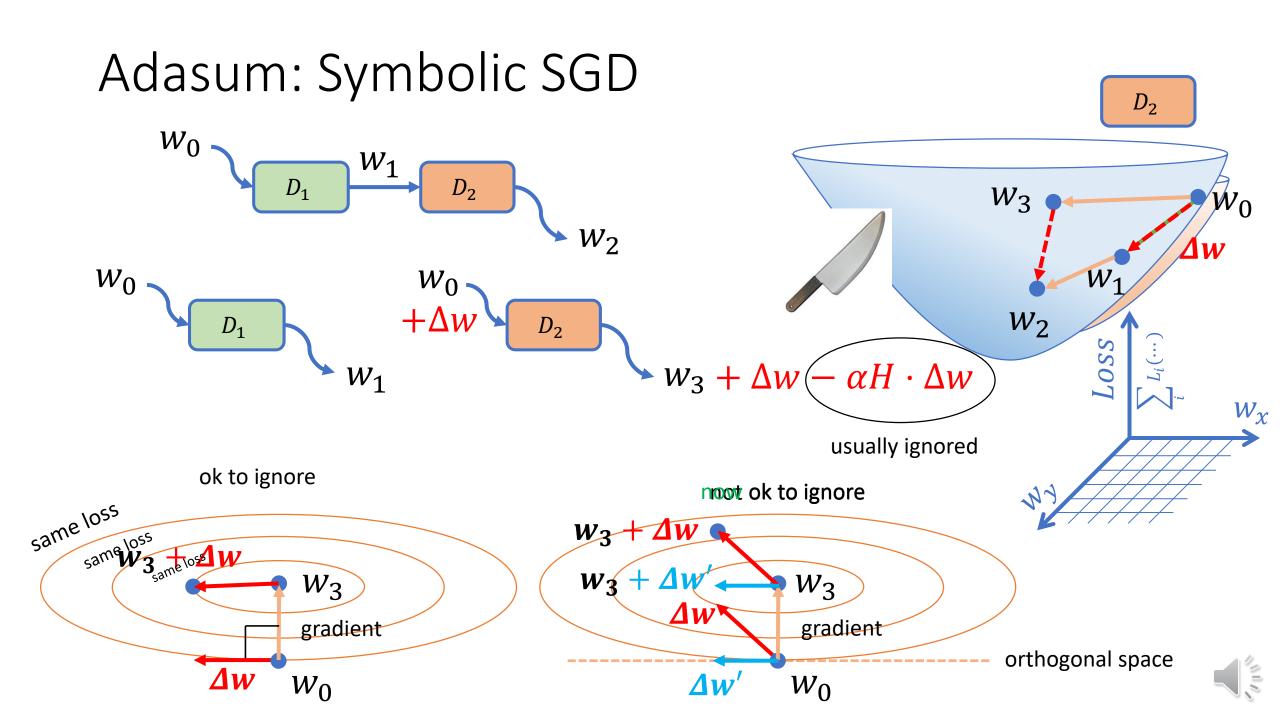




Adasum: Symbolic SGD

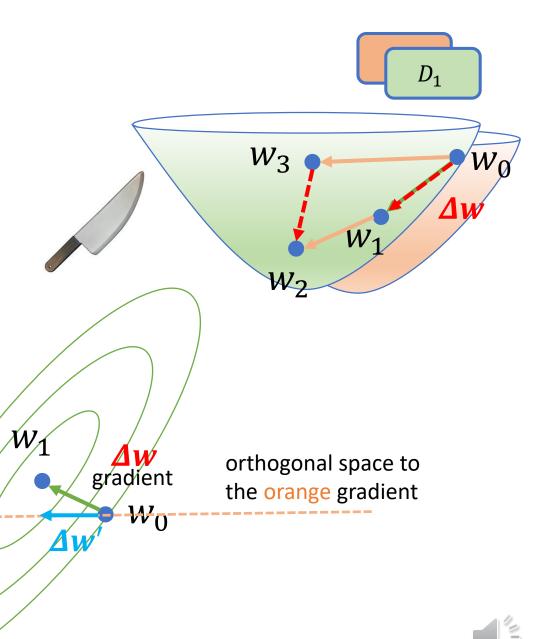


- $M = I \alpha H$ where H is the Hessian matrix and α is the learning rate
- Very costly to calculate *H*



$\Delta w'$ is a "good" direction

- Is $\Delta w'$ a "good" direction to move along?
- Δw is the gradient w.r.t. the green bowl
- Any direction that has a positive inner product with the gradients decays the loss
 - $\Delta w'$ is a "good" direction
- Adasum operator sums Δw with projection



Adasum: Adaptive Sum

- Adasum combines Δw from any number of processors
- Adasum combines Δw from different processors by projection and summation. Effectively:
 - They are added when they are orthogonal
 - Only one is taken when they are parallel
- Traditionally, Δw from different processors are:
 - Either summed: can be too aggressive
 - Or Averaged: can be too conservative

Orthogonality of Gradients

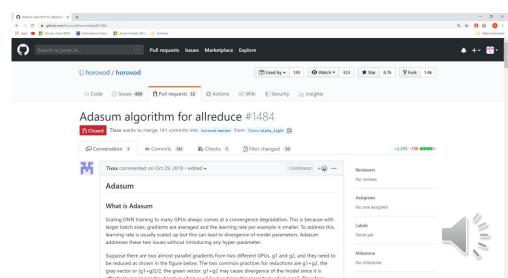
- We use Pythagorean theorem to define orthogonality
- For P gradients it ranges between:
 - 1 for all orthogonal
 - 1/P for all parallel
- Gradients start out all parallel
- Later in the training they become more orthogonal
- Convergence starts out slow but speeds up later

1.0 0.8 0.6 0.4 0.2 0.0 100M 200M 300M samples

BERT with 64 GPUs

Adasum is in Horovod

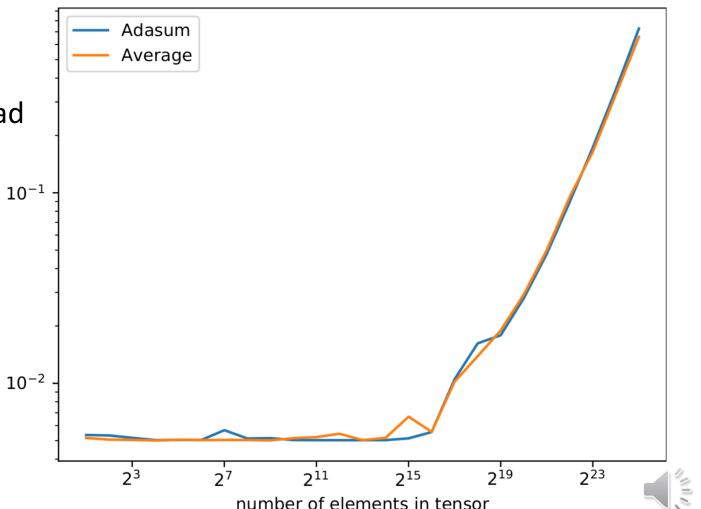
- Horovod is an open-source distributed training framework by Uber that supports both PyTorch and TensorFlow
 - Adasum is integrated in Horovod
- Adasum is easy to use:
 - horovod.allreduce(gradients, op=hvd.adasum)
 - No hyperparameter
- Adasum allows scaling SGD
 - Minimizes convergence slowdown in scale



Result – Adasum vs. Allreduce/Averaging Latency on 64 GPUs

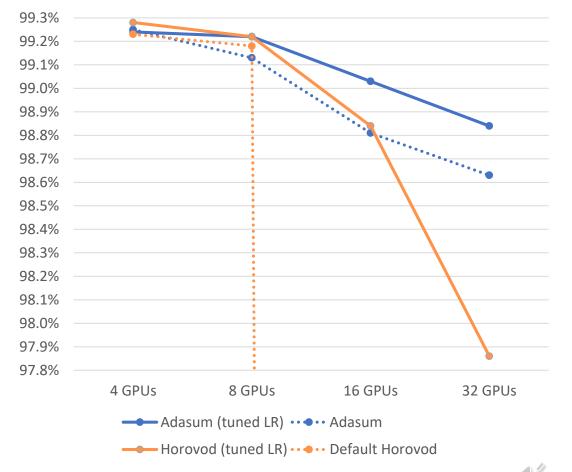
atency(s)

- Adasum has some computation overhead
 - But no communication overhead
- Almost negligible overhead
 - Communication latency dominates the computation latency



Results – Adasum Convergence on MNIST

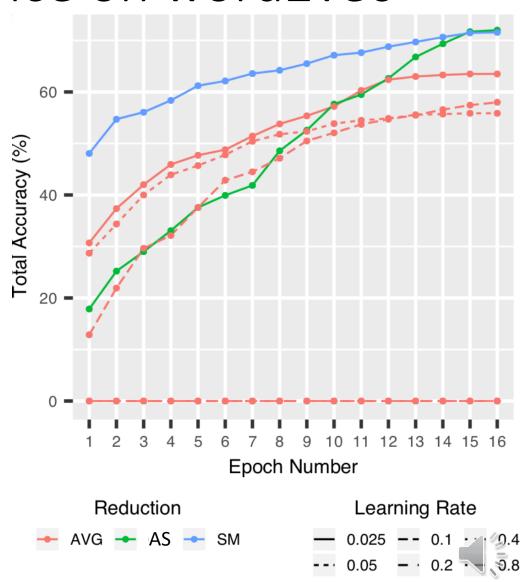
- Standard 2-layer CNN gets 99.3% in 2 epochs sequentially with batch size 32
- Tuned LR for averaging and Adasum
- Default Horovod fails at 16 GPUs, while Adasum still works with 32
- With tuned learning rates Adasum has much better convergence for 16 and 32 GPUs



Test Accuracy at 2 epochs

Results – Adasum Convergence on word2vec

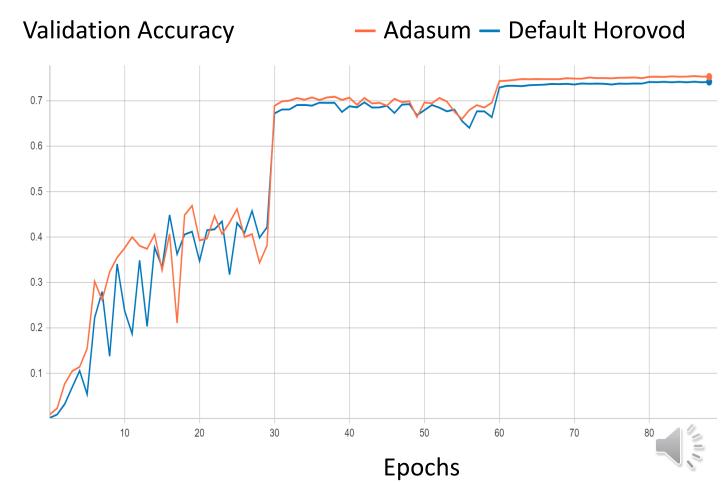
- word2vec model: embedding for words
 - London to England::Paris to France
- Runs on 32 nodes
- Tuned LR for averaging
- Adasum matches sequential accuracy



Results – Adasum Convergence on Resnet

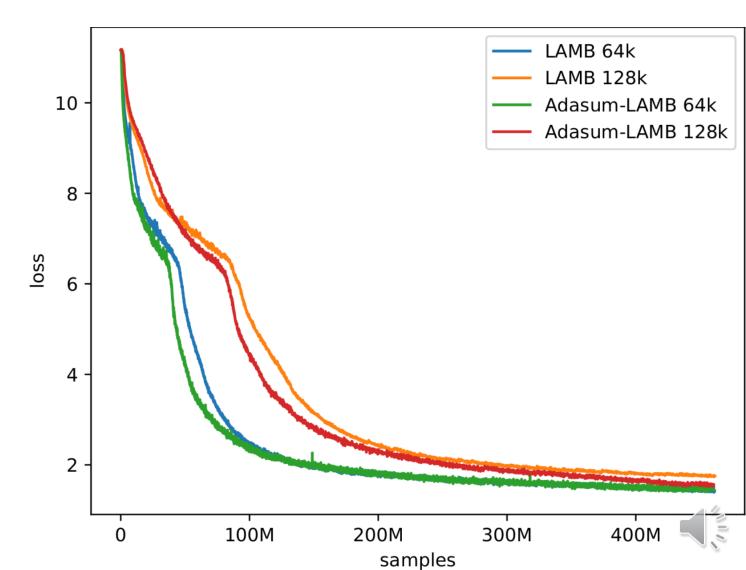
• The MLPerf Resnet50 on ImageNet

- 16K batch size
- 64 GPUs
- Adasum reaches MLPerf target accuracy 74.9% in 69 epochs
- Default Horovod never reaches target accuracy in 90 epochs



Results – Adasum Convergence on BERT

- BERT is a common model trained nowadays
- Bigger batch size = more parallelism
 - 64k and 128k
- LAMB is the optimizer used at large scales
- Adasum beats LAMB with 128k batchsize



Please use Adasum!

• And let us know what you think!

<u>https://github.com/horovod/</u>