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Motivation: Neural Network Training is 
Inherently Sequential
• Stochastic Gradient Descent (SGD)

• Workhorse for training a neural network

• Inherently sequential
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do not achieve the same
“per-epoch accuracy”

Motivation: More parallelism = less accuracy

Adasum addresses this



Background: SGD and Gradients
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𝑆𝐺𝐷 𝑤0 + Δ𝑤 = 𝑆𝐺𝐷 𝑤0 + +𝑂( Δ𝑤 2)𝑆𝐺𝐷′ 𝑤0 ⋅ Δ𝑤

𝜟𝒘

local model 𝑤3

+ 𝑓(Δ𝑤)+𝑀 ⋅ Δ𝑤

• 𝑀 = 𝐼 − 𝛼𝐻 where 𝐻 is the Hessian matrix and 𝛼 is the learning rate

• Very costly to calculate 𝐻

a matrix 𝑀

Adasum: Symbolic SGD

+ 𝐼 − 𝛼𝐻 ⋅ Δ𝑤+ Δ𝑤 − 𝛼𝐻 ⋅ Δ𝑤
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Adasum: Symbolic SGD

+ Δ𝑤 − 𝛼𝐻 ⋅ Δ𝑤
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𝐷2𝐷1Δ𝑤′ is a “good” direction
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• Is Δ𝑤′ a “good” direction to move along?

• Δ𝑤 is the gradient w.r.t. the green bowl

• Any direction that has a positive
inner product with the gradients
decays the loss
• Δ𝑤′ is a “good” direction

• Adasum operator sums 
Δ𝑤 with projection

orthogonal space to
the orange gradient



Adasum: Adaptive Sum

• Adasum combines Δ𝑤 from any number of processors

• Adasum combines Δ𝑤 from different processors by projection and 
summation. Effectively:
• They are added when they are orthogonal
• Only one is taken when they are parallel

• Traditionally, Δ𝑤 from different processors are:
• Either summed: can be too aggressive
• Or Averaged: can be too conservative



Orthogonality of Gradients

• We use Pythagorean theorem to define orthogonality

• For P gradients it ranges between:
• 1 for all orthogonal

• 1/P for all parallel

• Gradients start out all parallel

• Later in the training they become
more orthogonal

• Convergence starts out slow
but speeds up later

BERT with 64 GPUs



Adasum is in Horovod

• Horovod is an open-source distributed training framework by Uber 
that supports both PyTorch and TensorFlow
• Adasum is integrated in Horovod

• Adasum is easy to use:
• horovod.allreduce(gradients, op=hvd.adasum)

• No hyperparameter

• Adasum allows scaling SGD
• Minimizes convergence slowdown in scale



Result – Adasum vs. Allreduce/Averaging 
Latency on 64 GPUs
• Adasum has some 

computation overhead
• But no communication overhead

• Almost negligible overhead
• Communication latency

dominates the computation
latency

64 GPUs



Results – Adasum Convergence on MNIST

• Standard 2-layer CNN gets 99.3% in 2 
epochs sequentially with batch size 32

• Tuned LR for averaging and Adasum

• Default Horovod fails at 16 GPUs, 
while Adasum still works with 32

• With tuned learning rates Adasum
has much better convergence for 
16 and 32 GPUs
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Results – Adasum Convergence on word2vec

• word2vec model: embedding for words
• London to England::Paris to France

• Runs on 32 nodes

• Tuned LR for averaging

• Adasum matches sequential accuracy

AS



Results – Adasum Convergence on Resnet

• The MLPerf Resnet50 on ImageNet 
• 16K batch size
• 64 GPUs

• Adasum reaches MLPerf
target accuracy 74.9% in 
69 epochs

• Default Horovod never 
reaches target accuracy 
in 90 epochs

Epochs

Validation Accuracy — Adasum — Default Horovod



Results – Adasum Convergence on BERT

• BERT is a common model
trained nowadays

• Bigger batch size = more 
parallelism
• 64k and 128k

• LAMB is the optimizer
used at large scales

• Adasum beats LAMB
with 128k batchsize



Please use Adasum!

• And let us know what you think!

• https://github.com/horovod/

https://github.com/horovod/

