Operationalizing PyTorch Models Using ONNX and ONNX Runtime

Spandan Tiwari (Microsoft)
Emma Ning (Microsoft)
Agenda

ONNX overview

Model operationalization with ONNX
- Pytorch – ONNX exporter
- ONNX Runtime
- OLive
ONNX Overview
Problem - Training frameworks x Deployment targets

Training framework

- PyTorch
- Keras
- Cognitive Toolkit
- Caffe
- ML.NET
- learn

Deployment target

- CPU
- GPU
- FPGA
- NPU
ONNX: an open and interoperable format for ML models

Training framework

- PyTorch

Deployment target

- CPU
- GPU
- FPGA
- NPU

Freedom to use tool(s) of choice compatible with ONNX

Focus hardware innovation on NN optimizations for a single format instead of many
ONNX - Open Neural Network Exchange

A specification that defines a standard format for ML models

• Consisting of:
 • common Intermediate Representation
 • full operator spec
• Model = graph composed of computational nodes
• Supports both DNN and traditional ML
• Backward compatible with comprehensive versioning
ONNX Community

Alibaba Group
AMDA
arm
AWS
Baidu
BITMAIN
CEVA
Facebook Open Source
GRAPHCORE
Habana
Hewlett Packard Enterprise
HUAWEI
IBM
Idein Inc
Intel AI
MathWorks
MAXAR
Mediatek
Microsoft
Neural Network Libraries
mi
NVIDIA
NXP
Oath
OctoML
Preferred Networks
Qualcomm
SAS
skymizer
Synopsys
Tencent
Unity
“We are pleased to welcome ONNX to the LF AI Foundation. We see ONNX as a key project in the continued growth of open source AI.”

- Mazin Gilbert, Chair of the LF AI Foundation Governing Board
Model operationalization with ONNX
Model operationalization with ONNX

Train models with various frameworks or services

Convert into ONNX with ONNX Converters

HW accelerated inference with ONNX Runtime

Frameworks
- PyTorch
- learn
- Caffe2
- K
- Cognitive Toolkit
- MathWorks
- PaddlePaddle
- XGBoost
- mxnet
- Chainer

Services
- Azure Custom Vision Service
- Auto Machine Learning Service

Azure
- Azure Machine Learning service
- Ubuntu VM
- Windows Server 2019 VM

Devices
- Edge Cloud & Appliances
- Edge & IoT Devices
Conversion - Open Source converters for popular frameworks

<table>
<thead>
<tr>
<th>Framework</th>
<th>Converter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tensorflow</td>
<td>onnx/tensorflow-onnx</td>
</tr>
<tr>
<td>PyTorch</td>
<td>(native export)</td>
</tr>
<tr>
<td>Keras</td>
<td>onnx/keras-onnx</td>
</tr>
<tr>
<td>Scikit-learn</td>
<td>onnx/scikit-onnx</td>
</tr>
<tr>
<td>CoreML</td>
<td>onnx/onnxmltools</td>
</tr>
<tr>
<td>LightGBM</td>
<td>onnx/onnxmltools</td>
</tr>
<tr>
<td>LibSVM</td>
<td>onnx/onnxmltools</td>
</tr>
<tr>
<td>XGBoost</td>
<td>onnx/onnxmltools</td>
</tr>
<tr>
<td>SparkML (alpha)</td>
<td>onnx/onnxmltools</td>
</tr>
<tr>
<td>CNTK</td>
<td>(native export)</td>
</tr>
</tbody>
</table>
PyTorch to ONNX Export
Overview

• PyTorch has native support for ONNX export

• Microsoft partners with Facebook on ONNX development in PyTorch

• PyTorch is easy to use and debug

• High performance without losing its flexibility

• Dynamic graph: ability to create complex topology that depends on the input data

• Community is large and growing...
PyTorch → ONNX Workflow

Data -> DataSet Transforms DataLoader DataParallel MiniBatch -> Model Loss -> Trainer SGD (Momentum, rmsprop, Adam...etc) Loop -> ONNX model

PyTorch model
Writing a Model in PyTorch: Model Definition

class Net(nn.Module):
 def __init__(self):
 super(Net, self).__init__()
 self.conv1 = nn.Conv2d(1, 20, 5, 1)
 self.conv2 = nn.Conv2d(20, 50, 5, 1)
 self.fc1 = nn.Linear(4*4*50, 500)
 self.fc2 = nn.Linear(500, 10)

 def forward(self, x):
 x = F.relu(self.conv1(x))
 x = F.max_pool2d(x, 2, 2)
 x = F.relu(self.conv2(x))
 x = F.max_pool2d(x, 2, 2)
 x = x.view(-1, 4*4*50)
 x = F.relu(self.fc1(x))
 x = self.fc2(x)
 return F.log_softmax(x, dim=1)
Writing a Model in PyTorch: Training Loop

```python
model = Net().to(device)
# Use SGD with momentum
optimizer = optim.SGD(model.parameters(), lr=0.01, momentum=0.9)

# Set the model to train mode
model.train()

# Training loop
for epoch in range(epochs):
    for batch_idx, (data, target) in enumerate(train_loader):
        data, target = data.to(device), target.to(device)
        optimizer.zero_grad()
        output = model(data)
        loss = F.nll_loss(output, target)
        loss.backward()
        optimizer.step()
```
PyTorch to ONNX

```python
from torch.autograd import Variable
import torch.nn as nn

class RNNModel(nn.Module):
    """Container module with an encoder, a recurrent module."""
    def __init__(self, numT, numInputs, numHidden, numLayers, dropout=0.5):
        super(RNNModel, self).__init__()
        self.drop = nn.Dropout(dropout)
        self.encoder = nn.Embedding(numT, numInputs)
        self.rnn = nn.RNN(numInputs, numHidden, num_layers=numLayers, dropout=dropout)

    def forward(self, input, hidden):
        embedding = self.drop(self.encoder(input))
        output, hidden = self.rnn(embedding, hidden)
        model = RNNModel(numT=64, numInputs=128, numHidden=128, numLayers=2, dropout=0.5)

input = torch.randn(1, 20, numInputs)
torch.onnx.export(model, input, "model.onnx")
```
ONNX Model Viewer: Netron

https://github.com/lutzroeder/netron
PyTorch ONNX Export API

torch.onnx.export(model,
 input_args,
 filename,
 input_names=None, output_names=None,
 opset_version=None,
 do_constant_folding=True,
 dynamic_axes=None,
 keep_initializers_as_inputs=None,
 enable_onnx_checker=True,
 use_external_data_format=False)
PyTorch ONNX Export API

```python
from torch.autograd import Variable
import torch.onnx
import torch.nn as nn

class RNNModel(nn.Module):
    """Container module with an encoder, a recurrent module."""

    def __init__(self, numT, numInputs, numHidden, numLayers, dropout=0.5):
        super(RNNModel, self).__init__()
        self.drop = nn.Dropout(dropout)
        self.encoder = nn.Embedding(numT, numInputs)
        self.rnn = nn.RNN(numInputs, numHidden, num_layers=numLayers, dropout=dropout)

    def forward(self, input, hidden):
        embedding = self.drop(self.encoder(input))
        output, hidden = self.rnn(embedding, hidden)

model = RNNModel(numT=64, numInputs=128, numHidden=128, numLayers=2, dropout=0.5)
```
PyTorch ONNX Export API

```
export( model, input_args, filename, ...)
```

- Caller provides an example input to the model.
- Input could be a `torch.tensor`, for single input.
- For multiple inputs, provide a list or tuple.

```python
input = torch.randn(seq_len, batch_size, input_size)
h0 = torch.randn(num_layers*num_directions, batch_size, hidden_size)
c0 = torch.randn(num_layers*num_directions, batch_size, hidden_size)
torch_out = torch.onnx.export(model, (input, (h0, c0)), 'model.onnx')
```
PyTorch ONNX Export API

```
export(..., do_constant_folding=True, ...
```

- PyTorch exporter can create graph with “extra” nodes.

- For example, weight format difference between PyTorch and ONNX RNNs.

- ONNX $W[iofc]$ (input, output, forget, cell) vs. PyTorch uses $W[ifco]$ (input, forget, cell, output)

- In some cases, variable batch-size accommodation
PyTorch ONNX Export API
PyTorch ONNX Export API

\texttt{export(\ldots, \texttt{do_constant_folding=\texttt{True}}, \ldots)}

- Constant folding is a graph optimization.
- Does one-time computation on leaf ops with constant inputs and “folds” or replaces them with single constant.
- This reduces the graph size and reduces execution time.
PyTorch ONNX Export API

<table>
<thead>
<tr>
<th>Model</th>
<th>Number of ops (Original model)</th>
<th>Number of ops (Constant-folded model)</th>
<th>Speedup (ORT CPU Execution Provider)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bing AGI Encoder v4</td>
<td>147</td>
<td>98</td>
<td>~2.5x</td>
</tr>
<tr>
<td>Speech NNLM</td>
<td>104</td>
<td>53</td>
<td>~3.5x</td>
</tr>
<tr>
<td>PyTorch BERT (base)</td>
<td>1424</td>
<td>1184</td>
<td>10-12%</td>
</tr>
</tbody>
</table>
PyTorch ONNX Export – Variable-length Axes

```python
export(..., dynamic_axes={}, ...)
```

- In many scenarios, the size of the input may be variable
 - Example: Batch axis for batch inference.
 - Example: Sequence axis case of RNN models
 - Example: Image size in FasterRCNN (object detection) models

- A variable-length axis can be represented in ONNX model
 - It is represented as a “string” dimension in ONNX
 - Each string represents a placeholder “value” for a length of the axis
 - Same string for different axes means that the length the axes must be the same for any input

- API supports specifying variable-length axes
 - Specified as arguments of top-level export API
ONNX model with fixed-length axes
PyTorch ONNX Export – Variable-length Axes

ONNX model with variable-length axes
import torch
import torchvision
dummy_input = torch.randn(10, 3, 224, 224)
model = torchvision.models.resnet50(pretrained=True)

input_names = ['input1']
output_names = ['output1']

torch.onnx.export(model, dummy_input, 'resnet50.onnx', verbose=True,
 input_names=input_names, output_names=output_names,
 do_constant_folding=True)
PyTorch ONNX Export – Resnet50 ONNX Model
import onnxruntime as rt
from PIL import Image

Load and preprocess image
image = Image.open('TestElephant.jpg')
x = preprocessing(image)
x = x.numpy()

Create ORT inference session and run inference
sess = rt.InferenceSession("resnet50.onnx")
result = sess.run([output_name], {input_name: x})
PyTorch ONNX Export – Resnet50 ORT Inference
PyTorch ONNX – Deeper Look

Underlying process for ONNX export

```python
from torch.autograd import Variable
import torch
import torch.nn as nn

class RNNModel(nn.Module):
    """Container module with an encoder, a recurrent module."""

    def __init__(self, numT, numInputs, numHidden, numLayers, dropout=0.5):
        super(RNNModel, self).__init__()
        self.dropout = nn.Dropout(dropout)
        self.encoder = nn.Embedding(numT, numInputs)
        self.rnn = nn.RNN(numInputs, numHidden, num_layers=numLayers, dropout=dropout)

    def forward(self, input, hidden):
        embedding = self.dropout(self.encoder(input))
        output, hidden = self.rnn(embedding, hidden)

model = RNNModel(numT=64, numInputs=128, numHidden=128, numLayers=2, dropout=0.5)
```
PyTorch ONNX – Code to Torch IR Graph

• Internally, there are two ways to convert PyTorch model to Torch IR graph

• This is implementation detail only – for ONNX export there’s a single top-level API call, namely torch.onnx.export.
PyTorch ONNX – Tracing

- Structure of the model is captured by executing the model once using example inputs
- Records the flow of those inputs through the model

Pros

- No code change needed.
- More stable, well-supported

Cons

- Cannot support all models accurately, only those that use limited control-flow (conditionals or loops), no data-dependent control-flow.
- Does not capture control-flow, but just the sequence of on that single execution route.
PyTorch ONNX – Scripting

• Converting Python syntax directly to ScriptModule
• First Python AST is generated, the JIT compiler does semantic analysis and lowers it into a module

Pros
• Supports all models, with all control-flow routes
• It is the preferred way going forward

Cons
• Needs code change (inherit from torch.jit.ScriptModule + torch.jit.script decorator for methods).
• Only a subset of Python is supported.
PyTorch ONNX – Tracing

class LoopAdd(torch.nn.Module):
 def __init__(self):
 super().__init__()

 def forward(self, x):
 h = x
 for i in range(x.size(0)):
 h = h + 1
 return h

input_1 = torch.ones(3, 16)
model = LoopAdd()
traced_model = torch.jit.trace(model, (input_1,))
print(traced_model.graph)
PyTorch ONNX – Tracing

graph(%h.1 : Float(3, 16)):
 %4 : Long() = prim::Constant[value={1}]((), scope: LoopAdd
 %5 : int = prim::Constant[value=1](), scope: LoopAdd
 %h.2 : Float(3, 16) =aten::add(%h.1, %4, %5), scope: LoopAdd
 %7 : Long() = prim::Constant[value={1}]((), scope: LoopAdd
 %8 : int = prim::Constant[value=1](), scope: LoopAdd
 %h : Float(3, 16) =aten::add(%h.2, %7, %8), scope: LoopAdd
 %10 : Long() = prim::Constant[value={1}]((), scope: LoopAdd
 %11 : int = prim::Constant[value=1](), scope: LoopAdd
 %12 : Float(3, 16) =aten::add(%h, %10, %11), scope: LoopAdd
return (%12)

input_1 = torch.ones(5, 16)
print(np.all(np.array_equal(model(input_1), traced_model(input_1))))
>> False
```python
class LoopAdd(torch.jit.ScriptModule):
    def __init__(self):
        super().__init__()

    @torch.jit.script_method
    def forward(self, x):
        h = x
        for i in range(x.size(0)):
            h = h + 1
        return h

input_1 = torch.ones(3, 16)
model = LoopAdd()
traced_model = torch.jit.trace(model, (input_1, ))
print(traced_model.graph)
```
PyTorch ONNX – Scripting

```python
graph(%0 : Float(3, 16)):
  %1 : bool = prim::Constant[value=1](), scope: LoopAdd
  %2 : int = prim::Constant[value=0](), scope: LoopAdd
  %3 : int = prim::Constant[value=1](), scope: LoopAdd
  %4 : int = aten::size(%0, %2), scope: LoopAdd
  %h : Float(*, *) = prim::Loop(%4, %1, %0), scope: LoopAdd
    block0(%i : int, %7 : Float(*, *)):
      %h.1 : Float(*, *) = aten::add(%7, %3, %3), scope: LoopAdd
      -> (%1, %h.1)
  return (%h)

input_1 = torch.ones(5, 16)
print(np.all(np.array_equal(model(input_1), traced_model(input_1))))
```

```
>> True
```
PyTorch ONNX – Final Thoughts

• Custom PyTorch operators can be exported to ONNX.

• Scenario: Custom op implemented in C++, which is not available in PyTorch.

• If equivalent set of ops are in ONNX, then directly exportable and executable in ORT.

• If some ops are missing in ONNX, then register a corresponding custom op in ORT.

• PyTorch has several ops, and some may not be exportable today.

• More details available at: https://pytorch.org/docs/stable/onnx.html
Model operationalization with ONNX

Train models with various frameworks or services

Convert into ONNX with ONNX Converters

HW accelerated inference with ONNX Runtime

Frameworks
- PyTorch
- Caffe2
- Keras
- XGBoost
- TensorFlow
- Chainer

Services
- Azure Custom Vision Service
- Auto Machine Learning Service

Azure
- Azure Machine Learning service
- Ubuntu VM
- Windows Server 2019 VM

Devices
- Edge Cloud & Appliances
- Edge & IoT Devices
A brief history

Problems:

• Teams using different frameworks, none with strong inference
• Teams building their own inference solutions
• Teams spending months to rewrite Python models into C++ code
• Optimizations developed by one team not accessible to others

Solution:

• Common inference engine containing all the optimizations from across Microsoft that works with multiple frameworks and runs everywhere inference needed
Inference – open source ONNX Runtime

a high-performance inference engine for machine learning models in the ONNX format

Flexible
- Supports full ONNX-ML spec (v1.2-1.6)
- Supports CPU, GPU, VPU
- C#, C, C++, Java and Python APIs

Cross Platform
- Works on - Mac, Windows, Linux - x86, x64, ARM
- Also built-in to Windows 10 natively (WinML)

Extensible
- Extensible architecture to plug-in optimizers and hardware accelerators

github.com/microsoft/onnxruntime
Leverages and abstracts hardware accelerators

```python
import onnxruntime as rt
from PIL import Image

# Load and preprocess image
image = Image.open('TestElephant.jpg')
x = preprocessing(image)
x = x.numpy

# Create ORT inference session and run inference
sess = rt.InferenceSession("resnet50.onnx")
result = sess.run([output_name], {input_name: x})
```
BERT With ONNX Runtime (Bing/Office)

Apply BERT model to **every Bing search query globally** making Bing results more relevant and intelligent -> latency and cost challenges

ORT Inferences Bing’s 3-layer BERT with 128 sequence length
- On CPU, 17x latency speed up with ~100 queries per second throughput.
- On NVIDIA GPUs, more than 3x latency speed up with ~10,000 queries per second throughput on batch size of 64

ORT inferences BERT-SQUAD with 128 sequence length and batch size 1 on Azure Standard NC6S_v3 (GPU V100)
- in 1.7 ms for 12-layer fp16 BERT-SQUAD.
- in 4.0 ms for 24-layer fp16 BERT-SQUAD.

<table>
<thead>
<tr>
<th></th>
<th>Batch size</th>
<th>Inference on</th>
<th>Throughput (Query per second)</th>
<th>Latency (milliseconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPU</td>
<td>Original 3-layer BERT</td>
<td>1</td>
<td>Azure Standard F16s_v2 (CPU)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>ONNX Model</td>
<td>1</td>
<td>Azure Standard F16s_v2 (CPU) with ONNX Runtime</td>
<td>111</td>
</tr>
<tr>
<td>GPU</td>
<td>Original 3-layer BERT</td>
<td>4</td>
<td>Azure NV6 GPU VM</td>
<td>200</td>
</tr>
<tr>
<td></td>
<td>ONNX Model</td>
<td>4</td>
<td>Azure NV6 GPU VM with ONNX Runtime</td>
<td>500</td>
</tr>
<tr>
<td></td>
<td>ONNX Model</td>
<td>64</td>
<td>Azure NC6S_v3 GPU VM with ONNX Runtime + System Optimization (Tensor Core with mixed precision, same accuracy)</td>
<td>10667</td>
</tr>
</tbody>
</table>
ONNX Runtime HW Ecosystem

FLEXIBILITY

CPUs

GPUs

FPGAs

Execution Providers

Public Preview

Generally Available

nGraph

arm

Intel Math Kernel Library

nGraph

NVIDIA

SensorRT

CUSTOM

Coming Soon

VPU/NPU

Generally Available

OpenVINO

EFFICIENCY

EDGE
ONNX Runtime + TensorRT

TensorRT

Platform for High-Performance Deep Learning Inference

• Maximize throughput for latency-critical apps with optimizer and runtime
• Optimize your network with layer and tensor fusions, dynamic tensor memory and kernel auto tuning
• Deploy responsive and memory efficient apps with INT8 & FP16 optimizations
• Fully integrated as a backend in ONNX runtime
Bing Visual Search - enables the ability to visually identify a flower from a picture, supplemented with rich information about the flower.

PERFORMANCE

2x performance gain on ONNX Runtime with TensorRT
Simplify model operationalization with an easy-to-use pipeline for

- model conversion to ONNX
- performance optimization with ONNX Runtime

4 Ways to use OLive

- Use With Command Line Tool
- Use With Local Web App
- Use With Jupyter Notebook
- Use Pipeline With Kubeflow

https://github.com/microsoft/olive
Demo
Try it for yourself

- **ONNX** at
 https://github.com/onnx/onnx
- **Pytorch-ONNX exporter** at
- **ONNX Runtime** at
 https://github.com/microsoft/onnxruntime
- **TensorRT Instructions** at
 aka.ms/onnxruntime-tensorrt
- **Olive** at
 https://github.com/microsoft/olive