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About Us



• Motivation & Tool Introduction.

• Basic usage.

• Advanced usage.

• Demo.
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Outline



Start by reading a N page paper. If we are lucky,

• There is a block diagram with layer attributes, tensor shapes and datatype.

• The implementation is the same as the description.

• The network does not use other networks as submodules.

Current profilers e.g. NVprof and NSight Systems provide no information about

• Layer parameters, tensor shapes, data types.

• Call stack i.e. file name, line number.

• Direction e.g. fprop, bprop, loss, optimizer.

• Flops, bytes, tensor core usage per kernel.
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Challenges we faced as DL analysts



For any network, quickly obtain a table like this:

Available from NVprof / Nsight Systems.

PyProf: Intercept PyTorch calls and obtain the call trace, op and parameters.

PyProf: Calculate direction, flops, bytes and Tensor Core (TC) usage.

PyProf: User annotation (optional).

What does a DL analyst want?

Layer Direction Call Trace Op Parameters Kernel Silicon Time Thread 
Id

Device 
Id

Stream 
Id

Grid 
Dim

Block 
Dim

Flops Bytes TC

Self Attention fprop attn.py: 23, … Linear MNK, fp16 volta_s884… 200 23 1 7 x,y,z x,y,z 1000 500 1

Block_1a fprop block.py: 43, Conv NCHWKPQRS, fp32 cudnn_... 130 23 1 7 x,y,z x,y,z 2000 400 1

Hadamard fprop net.py: 73, … mul T=(128,256), fp16 pointwise… 110 23 1 7 x,y,z x,y,z 10 2000 0
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ResNet50



• Network: Analyze any network e.g. Torchvision, MLPerf, BERT, GPT, Waveglow, Tacotron2.

• Fast: Analyze any network in 10 min e.g. entire Transformer inference with ~ 200, 000 kernels.

• Coverage: Supports lot of layers e.g. Conv, GEMM, Pointwise, Reduction, Loss, Optimizer etc.

• Low effort: About 5 lines of instrumentation.

• Plug & Play: No changes to PyTorch.
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Salient Features
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“For me PyProf was the fastest way to analyze the sequence of GPU kernels that get executed during
beam search. The availability of high level information, such as GEMM dimensions made it much easier
to understand what was going on.”

-- User 1

“I used PyProf to profile GPT2 in a single GPU system. It took less than 10 minutes to set up and provided 
deep insights such as what layers are launched, what are the compute bottlenecks and most importantly 
program trace of the specific performance-limiting kernel. Thanks, PyProf team!”

-- User 2
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Testimonials



“Deep learning models like Transformer language translation or BERT language models can have on the
order of 800 to 1000 kernels in a training step. While there is a repetitive pattern to the kernels, you likely
have to be an expert in cuDNN, cuBLAS, and PyTorch kernel naming conventions to decipher the
difference in kernels over such a large pool of kernels. PyProf, out-of-the-box, allows the model writer to
see kernel times in the context of their model giving them better instant feedback on hot spots in their
model that they otherwise might ignore given the high bar of analysis effort. Having done the analysis
with and without PyProf, I saw my time commitment shrink from a day or more to more like an hour or
two!”

-- User 3

“PyProf reduced the time it takes to analyze our neural network workloads by an order of magnitude. Its
modular software design has allowed us to integrate it to our workflow, as a result it had a positive
impact for several teams at once.”

-- User 4
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Testimonials



Basic Usage
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• Take any off the shelf PyTorch network.

• Add ~ 5 lines of instrumentation code.

• Run NVprof/Nsight Systems to generate a SQL database.

• Extract layer name, call trace, direction, operator, kernel name, tensor dims & type, silicon time etc.

• Use the operator, tensor dimensions and type to calculate flops and bytes per kernel.
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Basic Usage
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• import pyprof: Intercept all PyTorch, custom functions and modules.

• Run NVprof/NSight Systems to obtain a SQL database.

• parse.py: Extract information from the SQL database.

• prof.py: Use this information to calculate flops and bytes.
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PyProf: Components and Flow

net.py
parse.py prof.py

NVprof/ 
NSight

net.py net.sql

import pyprof
pyprof.init()

net.dict net.csv

NVVP

GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020



# examples/simple.py

import torch
import torch.cuda.profiler as profiler               # Import CUDA profiler
import pyprof # Import pyprof
pyprof.init()                                        # Initialize pyprof

with torch.autograd.profiler.emit_nvtx():            # Enable PyTorch NVTX
for epoch in range(100):

for iteration in range(100):
if (epoch == 0 and iteration == 20):

profiler.start()                     # Start profiler (optional)

...

if (epoch == 0 and iteration == 25):
profiler.stop()                      # Stop profiler (optional)
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Code Instrumentation



# If you did not use profiler start/stop
$ nvprof

-f # Overwrite existing file
-o net.sql # Create net.sql
python net.py

# If you used profiler start/stop
$ nvprof

-f
-o net.sql
--profile-from-start off # Profiling start/stop inside net.py
python net.py
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NVprof



$ nsys profile
-f true # Overwrite existing files
-o net # Create net.qdrep (used by Nsys)
-c cudaProfilerApi # Control profile start/stop, like NVprof
-s none # Don’t sample CPU (otherwise very slow)
--stop-on-range-end true
--export sqlite # Export net.sql (similar to NVprof)
python net.py
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NSight Systems



$ parse/parse.py net.sql > net.dict

For each GPU kernel extract
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Parse SQL DB

Tool Value Example

NVProf / NSight Kernel Name elementwise_kernel

Duration 44736 ns

Grid and block dimensions (160,1,1) (128,1,1)

Thread Id, Device Id, Stream Id 23, 0, 7

+ PyProf Call stack resnet.py:210, resnet.py:168 

Layer name Conv2_x:Bottleneck_1:ReLU
Operator ReLU
Tensor Shapes [32, 64, 56, 56]
Datatype fp16



$ prof/prof.py --csv net.dict # CSV output

$ prof/prof.py net.dict # Space separated output

$ prof/prof.py –w 150 net.dict # Columnated output with width 150 

$ prof/prof.py –c op,kernel,sil net.dict # Space separated output with 3 cols

In addition to the previous information, for every GPU kernel obtain

• Direction (fprop, bprop).

• Flops and bytes.

• Tensor Core Usage.
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Get Flops, Bytes & TC Usage



Advanced Usage
(Optional)
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• Layer annotation.

• Custom functions and modules.

• Extensibility.
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Advanced Usage



# examples/user_annotation/resnet.py
# Use the “layer:” prefix

class Bottleneck(nn.Module):
def forward(self, x):

nvtx.range_push("layer:Bottleneck_{}".format(self.id)) # NVTX push marker.

nvtx.range_push("layer:Conv1") # Nested NVTX push/pop markers.
out = self.conv1(x)
nvtx.range_pop()

nvtx.range_push("layer:BN1") # Use the “layer:” prefix.
out = self.bn1(out)
nvtx.range_pop()

nvtx.range_push("layer:ReLU")
out = self.relu(out)
nvtx.range_pop()
...
nvtx.range_pop() # NVTX pop marker.
return out
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Layer Annotation



# examples/custom_func_module/custom_function.py

import torch
import pyprof
pyprof.init()

class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, in1, in2):

out = in1 + in2                    # This could be a custom C++ function.
return out

@staticmethod
def backward(ctx, grad):

in1_grad, in2_grad = grad, grad    # This could be a custom C++ function.
return in1_grad, in2_grad

# Hook the forward and backward functions to pyprof.
pyprof.wrap(Foo, 'forward')
pyprof.wrap(Foo, 'backward')
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Custom Function



# examples/custom_func_module/custom_module.py

import torch
import pyprof
pyprof.init()

class Foo(torch.nn.Module):
def __init__(self, size):

super(Foo, self).__init__()
self.n = torch.nn.Parameter(torch.ones(size))
self.m = torch.nn.Parameter(torch.ones(size))

def forward(self, input):
return self.n*input + self.m # This could be a custom C++ function.

# Hook the forward function to pyprof.
pyprof.wrap(Foo, 'forward')
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Custom Module



• For custom functions and modules, users can add flops and bytes calculation.

• Python code is easy to extend – no need to recompile, no need to change the PyTorch backend and 
resolve merge conflicts on every version upgrade.
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Extensibility



• NvProf / Nsight Systems tell us what the hotspots are, but not if we can act on them.

• If a kernel runs close to max perf based on FLOPs and bytes (and maximum FLOPs and bandwidth of the 
GPU), then there’s no point in optimizing it even if it’s a hotspot.

• If the ideal timing based on FLOPs and bytes (max(compute_time, bandwidth_time)) is much shorter 
than the silicon time, there’s scope for improvement.

• Tensor Core usage (conv): for Volta, convolutions should have the input channel count (C) and the 
output channel count (K) divisible by 8, in order to use tensor cores. For Turing, it’s optimal for C and K 
to be divisible by 16. 

• Tensor core usage (GEMM): M, N and K divisible by 8 (Volta) or 16 (Turing)

(https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html)
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Actionable Items

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html


• We presented PyProf, a tool which automates end-to-end kernel-level neural network analysis for 
PyTorch.

• Adding ~5 lines of code generates layer type, dimensions, data type, direction, layer parameters, CUDA 
launch information, kernel duration, FLOPs and bandwidth.

• The tool is really easy to use and extend.

• From weeks to minutes to actionable insights.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 26

Summary

Layer Direction Call Trace Op Parameters Kernel Silicon Time Thread 
Id

Device 
Id

Stream 
Id

Grid 
Dim

Block 
Dim

Flops Bytes TC

Self Attention fprop attn.py: 23, … Linear MNK, fp16 volta_s884… 200 23 1 7 x,y,z x,y,z 1000 500 1

Block_1a fprop block.py: 43, Conv NCHWKPQRS, fp32 cudnn_... 130 23 1 7 x,y,z x,y,z 2000 400 1

Hadamard fprop net.py: 73, … mul T=(128,256), fp16 pointwise… 110 23 1 7 x,y,z x,y,z 10 2000 0



• The original code for PyProf used to be in Apex: https://github.com/NVIDIA/apex/tree/master/apex/pyprof

• We created a new repo to rapidly iterate over new features (e.g. Nsight Systems support). The latest 
code can be found at: https://github.com/dlacceleration/pyprof

• NVIDIA is planning to create a new home for PyProf. Our repo will point to it once it goes live.
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Repository Note
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GitHub: https://github.com/dlacceleration/pyprof

Aditya: aditya.iitb@gmail.com, https://github.com/adityaiitb

Marek: mkolod@gmail.com, https://github.com/mkolod
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Contact: Questions & Contributions

https://github.com/dlacceleration/pyprof
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https://github.com/adityaiitb
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https://github.com/mkolod

