
PyProf: Automating End-to-End
PyTorch Profiling♯

https://github.com/dlacceleration/pyprof

Aditya Agrawal†, Marek Kolodziej††
♯ Work done at Nvidia

† Now at Google †† Now at Uber ATG

https://github.com/dlacceleration/pyprof

• Michael Carilli

• Alex Settle

• Carl Case

• Natalia Gimelshein

• Bryan Catanzaro

• Jie Jiang

• Andrew Huang

• Sandeep Behera

• Kevin Stephano

other early adopters.

March 25, 2020 2

Acknowledgements

GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020

Aditya is a computer architect and Deep Learning performance engineer. He analyzes and optimizes Deep
Learning network performance on a variety of frameworks (PyTorch, TensorFlow etc.) and architectures
(GPU, TPU etc.). He was part of the MLPerf team at Nvidia.

Marek is a Tech Lead Manager for GPU Systems on Uber ATG’s Autonomy Team. He has a decade of
experience as a machine learning engineer, accelerating distributed algorithms on heterogeneous clusters.
While at Nvidia, he optimized deep learning framework backends (TF, MXNet, PyTorch) for training and
inference on platforms ranging from data center (Tesla) to embedded (Tegra).

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 3

About Us

• Motivation & Tool Introduction.

• Basic usage.

• Advanced usage.

• Demo.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 4

Outline

Start by reading a N page paper. If we are lucky,

• There is a block diagram with layer attributes, tensor shapes and datatype.

• The implementation is the same as the description.

• The network does not use other networks as submodules.

Current profilers e.g. NVprof and NSight Systems provide no information about

• Layer parameters, tensor shapes, data types.

• Call stack i.e. file name, line number.

• Direction e.g. fprop, bprop, loss, optimizer.

• Flops, bytes, tensor core usage per kernel.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 5

Challenges we faced as DL analysts

For any network, quickly obtain a table like this:

Available from NVprof / Nsight Systems.

PyProf: Intercept PyTorch calls and obtain the call trace, op and parameters.

PyProf: Calculate direction, flops, bytes and Tensor Core (TC) usage.

PyProf: User annotation (optional).

What does a DL analyst want?

Layer Direction Call Trace Op Parameters Kernel Silicon Time Thread
Id

Device
Id

Stream
Id

Grid
Dim

Block
Dim

Flops Bytes TC

Self Attention fprop attn.py: 23, … Linear MNK, fp16 volta_s884… 200 23 1 7 x,y,z x,y,z 1000 500 1

Block_1a fprop block.py: 43, Conv NCHWKPQRS, fp32 cudnn_... 130 23 1 7 x,y,z x,y,z 2000 400 1

Hadamard fprop net.py: 73, … mul T=(128,256), fp16 pointwise… 110 23 1 7 x,y,z x,y,z 10 2000 0

March 25, 2020 6GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 7

ResNet50

• Network: Analyze any network e.g. Torchvision, MLPerf, BERT, GPT, Waveglow, Tacotron2.

• Fast: Analyze any network in 10 min e.g. entire Transformer inference with ~ 200, 000 kernels.

• Coverage: Supports lot of layers e.g. Conv, GEMM, Pointwise, Reduction, Loss, Optimizer etc.

• Low effort: About 5 lines of instrumentation.

• Plug & Play: No changes to PyTorch.

March 25, 2020 8

Salient Features

GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020

“For me PyProf was the fastest way to analyze the sequence of GPU kernels that get executed during
beam search. The availability of high level information, such as GEMM dimensions made it much easier
to understand what was going on.”

-- User 1

“I used PyProf to profile GPT2 in a single GPU system. It took less than 10 minutes to set up and provided
deep insights such as what layers are launched, what are the compute bottlenecks and most importantly
program trace of the specific performance-limiting kernel. Thanks, PyProf team!”

-- User 2

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 9

Testimonials

“Deep learning models like Transformer language translation or BERT language models can have on the
order of 800 to 1000 kernels in a training step. While there is a repetitive pattern to the kernels, you likely
have to be an expert in cuDNN, cuBLAS, and PyTorch kernel naming conventions to decipher the
difference in kernels over such a large pool of kernels. PyProf, out-of-the-box, allows the model writer to
see kernel times in the context of their model giving them better instant feedback on hot spots in their
model that they otherwise might ignore given the high bar of analysis effort. Having done the analysis
with and without PyProf, I saw my time commitment shrink from a day or more to more like an hour or
two!”

-- User 3

“PyProf reduced the time it takes to analyze our neural network workloads by an order of magnitude. Its
modular software design has allowed us to integrate it to our workflow, as a result it had a positive
impact for several teams at once.”

-- User 4

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 10

Testimonials

Basic Usage

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 11

• Take any off the shelf PyTorch network.

• Add ~ 5 lines of instrumentation code.

• Run NVprof/Nsight Systems to generate a SQL database.

• Extract layer name, call trace, direction, operator, kernel name, tensor dims & type, silicon time etc.

• Use the operator, tensor dimensions and type to calculate flops and bytes per kernel.

March 25, 2020 12

Basic Usage

GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020

• import pyprof: Intercept all PyTorch, custom functions and modules.

• Run NVprof/NSight Systems to obtain a SQL database.

• parse.py: Extract information from the SQL database.

• prof.py: Use this information to calculate flops and bytes.

March 25, 2020 13

PyProf: Components and Flow

net.py
parse.py prof.py

NVprof/
NSight

net.py net.sql

import pyprof
pyprof.init()

net.dict net.csv

NVVP

GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020

examples/simple.py

import torch
import torch.cuda.profiler as profiler # Import CUDA profiler
import pyprof # Import pyprof
pyprof.init() # Initialize pyprof

with torch.autograd.profiler.emit_nvtx(): # Enable PyTorch NVTX
for epoch in range(100):

for iteration in range(100):
if (epoch == 0 and iteration == 20):

profiler.start() # Start profiler (optional)

...

if (epoch == 0 and iteration == 25):
profiler.stop() # Stop profiler (optional)

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 14

Code Instrumentation

If you did not use profiler start/stop
$ nvprof

-f # Overwrite existing file
-o net.sql # Create net.sql
python net.py

If you used profiler start/stop
$ nvprof

-f
-o net.sql
--profile-from-start off # Profiling start/stop inside net.py
python net.py

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 15

NVprof

$ nsys profile
-f true # Overwrite existing files
-o net # Create net.qdrep (used by Nsys)
-c cudaProfilerApi # Control profile start/stop, like NVprof
-s none # Don’t sample CPU (otherwise very slow)
--stop-on-range-end true
--export sqlite # Export net.sql (similar to NVprof)
python net.py

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 16

NSight Systems

$ parse/parse.py net.sql > net.dict

For each GPU kernel extract

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 17

Parse SQL DB

Tool Value Example

NVProf / NSight Kernel Name elementwise_kernel

Duration 44736 ns

Grid and block dimensions (160,1,1) (128,1,1)

Thread Id, Device Id, Stream Id 23, 0, 7

+ PyProf Call stack resnet.py:210, resnet.py:168

Layer name Conv2_x:Bottleneck_1:ReLU
Operator ReLU
Tensor Shapes [32, 64, 56, 56]
Datatype fp16

$ prof/prof.py --csv net.dict # CSV output

$ prof/prof.py net.dict # Space separated output

$ prof/prof.py –w 150 net.dict # Columnated output with width 150

$ prof/prof.py –c op,kernel,sil net.dict # Space separated output with 3 cols

In addition to the previous information, for every GPU kernel obtain

• Direction (fprop, bprop).

• Flops and bytes.

• Tensor Core Usage.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 18

Get Flops, Bytes & TC Usage

Advanced Usage
(Optional)

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 19

• Layer annotation.

• Custom functions and modules.

• Extensibility.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 20

Advanced Usage

examples/user_annotation/resnet.py
Use the “layer:” prefix

class Bottleneck(nn.Module):
def forward(self, x):

nvtx.range_push("layer:Bottleneck_{}".format(self.id)) # NVTX push marker.

nvtx.range_push("layer:Conv1") # Nested NVTX push/pop markers.
out = self.conv1(x)
nvtx.range_pop()

nvtx.range_push("layer:BN1") # Use the “layer:” prefix.
out = self.bn1(out)
nvtx.range_pop()

nvtx.range_push("layer:ReLU")
out = self.relu(out)
nvtx.range_pop()
...
nvtx.range_pop() # NVTX pop marker.
return out

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 21

Layer Annotation

examples/custom_func_module/custom_function.py

import torch
import pyprof
pyprof.init()

class Foo(torch.autograd.Function):
@staticmethod
def forward(ctx, in1, in2):

out = in1 + in2 # This could be a custom C++ function.
return out

@staticmethod
def backward(ctx, grad):

in1_grad, in2_grad = grad, grad # This could be a custom C++ function.
return in1_grad, in2_grad

Hook the forward and backward functions to pyprof.
pyprof.wrap(Foo, 'forward')
pyprof.wrap(Foo, 'backward')

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 22

Custom Function

examples/custom_func_module/custom_module.py

import torch
import pyprof
pyprof.init()

class Foo(torch.nn.Module):
def __init__(self, size):

super(Foo, self).__init__()
self.n = torch.nn.Parameter(torch.ones(size))
self.m = torch.nn.Parameter(torch.ones(size))

def forward(self, input):
return self.n*input + self.m # This could be a custom C++ function.

Hook the forward function to pyprof.
pyprof.wrap(Foo, 'forward')

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 23

Custom Module

• For custom functions and modules, users can add flops and bytes calculation.

• Python code is easy to extend – no need to recompile, no need to change the PyTorch backend and
resolve merge conflicts on every version upgrade.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 24

Extensibility

• NvProf / Nsight Systems tell us what the hotspots are, but not if we can act on them.

• If a kernel runs close to max perf based on FLOPs and bytes (and maximum FLOPs and bandwidth of the
GPU), then there’s no point in optimizing it even if it’s a hotspot.

• If the ideal timing based on FLOPs and bytes (max(compute_time, bandwidth_time)) is much shorter
than the silicon time, there’s scope for improvement.

• Tensor Core usage (conv): for Volta, convolutions should have the input channel count (C) and the
output channel count (K) divisible by 8, in order to use tensor cores. For Turing, it’s optimal for C and K
to be divisible by 16.

• Tensor core usage (GEMM): M, N and K divisible by 8 (Volta) or 16 (Turing)

(https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html)

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 25

Actionable Items

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html

• We presented PyProf, a tool which automates end-to-end kernel-level neural network analysis for
PyTorch.

• Adding ~5 lines of code generates layer type, dimensions, data type, direction, layer parameters, CUDA
launch information, kernel duration, FLOPs and bandwidth.

• The tool is really easy to use and extend.

• From weeks to minutes to actionable insights.

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 26

Summary

Layer Direction Call Trace Op Parameters Kernel Silicon Time Thread
Id

Device
Id

Stream
Id

Grid
Dim

Block
Dim

Flops Bytes TC

Self Attention fprop attn.py: 23, … Linear MNK, fp16 volta_s884… 200 23 1 7 x,y,z x,y,z 1000 500 1

Block_1a fprop block.py: 43, Conv NCHWKPQRS, fp32 cudnn_... 130 23 1 7 x,y,z x,y,z 2000 400 1

Hadamard fprop net.py: 73, … mul T=(128,256), fp16 pointwise… 110 23 1 7 x,y,z x,y,z 10 2000 0

• The original code for PyProf used to be in Apex: https://github.com/NVIDIA/apex/tree/master/apex/pyprof

• We created a new repo to rapidly iterate over new features (e.g. Nsight Systems support). The latest
code can be found at: https://github.com/dlacceleration/pyprof

• NVIDIA is planning to create a new home for PyProf. Our repo will point to it once it goes live.

March 25, 2020 27

Repository Note

GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020

https://github.com/NVIDIA/apex/tree/master/apex/pyprof
https://github.com/dlacceleration/pyprof

GitHub: https://github.com/dlacceleration/pyprof

Aditya: aditya.iitb@gmail.com, https://github.com/adityaiitb

Marek: mkolod@gmail.com, https://github.com/mkolod

March 25, 2020 GPU TECHNOLOGY CONFERENCE (GTC), SAN JOSE 2020 28

Contact: Questions & Contributions

https://github.com/dlacceleration/pyprof
http://gmail.com
https://github.com/adityaiitb
http://gmail.com
https://github.com/mkolod

