
CONNECT WITH THE EXPERTS
Directive-Based GPU Programming with

OpenACC
(CWE21815)

Stefan Maintz, Senior Development Technology Engineer, NVIDIA
Jeff Larkin, Senior DevTech Software Engineer, NVIDIA
Alexey Romanenko, Senior Developer Technology Engineer, NVIDIA
Markus Wetzstein, HPC Development Technology Engineer, NVIDIA
Vishal Mehta, Developer Technology, NVIDIA
Louis Stuber, Compute Developer Technology Engineer, NVIDIA
Andreas Hehn, Developer Technology Engineer, NVIDIA
Julia Levites, Senior Product Manager

OpenACC Directives

39
87 107

150
200 236

SC15 SC16 SC17 SC18 ISC19 SC19

a directive-based parallel programming model designed for
usability, performance, and portability

3 OF TOP 5 HPC 18% OF INCITE AT SUMMIT PLATFORMS SUPPORTED

OPENACC APPS >200K DOWNLOADS

NVIDIA GPU
X86 CPU

POWER CPU
Sunway

ARM CPU
AMD GPU

OPENACC SLACK MEMBERS

150 305 361
692

1154
1724

ISC17 SC17 ISC18 SC18 ISC19 SC19

OPENACC Resources

Resources
https://www.openacc.org/resources

Success Stories
https://www.openacc.org/success-stories

Events
https://www.openacc.org/events

Guides ● Talks ● Tutorials ● Videos ● Books ● Spec ● Code Samples ● Teaching Materials ● Events ● Success Stories ● Courses ● Slack ● Stack Overflow

Compilers and Tools
https://www.openacc.org/tools

FREE

Compilers

https://www.openacc.org/community#slack

https://www.openacc.org/resources
https://www.openacc.org/success-stories
https://www.openacc.org/events
https://gcc.gnu.org/wiki/OpenACC
https://www.openacc.org/tools
https://www.pgroup.com/products/community.htm
https://www.openacc.org/community#slack

Frequently Asked Questions
(CWE21815)

1. What do I need to accelerate my code with OpenACC? Is
it free?

OpenACC is free to use, all you need is a C, C++ or Fortran application and an
OpenACC compiler, like PGI or GCC.

2. What are the benefits of using OpenACC?

OpenACC allows you to use a single source code to run on your CPU (serial and
parallel), GPU, or other parallel processor.

3. How interoperable is OpenACC with other frameworks
or libraries?

OpenACC works well with CUDA, GPU libraries, MPI, and other frameworks.

Back-up Material

INTRODUCTION TO OPENACC

3 WAYS TO ACCELERATE
APPLICATIONS

Applications

Libraries

Easy to use

Most Performance

Programming

Languages

Most Performance

Most Flexibility

Easy to use

Portable code

Compiler

Directives

OpenACC

OPENACC IS…

a directives-based parallel

programming model

designed for performance

and portability.

main()
{
<serial code>
#pragma acc kernels
{
<parallel code>

}
}

Add Simple Compiler Directive

OpenACC Directives

Manage
Data

Movement

Initiate
Parallel

Execution

Optimize
Loop

Mappings

#pragma acc data copyin(a,b) copyout(c)
{

...
#pragma acc parallel
{
#pragma acc loop gang

for (i = 0; i < n; ++i) {
#pragma acc loop vector

for (j = 0; j < n; ++j) {
c[i][j] = a[i][j] + b[i][j];
...

}
}

}
...

}

CPU, GPU, Manycore

Performance portable

Interoperable

Single source

Incremental

Single SourceIncremental

OPENACC STRENGTHS

▪ Maintain existing
sequential code

▪ Add annotations to
expose parallelism

▪ After verifying
correctness, annotate
more of the code

▪ Rebuild the same code
on multiple
architectures

▪ Compiler determines
how to parallelize for
the desired machine

▪ Sequential code is
maintained

Low Learning Curve

▪ OpenACC is meant to
be easy to use, and
easy to learn

▪ Programmer remains
in familiar C, C++, or
Fortran

▪ No requirement to
learn low-level details
of the hardware.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

!
How much work 1 worker
can do is limited by his
speed.

A single worker can only
move so fast.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

!
Even if we increase the
size of his roller, he can
only paint so fast.

We need more workers!

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

Multiple workers can do
more work and share
resources, if organized
properly.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

By organizing our workers
into groups (gangs), they
can effectively work together
within a floor.

Groups (gangs) on different
floors can operate
independently.

Since gangs operate
independently, we can use
as many or few as we need.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

Even if there’s not enough
gangs for each floor, they
can move to another floor
when ready.

GANGS, WORKERS, AND VECTORS
DEMYSTIFIED

Our painter is like an
OpenACC worker, he can
only do so much.

His roller is like a vector, he
can move faster by covering
more wall at once.

Eventually we need more
workers, which can be
organized into gangs to get
more done.

Workers

Gang

Vector

LOOP OPTIMIZATION RULES OF THUMB

▪ It is rarely a good idea to set the number of gangs in your code, let the compiler
decide.

▪ Most of the time you can effectively tune a loop nest by adjusting only the vector
length.

▪ It is rare to use a worker loop on NVIDIA GPUs. When the vector length is very
short, a worker loop can increase the parallelism in your gang (thread block).

▪ When possible, the vector loop should step through your arrays consecutively
(stride==1)

▪ Gangs should come from outer loops, vectors from inner

This material is released by NVIDIA Corporation under the Creative Commons Attribution 4.0 International (CC BY 4.0)

INTEROPERABILITY EXAMPLES

▪ If you would like some more full code examples of OpenACC interoperability, follow
the github link below to view a repository that contains many of the codes discussed
in this module.

▪ If you would like to read some additional information about the concepts covered
today, follow the second link to an NVIDIA devblog about OpenACC interoperability.

https://github.com/jefflarkin/openacc-interoperability

https://devblogs.nvidia.com/3-versatile-openacc-interoperability-techniques/

https://github.com/jefflarkin/openacc-interoperability
https://devblogs.nvidia.com/3-versatile-openacc-interoperability-techniques/

