<ANVIDIA. * . | ‘
FUTURE OF ISO AND CUDA C++ °

Bryce Adelstein Lelbach @blelbach
Chief ISO C++ Library Designer, US Programming Language Standards Chair

Olivier Giroux @__simt__
ISO C++ Concurrency and Parallelism Chair

Michat Dominiak @Guriwesu

The NVI D IA Polish C++ Standards Chair, Extended Floating Point Author
Jared Hob Kk
ISO C+ + Pgr;?lelisn?TSell;(r)csject Editor, Executors Author
Delegatlon David Olsen

Scalable Synchronization Library Author, Extended Floating Point Author

Timothy Costa
Product Manager, HPC Software

Graham Lopez
Product Manager, HPC Compilers

#include <C++> Copyright (C) 2020 NVIDIA 2 <SANVIDIA.

2002
IS: trunk

TSes: feature
branches for
separate release
& then merge

2011

PAVOE 2004 2005 2006 2007 2008 2009 2010

C++0x/11

Library TR Decimal TR (not merged)

Library TR2 (deferred to post-C+-+0x, then replaced by File System TS)

Math Special Functions IS

2012 2013 2014 2015 2016 2017 2018 2019

TS bars start and end
where work on detailed
specification wording
starts ("adopt initial
working draft”) and ends
(“send to publication”)

Future starts/ends are
shaded to indicate that
dates, and TS branches
are approximate and
subject to change

C++17
)

C++20
_ A |
Networking Reflection

=/ |

Lib Fundamentals 1 s Lib Fundamentals 2 L Lib Fundamentals 3

Parallelism 1 Parallelism 2

R-v

anges

File System

Concepts

.0

Modules

Tx Memory (notto merge)

O
+
.

Coroutines

#include <C++>

Concurrency 1

Arrays (abandoned)

Source: https://isocpp.org/std/status

Copyright (C) 2020 NVIDIA

3 <ANVIDIA.

https://isocpp.org/std/status

C++20

The Biggest Release in a Decade

> Modules

> Coroutines

> Concepts

> Ranges

> Scalable Synchronization

#include <C++> Copyright (C) 2020 NVIDIA 4 <ANVIDIA.

C++23

Asynchrony and Parallelism

> Standard Library Modules
> Coroutine Support Library
> Executors

> Networking
»mdspan/mdarray

#include <C++> Copyright (C) 2020 NVIDI A 5 <ANVIDIA.

C++23 Executors
Simplifying Work Creation

void compute(int resource, ...) {
switch(resource) {
case GPU:
kernel<<<...>>>(...);
case MULTI GPU:

cudaSetDevice(9);

kernel<<<...>>>(...); void compute(executor auto ex, ...) {
cudaSetDevice(1); VS execute(ex, ...);
kernel<<<...>>>(...); }

case COOP_GPU:
cudaLaunchCooperativeKernel(...);
case GRAPH:
cudaGraphLaunch(...);

#include <C++> Copyright (C) 2020 NVIDIA 6 <ANVIDIA.

C++23 Executors

static thread pool pool(16);
executor auto ex = pool.executor();

execute(ex, []{ cout << "Hello world from the thread pool!"; });
sender auto begin

sender auto hi_again
sender auto work

schedule(ex);
then(begin, []{ cout << "Hi again! Have an int."; return 13; });
then(hi_again, [](int arg) { return arg + 42; });

receiver auto print_result = as receiver([](int arg) { cout << "Received.\n"; });

submit(work, print_result);

#include <C++> Copyright (C) 2020 NVIDIA 7 <ANVIDIA

Linear Algebra & C++23 mdspan/mdarray

auto x = ...; // An “mdspan<double, dynamic extent>".
autoy = ...; // An "mdspan<double, dynamic extent>".
auto A = ...; // An “mdspan<double, dynamic extent, dynamic extent>".

//y = 3.0 *% A* x;

matrix vector product(par, scaled view(3.0, A), X, y);

//y =3.06*A* x4+ 2.0 %*y;

matrix vector product(par, scaled view(3.0, A), X,
scaled view(2.9, y), Vy);

// y = transpose(A) * x;
matrix vector product(par, transpose view(A), X, y);

#include <C++> Copyright (C) 2020 NVIDIA 8 <ANVIDIA.

C++23 Extended Floating Point Types

std:

std:

std:

std:

std:

#include <C++>

:floatle t
:float32 t
:floated t
:floatl28 t

:bfloatl6 t

// IEEE-754-2008 binaryl6.
// IEEE-754-2008 binary32.
// IEEE-754-2008 binary64.
// IEEE-754-2008 binary128.

// binary32 with 16 bits truncated.

Copyright (C) 2020 NVIDIA

9 <ANVIDIA.

Why does NVIDIA care about ISO C++?

What does NVIDIA hope to accomplish in ISO C++7?

What is the relationship between ISO C++ and CUDA C++?

#tinclude <C++> Copyright (C) 2020 NVIDIA 10 <ANVIDIA.

R J

<SANVIDIA

N

\

&
i

|
:
! l |
4 / : A - | . i
/ N
A4 S X
\‘\ 4 7
h -
>
// '
4./ ““\(
’ ,
/
‘ ,
,
7,
| A/‘r-n —
»

Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA

12

WHY C++?

Copyright (C) 2020 NVIDIA

13

WHAT MAKES C++ PORTABLE?

Copyright (C) 2020 NVIDIA

14

WHAT MAKES C++ PORTABLE?

Relevant in the 80s/90s

Non-8-bit char
Noncommittal sizeof
Non-2’s comp. int
Non-IEEE float
Segmented memory

Non-endian pointers

NNENENREE

Copyright (C) 2020 NVIDIA

15

WHAT MAKES C++ PORTABLE?

Relevant in the 80s/90s Relevant Today

Non-8-bit char
Noncommittal sizeof
Non-2’s comp. int
Non-IEEE float
Segmented memory

Non-endian pointers

NNENENREE

Copyright (C) 2020 NVIDIA

16

WHY IS THIS NOT HELPFUL?

Most options are dictated.

New CPU? Match AARCH64.
New GPU? Match the host.

GPUs match all the hosts.

Most alternatives are bad.
Negligible area savings.
Negligible power savings.

Programmer surprise.

Copyright (C) 2020 NVIDIA

17

1980°S TOPOLOGY

ﬂ “bus”

Copyright (C) 2020 NVIDIA 18

1980°S TOPOLOGY

“bus”

19

1980°S TOPOLOGY

thread of execution value

execution agent object

thread allocation

Copyright (C) 2020 NVIDIA

C++

“bus”

20

1990-2000’S TOPOLOGY

thread of execution value

execution agent object C++11

thread allocation

“bus”

Copyright (C) 2020 NVIDIA 21

2010°S TOPOLOGY

thread of execution value

execution agent object C++11

allocation

thread

“bus”

Copyright (C) 2020 NVIDIA 22

2010°S TOPOLOGY

Pascal
GEFEORCE
GPL

(256 CUDA Cores)

- - Ii"i’fl Df.

36 Tiles
connected by
2D Mesh
Interconnect

3 DDR4 channels

Copyright (C) 2020 NVIDIA

3 DDR4 channels

23

WINTER IS COMING

-
- 4
-

) . -
. GPU-Computing perf 1000X

1.5X per year by 2025
100

1u5 __-'.r—-l . '

e

10¢ v
108 .)

10¢

1980 1990 2000 2010 2020

Future silicon performance wins will come from
architectural innovation, not transistor density scaling.

Copyright (C) 2020 NVIDIA 24

WHAT MAKES C++ PORTABLE?

Copyright (C) 2020 NVIDIA

25

What Makes C++ Portable?

The C++ Execution Model: Memory Model + Forward Progress

« Threads evaluate expressions that
access and modify flat storage.

Happens Before

« Evaluation within a thread is driven by
sequenced before relations.

Sequenced Before Synchronizes With

 Interactions between threads is driven (within a thread) (between threads)
by synchronizes with relations.

Consequence of

- Forward progress promises eventual prosram orcer
termination.

ftinclude <C++> 26 Copyright (C) 2020 NVIDIA <ANVIDIA.

Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA

27

COHERENCY

COHERENCY

Copyright (C) 2020 NVIDIA 29

COHERENCY

Copyright (C) 2020 NVIDIA

GPU ARCH

Tesla & Fermi

Kepler & Maxwell

Pascal, Volta & Turing

“Tastes like memory.”

COHERENCY

CUDA X86 ARM & POWER
1+ cudaMalloc & cudaMemcpy
6+ cudaMallocManaged

(Symmetric Heap)
cudaMallocManaged cudaMallocManaged

E8 (paging) (NVLink)
) malloc malloc
ELUE ks (paging) (NVLink)

Copyright (C) 2020 NVIDIA 31

CONSISTENCY

Completely new hardware memory model in Volta, outline similar to POWER.
Everything but consume is accelerated. Stay tuned about consume.

See the PTX 6.0 ISA programming guide, chapter 8.

Copyright (C) 2020 NVIDIA 32

CPU

PROGRESS

= A chain of evaluations in your code.
= A thing that runs your code.
= A particularly onerous example of that thing.

CPU

CPU

CPU

Copyright (C) 2020 NVIDIA

33

CPU

PROGRESS

= A chain of evaluations in your code.
= A thing that runs your code.
= A particularly onerous example of that thing.

CPU

CPU

CPU

= Runs things that aren’t onerous.

Copyright (C) 2020 NVIDIA

34

PROGRESS

thread of execution thread of execution @ thread of execution

thread of execution

execution agent concurrent e.a. parallel e.a. weakly parallel e.a.

thread GPU / SIMD lane

CPU | CPU
CPU | CPU

std:: / main thread Volta thread / pool

CPU | CPU CPU | CPU CPU | CPU
CPU | CPU CPU | CPU CPU | CPU

Clarification in C++17

w
(631

Copyright (C) 2020 NVIDIA

PROGRESS

* Concurrent Forward Progress: The thread will make
brogress, regardless of whether other threads are making
Drogress.

» Parallel Forward Progress: Once the thread has executed
its first execution step, the thread will make progress.

« Weakly Parallel Forward Progress: The thread is not
guaranteed to make progress.

Copyright (C) 2020 NVIDIA 36

PROGRESS

parallel e.a.

€¢ - b3
Not “business as usual”.

CPU | CPU
CPU | CPU

A concerted effort by
dedicated engineers.

Volta+ is alone of its kind.

Copyright (C) 2020 NVIDIA

37

WARP IMPLEMENTATION

Pre-Volta

32 thread warp

32 thread warp with independent scheduling

Copyright (C) 2020 NVIDIA 38

PASCAL WARP EXECUTION MODEL

No Synchronization Permitted

\

if (threadIdx.x < 4) { X5 Y5
A. '\H
y -\ﬁ
——syncwarp(); —_—
} else {
X;
—syncwarp();
Y;
}

Copyright (C) 2020 NVIDIA 39

VOLTA WARP EXECUTION MODEL

Synchronization may lead to interleaved scheduling!

if (threadIdx.x < 4) {
Aj
__syncwarp(Q);
B;
} else {
X3
__syncwarp(Q);
Y,

Time

Copyright (C) 2020 NVIDIA 40

SCORECARD

Problem Disposition

Memory Coherency Supported since Pascal

Memorv Consistenc Supported since Volta in PTX
Y Y cuda: :std: :atomic<> exposure forthcoming

Supported since Volta
Forward Progress Guarantees Clarified in C++17

Copyright (C) 2020 NVIDIA 41

Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA

42

CUDA C++ IS A SUPERSET OF ISO C++

Host processors can use All processors can use All processors can use
alone isolated together
throw i rtual functi
catch virtuat TUncions <rest of I1SO C++>
dynzﬁilgast function pointers
thr'ead_iocal cuda::std::T
<td- - lambdas

T Coming in a future CUDA release.

Copyright (C) 2020 NVIDIA 43

libcu++
The CUDA C++ Standard Library

Opt-in, heterogeneous, incremental C++ standard library for CUDA.
Open source; port of LLVM’s libc++; contributing upstream.
Version 1 (CUDA 10.2): <atomic> (Pascal+), <type traits>.

Version 2 (CUDA next): atomic<T>: :wait/notify, <barrier>,
<latch>, <counting semaphore> (all Volta+), <chrono»>, <ratio>,
<functional> minus function.

Future priorities: atomic_ref<T>, <complex>, <tuple>, <array>,
<utility>, <cmath>, string processing, ...

#include <C++> Copyright (C) 2020 NVIDIA 44 <SANVIDIA.

#include <C++>

libcu++ is the
opt-in,
heterogeneous,
incremental

CUDA C++ Standard Library.

Copyright (C) 2020 NVIDIA

45 <SANVIDIA.

Opt-in

Does not interfere with or replace your host standard library.

// 1SO C++, host__ only.
#include <atomic>
std::atomic<int> x;

// CUDA C++, host device .
// Strictly conforming to the ISO C++.
#include <cuda/std/atomic>
cuda::std::atomic<int> x;

// CUDA C++, host device .

// Conforming extensions to ISO C++.

#include <cuda/atomic>

cuda: :atomic<int, cuda::thread_scope_ block> x;

#include <C++> Copyright (C) 2020 NVIDIA 46 <ANVIDIA.

Heterogeneous

Copyable/Movable objects can migrate between host & device.
Host & device can call all (member) functions.

Host & device can concurrently use synchronization primitives®.

*: Synchronization primitives must be in managed memory and be declared with cuda: :std: :thread_scope_system.

#tinclude <C++> Copyright (C) 2020 NVIDIA 47 <ANVIDIA.

Incremental
Not a complete standard library today; each release will add more.

#include <C++> Copyright (C) 2020 NVIDIA 48 <ANVIDIA.

Based on LLVM’s libc++

Forked from LLVM’s libc++.
License: Apache 2.0 with LLVM Exception.
NVIDIA is already contributing back to the community:

Freestanding atomic<T>: reviews.llvm.org/D56913

C++20 synchronization library: reviews.llvm.org/Dé68480

#include <C++> Copyright (C) 2020 NVIDIA 49 <ANVIDIA.

https://reviews.llvm.org/D56913
https://reviews.llvm.org/D68480

