
FUTURE OF ISO AND CUDA C++

Bryce Adelstein Lelbach @blelbach
Chief ISO C++ Library Designer, US Programming Language Standards Chair

Olivier Giroux @__simt__
ISO C++ Concurrency and Parallelism Chair

Michał Dominiak @Guriwesu
Polish C++ Standards Chair, Extended Floating Point Author

Jared Hoberock
Parallelism TS Project Editor, Executors Author

David Olsen
Scalable Synchronization Library Author, Extended Floating Point Author

Timothy Costa
Product Manager, HPC Software

Graham Lopez
Product Manager, HPC Compilers

2Copyright (C) 2020 NVIDIA

The NVIDIA
ISO C++

Delegation

3Copyright (C) 2020 NVIDIA

Source: https://isocpp.org/std/status

https://isocpp.org/std/status

C++20

Modules

Coroutines

Concepts

Ranges

Scalable Synchronization

The Biggest Release in a Decade

4Copyright (C) 2020 NVIDIA

C++23

Standard Library Modules

Coroutine Support Library

Executors

Networking

mdspan/mdarray

Asynchrony and Parallelism

5Copyright (C) 2020 NVIDIA

C++23 Executors

void compute(int resource, ...) {
switch(resource) {
case GPU:
kernel<<<...>>>(...);

case MULTI_GPU:
cudaSetDevice(0);
kernel<<<...>>>(...);
cudaSetDevice(1);
kernel<<<...>>>(...);

case COOP_GPU:
cudaLaunchCooperativeKernel(...);

case GRAPH:
cudaGraphLaunch(...);

}
}

Simplifying Work Creation

6Copyright (C) 2020 NVIDIA

void compute(executor auto ex, ...) {
execute(ex, ...);

}
VS

C++23 Executors

static_thread_pool pool(16);
executor auto ex = pool.executor();

execute(ex, []{ cout << "Hello world from the thread pool!"; });

sender auto begin = schedule(ex);
sender auto hi_again = then(begin, []{ cout << "Hi again! Have an int."; return 13; });
sender auto work = then(hi_again, [](int arg) { return arg + 42; });

receiver auto print_result = as_receiver([](int arg) { cout << "Received.\n"; });

submit(work, print_result);

7Copyright (C) 2020 NVIDIA

Linear Algebra & C++23 mdspan/mdarray

auto x = ...; // An `mdspan<double, dynamic_extent>`.
auto y = ...; // An `mdspan<double, dynamic_extent>`.

auto A = ...; // An `mdspan<double, dynamic_extent, dynamic_extent>`.

// y = 3.0 * A * x;
matrix_vector_product(par, scaled_view(3.0, A), x, y);
// y = 3.0 * A * x + 2.0 * y;
matrix_vector_product(par, scaled_view(3.0, A), x,

scaled_view(2.0, y), y);

// y = transpose(A) * x;
matrix_vector_product(par, transpose_view(A), x, y);

8Copyright (C) 2020 NVIDIA

C++23 Extended Floating Point Types

std::float16_t // IEEE-754-2008 binary16.

std::float32_t // IEEE-754-2008 binary32.

std::float64_t // IEEE-754-2008 binary64.

std::float128_t // IEEE-754-2008 binary128.

std::bfloat16_t // binary32 with 16 bits truncated.

9Copyright (C) 2020 NVIDIA

Why does NVIDIA care about ISO C++?

What does NVIDIA hope to accomplish in ISO C++?

What is the relationship between ISO C++ and CUDA C++?

10Copyright (C) 2020 NVIDIA

12

Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA

13

WHY C++?

Copyright (C) 2020 NVIDIA

WHAT MAKES C++ PORTABLE?

14Copyright (C) 2020 NVIDIA

WHAT MAKES C++ PORTABLE?

Relevant in the 80s/90s

Non-8-bit char ✅

Noncommittal sizeof ✅

Non-2’s comp. int ✅

Non-IEEE float ✅

Segmented memory ✅

Non-endian pointers ✅
15Copyright (C) 2020 NVIDIA

WHAT MAKES C++ PORTABLE?

Relevant in the 80s/90s Relevant Today

Non-8-bit char ✅

Noncommittal sizeof ✅

Non-2’s comp. int ✅

Non-IEEE float ✅

Segmented memory ✅ ✅

Non-endian pointers ✅
16Copyright (C) 2020 NVIDIA

BAD CHOICESFALSE CHOICES

WHY IS THIS NOT HELPFUL?

Most options are dictated.

New CPU? Match AARCH64.

New GPU? Match the host.

GPUs match all the hosts.

Most alternatives are bad.

Negligible area savings.

Negligible power savings.

Programmer surprise.

IT’S TOO RISKY IN 2019

17Copyright (C) 2020 NVIDIA

1980’S TOPOLOGY

CPU DRAM

“bus”

18Copyright (C) 2020 NVIDIA

1980’S TOPOLOGY

CPU DRAM

“bus”

I/O

19Copyright (C) 2020 NVIDIA

1980’S TOPOLOGY

CPU DRAM

thread allocation

execution agent object

“bus”

value

C++

I/O

20Copyright (C) 2020 NVIDIA

thread of execution

1990-2000’S TOPOLOGY

CPU
DRAM

“bus”

C++11

thread allocation

execution agent object

thread of execution value

CPU

CPU CPU

I/O

21Copyright (C) 2020 NVIDIA

I/O

2010’S TOPOLOGY

Volta HBM

“bus”

C++11

DRAM

thread allocation

execution agent object

thread of execution value

5120-163840

CPU CPU

CPU CPU

22Copyright (C) 2020 NVIDIA

2010’S TOPOLOGY

23Copyright (C) 2020 NVIDIA

WINTER IS COMING

24

Future silicon performance wins will come from
architectural innovation, not transistor density scaling.

Copyright (C) 2020 NVIDIA

WHAT MAKES C++ PORTABLE?

25Copyright (C) 2020 NVIDIA

What Makes C++ Portable?
The C++ Execution Model: Memory Model + Forward Progress

26

• Threads evaluate expressions that
access and modify flat storage.

• Evaluation within a thread is driven by
sequenced before relations.

• Interactions between threads is driven
by synchronizes with relations.

• Forward progress promises eventual
termination.

Atomic

Acquire

Release

Mutex

Lock

Unlock
…

Sequenced Before

(within a thread)

Synchronizes With

(between threads)

Happens Before

Consequence of

program order

Copyright (C) 2020 NVIDIA

27

Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA

COHERENCY

DRAMCPU

GPU

DRAM

T
H

E
O

R
Y

28Copyright (C) 2020 NVIDIA

COHERENCY
P
R

A
C

T
IC

E CPU GPU

DRAMCPU

GPU

DRAM

T
H

E
O

R
Y

29Copyright (C) 2020 NVIDIA

COHERENCY
P
R

A
C

T
IC

E CPU GPU

DRAMCPU

GPU

DRAM

T
H

E
O

R
Y

NVLINK

30Copyright (C) 2020 NVIDIA

COHERENCY

GPU ARCH CUDA X86 ARM & POWER

Tesla & Fermi 1+ cudaMalloc & cudaMemcpy

Kepler & Maxwell 6+
cudaMallocManaged

(Symmetric Heap)

Pascal, Volta & Turing

“Tastes like memory.”

8+
cudaMallocManaged

(paging)

cudaMallocManaged
(NVLink)

Linux HMM
malloc
(paging)

malloc
(NVLink)

31Copyright (C) 2020 NVIDIA

CONSISTENCY

C++11 load store exchange fence

(not
atomic)

✅ ✅ - -

relaxed ✅ ✅ ✅ -

consume 🔻 - 🔻 -

acquire ✅ - ✅ ✅

release - ✅ ✅ ✅

acq_rel - - ✅ ✅

seq_cst ✅ ✅ ✅ ✅

GPU

DRAMCPU

DRAM

Completely new hardware memory model in Volta, outline similar to POWER.

Everything but consume is accelerated. Stay tuned about consume.

See the PTX 6.0 ISA programming guide, chapter 8.

:

32Copyright (C) 2020 NVIDIA

PROGRESS

thread

execution agent

thread of execution

CPU CPU

CPU CPU

= A chain of evaluations in your code.

= A thing that runs your code.

= A particularly onerous example of that thing.

GPU

= A chain of evaluations in your code.

33Copyright (C) 2020 NVIDIA

PROGRESS

thread

execution agent

thread of execution

CPU CPU

CPU CPU

= A chain of evaluations in your code.

= A thing that runs your code.

= A particularly onerous example of that thing.

GPU

= A chain of evaluations in your code.

= Runs anything.

= Runs things that aren’t onerous.

34Copyright (C) 2020 NVIDIA

PROGRESS

thread

execution agent

thread of execution

CPU CPU

CPU CPU

std:: / main thread

concurrent e.a.

thread of execution

CPU CPU

CPU CPU

Volta

Volta thread / pool

parallel e.a.

thread of execution

CPU CPU

CPU CPU

Other
GPU

GPU / SIMD lane

weakly parallel e.a.

thread of execution

CPU CPU

CPU CPU

GPU C
la

ri
fi

c
a
ti

o
n
 i
n
 C

+
+
1
7

5120-163840

35Copyright (C) 2020 NVIDIA

PROGRESS

• Concurrent Forward Progress: The thread will make

progress, regardless of whether other threads are making

progress.

• Parallel Forward Progress: Once the thread has executed

its first execution step, the thread will make progress.

• Weakly Parallel Forward Progress: The thread is not

guaranteed to make progress.

36Copyright (C) 2020 NVIDIA

PROGRESS

Volta

Volta thread / pool

parallel e.a.

thread of execution

CPU CPU

CPU CPU

Not “business as usual”.

A concerted effort by
dedicated engineers.

Volta+ is alone of its kind.

5120-163840

37Copyright (C) 2020 NVIDIA

WARP IMPLEMENTATION

38

32 thread warp with independent scheduling

Volta

32 thread warp

Program

Counter (PC)

and Stack (S)

Pre-Volta

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

P
C
,S

Convergence

Optimizer

Copyright (C) 2020 NVIDIA

PASCAL WARP EXECUTION MODEL
No Synchronization Permitted

Time

X; Y;

d
iv

e
rg

e

“
sy

n
c
h
ro

n
iz

e
”

A; B;

if (threadIdx.x < 4) {
A;
__syncwarp();
B;

} else {
X;
__syncwarp();
Y;

}

39Copyright (C) 2020 NVIDIA

VOLTA WARP EXECUTION MODEL

40

d
iv

e
rg

e

A; B;

X; Y;

Synchronization may lead to interleaved scheduling!

Time

re
-c

o
n
v
e
rg

e

if (threadIdx.x < 4) {
A;
__syncwarp();
B;

} else {
X;
__syncwarp();
Y;

}

Copyright (C) 2020 NVIDIA

SCORECARD

Problem Disposition

Memory Coherency Supported since Pascal

Memory Consistency
Supported since Volta in PTX
cuda::std::atomic<> exposure forthcoming

Forward Progress Guarantees
Supported since Volta

Clarified in C++17

41Copyright (C) 2020 NVIDIA

42

Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA

CUDA C++ IS A SUPERSET OF ISO C++

Host processors can use

alone
All processors can use

isolated
All processors can use

together

throw
catch
typeid

dynamic_cast
thread_local

std::

virtual functions

function pointers

lambdas

<rest of ISO C++>

cuda::std::†

43

† Coming in a future CUDA release.

Copyright (C) 2020 NVIDIA

libcu++

Opt-in, heterogeneous, incremental C++ standard library for CUDA.

Open source; port of LLVM’s libc++; contributing upstream.

Version 1 (CUDA 10.2): <atomic> (Pascal+), <type_traits>.

Version 2 (CUDA next): atomic<T>::wait/notify, <barrier>,
<latch>, <counting_semaphore> (all Volta+), <chrono>, <ratio>,
<functional> minus function.

Future priorities: atomic_ref<T>, <complex>, <tuple>, <array>,
<utility>, <cmath>, string processing, …

The CUDA C++ Standard Library

44Copyright (C) 2020 NVIDIA

libcu++ is the

opt-in,

heterogeneous,

incremental

CUDA C++ Standard Library.

45Copyright (C) 2020 NVIDIA

Opt-in

// ISO C++, __host__ only.

#include <atomic>
std::atomic<int> x;

// CUDA C++, __host__ __device__.

// Strictly conforming to the ISO C++.
#include <cuda/std/atomic>
cuda::std::atomic<int> x;

// CUDA C++, __host__ __device__.

// Conforming extensions to ISO C++.
#include <cuda/atomic>
cuda::atomic<int, cuda::thread_scope_block> x;

Does not interfere with or replace your host standard library.

46Copyright (C) 2020 NVIDIA

Heterogeneous

Copyable/Movable objects can migrate between host & device.

Host & device can call all (member) functions.

Host & device can concurrently use synchronization primitives*.

47Copyright (C) 2020 NVIDIA

*: Synchronization primitives must be in managed memory and be declared with cuda::std::thread_scope_system.

std::

Incremental
Not a complete standard library today; each release will add more.

48Copyright (C) 2020 NVIDIA

libcu++

Facilities that need

a specialized CUDA

implementation:

concurrency, clocks,

syscalls, etc

Essential facilities

that everyone is

re-implementing:

<type_traits>,

<tuple>, etc

Based on LLVM’s libc++

Forked from LLVM’s libc++.

License: Apache 2.0 with LLVM Exception.

NVIDIA is already contributing back to the community:

Freestanding atomic<T>: reviews.llvm.org/D56913

C++20 synchronization library: reviews.llvm.org/D68480

49Copyright (C) 2020 NVIDIA

https://reviews.llvm.org/D56913
https://reviews.llvm.org/D68480

