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https://isocpp.org/std/status

C++20

The Biggest Release in a Decade

> Modules

> Coroutines

> Concepts

> Ranges

> Scalable Synchronization
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C++23

Asynchrony and Parallelism

> Standard Library Modules
> Coroutine Support Library
> Executors

> Networking
»mdspan/mdarray
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C++23 Executors
Simplifying Work Creation

void compute(int resource, ...) {
switch(resource) {
case GPU:
kernel<<<...>>>(...);
case MULTI GPU:

cudaSetDevice(9);

kernel<<<...>>>(...); void compute(executor auto ex, ...) {
cudaSetDevice(1); VS execute(ex, ...);
kernel<<<...>>>(...); }

case COOP_GPU:
cudaLaunchCooperativeKernel(...);
case GRAPH:
cudaGraphLaunch(...);
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C++23 Executors

static thread pool pool(16);
executor auto ex = pool.executor();

execute(ex, []{ cout << "Hello world from the thread pool!"; });
sender auto begin

sender auto hi_again
sender auto work

schedule(ex);
then(begin, []{ cout << "Hi again! Have an int."; return 13; });
then(hi_again, [](int arg) { return arg + 42; });

receiver auto print_result = as receiver([](int arg) { cout << "Received.\n"; });

submit(work, print_result);
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Linear Algebra & C++23 mdspan/mdarray

auto x = ...; // An “mdspan<double, dynamic extent>".
autoy = ...; // An "mdspan<double, dynamic extent>".
auto A = ...; // An “mdspan<double, dynamic extent, dynamic extent>".

//y = 3.0 *% A* x;

matrix vector product(par, scaled view(3.0, A), X, y);

//y =3.06*A* x4+ 2.0 %*y;

matrix vector product(par, scaled view(3.0, A), X,
scaled view(2.9, y), Vy);

// y = transpose(A) * x;
matrix vector product(par, transpose view(A), X, y);
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C++23 Extended Floating Point Types

std:

std:

std:

std:

std:

#include <C++>

:floatle t
:float32 t
:floated t
:floatl28 t

:bfloatl6 t

// IEEE-754-2008 binaryl6.
// IEEE-754-2008 binary32.
// IEEE-754-2008 binary64.
// IEEE-754-2008 binary128.

// binary32 with 16 bits truncated.
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Why does NVIDIA care about ISO C++?

What does NVIDIA hope to accomplish in ISO C++7?

What is the relationship between ISO C++ and CUDA C++?
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Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.
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WHY C++?
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WHAT MAKES C++ PORTABLE?
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WHAT MAKES C++ PORTABLE?

Relevant in the 80s/90s

Non-8-bit char
Noncommittal sizeof
Non-2’s comp. int
Non-IEEE float
Segmented memory

Non-endian pointers

NNENENREE
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WHAT MAKES C++ PORTABLE?

Relevant in the 80s/90s Relevant Today

Non-8-bit char
Noncommittal sizeof
Non-2’s comp. int
Non-IEEE float
Segmented memory

Non-endian pointers

NNENENREE
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WHY IS THIS NOT HELPFUL?

Most options are dictated.

New CPU? Match AARCH64.
New GPU? Match the host.

GPUs match all the hosts.

Most alternatives are bad.
Negligible area savings.
Negligible power savings.

Programmer surprise.
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1980°S TOPOLOGY

ﬂ “bus”
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1980°S TOPOLOGY

“bus”
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1980°S TOPOLOGY

thread of execution value

execution agent object

thread allocation
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1990-2000’S TOPOLOGY

thread of execution value

execution agent object C++11

thread allocation

“bus”
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2010°S TOPOLOGY

thread of execution value

execution agent object C++11

allocation

thread

“bus”
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2010°S TOPOLOGY

Pascal
GEFEORCE
GPL

(256 CUDA Cores)

- - Ii"i’fl Df.

36 Tiles
connected by
2D Mesh
Interconnect

3 DDR4 channels
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WINTER IS COMING
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Future silicon performance wins will come from
architectural innovation, not transistor density scaling.
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WHAT MAKES C++ PORTABLE?
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What Makes C++ Portable?

The C++ Execution Model: Memory Model + Forward Progress

« Threads evaluate expressions that
access and modify flat storage.

Happens Before

«  Evaluation within a thread is driven by
sequenced before relations.

Sequenced Before Synchronizes With

 Interactions between threads is driven (within a thread) (between threads)
by synchronizes with relations.

Consequence of

-  Forward progress promises eventual prosram orcer
termination.
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Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.
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COHERENCY
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COHERENCY
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GPU ARCH

Tesla & Fermi

Kepler & Maxwell

Pascal, Volta & Turing

“Tastes like memory.”

COHERENCY

CUDA X86 ARM & POWER
1+ cudaMalloc & cudaMemcpy
6+ cudaMallocManaged

(Symmetric Heap)
cudaMallocManaged cudaMallocManaged

E8 (paging) (NVLink)
) malloc malloc
ELUE ks (paging) (NVLink)
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CONSISTENCY

Completely new hardware memory model in Volta, outline similar to POWER.
Everything but consume is accelerated. Stay tuned about consume.

See the PTX 6.0 ISA programming guide, chapter 8.
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CPU

PROGRESS

= A chain of evaluations in your code.
= A thing that runs your code.
= A particularly onerous example of that thing.

CPU

CPU

CPU

Copyright (C) 2020 NVIDIA
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CPU

PROGRESS

= A chain of evaluations in your code.
= A thing that runs your code.
= A particularly onerous example of that thing.

CPU

CPU

CPU

= Runs things that aren’t onerous.

Copyright (C) 2020 NVIDIA
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PROGRESS

thread of execution thread of execution @ thread of execution

thread of execution

execution agent concurrent e.a. parallel e.a. weakly parallel e.a.

thread GPU / SIMD lane

CPU | CPU
CPU | CPU

std:: / main thread Volta thread / pool

CPU | CPU CPU | CPU CPU | CPU
CPU | CPU CPU | CPU CPU | CPU

Clarification in C++17

w
(631
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PROGRESS

* Concurrent Forward Progress: The thread will make
brogress, regardless of whether other threads are making
Drogress.

» Parallel Forward Progress: Once the thread has executed
its first execution step, the thread will make progress.

« Weakly Parallel Forward Progress: The thread is not
guaranteed to make progress.
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PROGRESS

parallel e.a.

€¢ - b3
Not “business as usual”.

CPU | CPU
CPU | CPU

A concerted effort by
dedicated engineers.

Volta+ is alone of its kind.

Copyright (C) 2020 NVIDIA
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WARP IMPLEMENTATION

Pre-Volta

32 thread warp

32 thread warp with independent scheduling
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PASCAL WARP EXECUTION MODEL

No Synchronization Permitted

\

if (threadIdx.x < 4) { X5 Y5
A. '\H
y -\ﬁ
——syncwarp(); —_—
} else {
X;
—syncwarp();
Y;
}
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VOLTA WARP EXECUTION MODEL

Synchronization may lead to interleaved scheduling!

if (threadIdx.x < 4) {
Aj
__syncwarp(Q);
B;
} else {
X3
__syncwarp(Q);
Y,

Time
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SCORECARD

Problem Disposition

Memory Coherency Supported since Pascal

Memorv Consistenc Supported since Volta in PTX
Y Y cuda: :std: :atomic<> exposure forthcoming

Supported since Volta
Forward Progress Guarantees Clarified in C++17
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Modern NVIDIA GPUs

implement the C++ execution model.

We spent transistors to get there.

Copyright (C) 2020 NVIDIA
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CUDA C++ IS A SUPERSET OF ISO C++

Host processors can use All processors can use All processors can use
alone isolated together
throw i rtual functi
catch virtuat TUncions <rest of I1SO C++>
dynzﬁilgast function pointers
thr'ead_iocal cuda::std::T
<td- - lambdas

T Coming in a future CUDA release.
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libcu++
The CUDA C++ Standard Library

Opt-in, heterogeneous, incremental C++ standard library for CUDA.
Open source; port of LLVM’s libc++; contributing upstream.
Version 1 (CUDA 10.2): <atomic> (Pascal+), <type traits>.

Version 2 (CUDA next): atomic<T>: :wait/notify, <barrier>,
<latch>, <counting semaphore> (all Volta+), <chrono»>, <ratio>,
<functional> minus function.

Future priorities: atomic_ref<T>, <complex>, <tuple>, <array>,
<utility>, <cmath>, string processing, ...
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#include <C++>

libcu++ is the
opt-in,
heterogeneous,
incremental

CUDA C++ Standard Library.

Copyright (C) 2020 NVIDIA
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Opt-in

Does not interfere with or replace your host standard library.

// 1SO C++, host__ only.
#include <atomic>
std::atomic<int> x;

// CUDA C++, host  device .
// Strictly conforming to the ISO C++.
#include <cuda/std/atomic>
cuda::std::atomic<int> x;

// CUDA C++, host  device .

// Conforming extensions to ISO C++.

#include <cuda/atomic>

cuda: :atomic<int, cuda::thread_scope_ block> x;
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Heterogeneous

Copyable/Movable objects can migrate between host & device.
Host & device can call all (member) functions.

Host & device can concurrently use synchronization primitives®.

*: Synchronization primitives must be in managed memory and be declared with cuda: :std: :thread_scope_system.
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Incremental
Not a complete standard library today; each release will add more.
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Based on LLVM’s libc++

Forked from LLVM’s libc++.
License: Apache 2.0 with LLVM Exception.
NVIDIA is already contributing back to the community:

Freestanding atomic<T>: reviews.llvm.org/D56913

C++20 synchronization library: reviews.llvm.org/Dé68480
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