

Interpretable Multimodal Deep Learning for Objective Diagnosis, Prognosis and Biomarker Discovery

Faisal Mahmood, PhD Postdoctoral Fellow Department of Biomedical Engineering Johns Hopkins University faisalm@jhu.edu | http://faisal.ai

March 20, 2019

faisalm@jhu.edu | faisal.ai

1. Limited Annotated Data

- Under representation of rare conditions.
- Limited experts available for annotation.
- Privacy Issues

Faisal Mahmood, Nicholas J. Durr et al. "Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training." *IEEE Transactions on Medical Imaging* (2018).

Pathology

2. Domain Adaptation

- Diversity in data, different sensors, cites and patients.
- Patient specific texture and color information.

How can we train AI systems robust to variability in the data?

2. Domain Adaptation

- Diversity in data, different sensors, cites and patients.
- Patient specific texture and color information.

3. Structured Prediction

- Global vs Local features.

3. Structured Prediction

- Global vs Local features.

Per-pixel classification or regression is **unstructured**.

Each pixel is considered conditionally independent.

How can we develop conditionally dependent deep learning models?

Deep Learning for Medical Imaging – Major Challenges 🔬 JOHNS HOPKINS

- 1. Limited Annotated Data
 - Under representation of rare conditions.
 - Limited experts available for annotation.
 - Privacy Issues, Cost
- 2. Domain Adaptation
 - Diversity in data, different sensors, cites and patients.
 - Patient specific texture and color information.
- **3. Structured Prediction**
 - Global vs Local features.
- 4. Incorporating Multimodal Information
 - Subjective diagnosis is multimodal.

Computational Pathology

Computational Pathology

Endoscopic Depth and Topography

Application: Depth Estimation for Endoscopy **Purpose**: Predict Topography from Monocular Images

Colonoscopy Gives 2D Images

Topography Matters

Faisal Mahmood, Nicholas J. Durr et al." Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy" *Medical Image Analysis* (2018).

Endoscopic Depth and Topography

Application: Depth Estimation for Endoscopy **Purpose**: Predict Topography from Monocular Images

60% of colorectal cancer cases detected after optical colonoscopy are associated with missed lesions.

How do gastroenterologists predict the presence of a polyp? Predict the size of the perforations.

Predict surface topography.

Faisal Mahmood, Nicholas J. Durr et al." Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy" *Medical Image Analysis* (2018).

Depth Estimation from Monocular Endoscopy Images

JOHNS HOPKINS

No Ground Truth Depth Data:

- Limited real estate on an endoscope.
- Regulatory approvals required to add depth sensor.

Solution: Generate Synthetic Endoscopy Data

Faisal Mahmood, Nicholas J. Durr et al." Deep learning and conditional random fields-based depth estimation and topographical reconstruction from conventional endoscopy" *Medical Image Analysis* (2018).

Generating Synthetic Endoscopy Data with GT Depth

JOHNS HOPKINS Generating Synthetic Endoscopy Data with GT Depth Phantom – Virtual Endoscopy Ground True Depth 15+cm **CT** Reconstructed Colon Phantom Segment 0cm Virtual Endoscope Location --- Virtual Endoscope Trajectory

Deep Learning for Medical Imaging – Major Challenges 🍐 JOHNS HOPKI

1. Limited Annotated Data

- Under representation of rare conditions.
- Limited experts available for annotation.
- Privacy Issues
- Cost
- 2. Domain Adaptation
 - Diversity in data, different sensors, cites and patients.
 - Patient specific texture and color information.

3. Structured Prediction

- Global vs Local features.
- 4. Incorporating Multimodal Information
 - Subjective diagnosis is multimodal.

Training with Endoscopy Synthetic Data

Problem:

Standard Deep Learning Networks are not sufficiently context aware.

Solution: Add non-local information using a joint CNN-Graphical Model Setup.

Solution: Joint CNN-CRF Model

Solution: Joint CNN-CRF Model

Unary Potential ξ

Deep Learning for Medical Imaging – Major Challenges 🍐 JOHNS HOPKI

1. Limited Annotated Data

- Under representation of rare conditions.
- Limited experts available for annotation.
- Privacy Issues
- Cost

2. Domain Adaptation

- Diversity in data, different sensors, cites and patients.
- Patient specific texture and color information.
- **3. Structured Prediction**
 - Global vs Local features.
- 4. Incorporating Multimodal Information
 - Subjective diagnosis is multimodal.

Adapting Synthetic Networks to Real Data

Problem: Network trained on synthetic data does not work with real data.

IOHNS HOPKINS

F. Mahmood, Nicholas J. Durr et al. "Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training." *IEEE Transactions on Medical Imaging* (2018).

Adversarial Reverse Domain Adaptation

Shape, Shading, Intensity Preserved **Patient Specific Details** Removed (Mahmood et al., 2018)

Endoscopy Depth Estimation

Colonoscopy Video

Depth Estimate

Colonoscopy Video

Depth Estimate

Validation – Endoscopy Depth Estimation

Estimated Depth to Topography

Faisal Mahmood, Nicholas J. Durr et al. "Unsupervised Reverse Domain Adaptation for Synthetic Medical Images via Adversarial Training." *IEEE Transactions on Medical Imaging* (2018).

Polyp Charcterization

Adenoma

Hyperplastic

Zoom Can we predict the type of polyp without a biopsy only from RGB Image using limited data?

Serrated

Polyp Charcterization

Adenoma

- 76 Videos

- All videos labeled by 4 Senior Gastroenterologists & 3 Fellows
- Average GI Accuracy: Senior: 63.4% Fellow: 53.7%

Deep Learning for Medical Imaging – Major Challenges 🚵 JOHNS HOPKINS

- **1. Limited Annotated Data**
 - Under representation of rare conditions.
 - Limited experts available for annotation.
 - Privacy Issues
 - Cost
- **2. Domain Adaptation**
 - Diversity in data, different sensors, cites and patients.
 - Patient specific texture and color information.
- **3. Structured Prediction**
 - Global vs Local features.
- 4. Incorporating Multimodal Information
 - Subjective diagnosis is multimodal.

Multimodal Data Fusion

RGB-D Classification via Depth Fusion

Data Fusion in Feature Space is better than Concatenation.

Multimodal Densenet

RGB-D Classification

RGB vs RGB-D Classification

Gradient Class Activation Maps

Adenoma

RGB Classification

RGB-D Classification

Gradient Class Activation Maps

Input

RGB Classification

RGB-D Classification

Using just 76 polyp videos with fused depth it is possible to build a classifier with AUC > 0.9

Computational Pathology

Automated Breast Cancer Grading

Nuclear Atypia

Tubule/Gland Formation

Mitotic Activity

Typical AI for Pathology Flow

≈ 1 Billion Pixels!

This Needs a Lot of

Labeled Data!

Interobserver & Intraobserver

Variability?

<u>F. Mahmood</u>, 2018 – (**EN.580.142.13**)

Automated Breast Cancer Grading

Automated Breast Cancer Grading

Can we build a single AI model that can segment nuclei from any H&E image regardless or organ?

Labeled Nuclei Segmentation Data

32 1000x1000 Slide Patches from 8 Different Organs

Small subjectively labeled datasets are not enough for capturing the diversity needed for a singular multi-organ nuclei segmentation network.

Sparse Stain Normalization

Kidney

Stomach

Synthetic Data Generation for Nuclei Segmentation

The variability in data can be captured using synthetic data.

Unpaired Synthetic Data Generation

Unpaired Mapping between random polygons and synthetic H&E patches.

Unpaired Mapping between random polygons and synthetic H&E patches.

1. Limited Annotated Data

- Under representation of rare conditions.
- Limited experts available for annotation.
- Privacy Issues
- Cost
- 2. Domain Adaptation
 - Diversity in data, different sensors, cites and patients.
 - Patient specific texture and color information.

3. Structured Prediction

- Global vs Local features.

4. Incorporating Multimodal Information

Subjective diagnosis is multimodal.

Context-Aware Nuclei Segmentation with No CRF Post-processing Step

Pathology Patches with Adversarial Nuclei Segmentation

Overlapping Nuclei

Faisal Mahmood, Daniel Borders, et al. "Deep Adversarial Training for Multi-Organ Nuclei Segmentation in Histopathology Images." arXiv preprint arXiv:1810.00236 (2018).

GT and Prediction Overlap

GT and Prediction Disparity

Extension to Mitotic Event Detection

Extension to Epithelium Segmentation

93.8% Segmentation Accuracy

Extension to Tubule Segmentation

96.9% Segmentation Accuracy

Tissue Level Semantic Segmentation

TMAPredictionGround TruthImage: Strutt and Stru

91.4% Segmentation Accuracy

Predicted Feature Fusion

Predicted Feature Fusion

Predicted Feature Fusion

Multimodal Densenet: General Framework for Multimodal Data Fusion

Multimodal Densenet: General Framework for Multimodal Data Fusion

- Under representation of rare conditions.
- Limited experts available for annotation.
- Privacy Issues
- Cost

2. Domain Adaptation

- Diversity in data, different sensors, cites and patients.
- Patient specific texture and color information.
- 3. Structured Prediction
 - Global vs Local features.
- 4. Incorporating Multimodal Information
 - Subjective diagnosis is multimodal.

Acknowledgements

JOHNS HOPKINS BIOMEDICAL ENGINEERING

Computational **Biophotonics Lab** Nicholas J. Durr **Richard Chen** Greg N. McKay Jordan Sweer **Taylor Bobrow** Mason Chen **Bailey Surtees Eric Chiang**

<u>Siemens</u> Sandra Sudarsky Daphne Yu JHU School of Medicine Alexander S. Baras Susan Harvey Saowanee Ngamruengphong **Department of Computer Science** Alan Yuille **Greg Haiger** Olympus Lee Zhen Google

Jesus Trujillo Gomez

SIEMENS OLYMPUS[®]

Google

NVIDIA

Thank You.

faisalm@jhu.edu

Code / Data Available at: http://faisal.ai