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● Safe and painless diagnostic procedure

● Excellent soft tissue contrast

●No need to change the position of the
patient

●Non-invasive

●Diagnoses & monitors treatments such as

 Heart problems

 Blockage or enlargement of blood 
vessels

 Lungs

 Diseases of the liver such as cirrhosis

 Tumors and other cancer related 
abnormalities

Human head 
(sagittal axis)

Human head 
(Coronal axis)
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Outline MRI Hardware

●Magnets

 Permanent Magnets

 Resistive Magnets

 Super Conducting Magnets

●RF Coils

 Surface coils

 Body coils

 Head coils

●Gradient Coils

 Induce non-linear change 
in the magnetic field

MAGNETOM Skyra 3T (Siemens)
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Outline How MRI works
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Outline MR Image Formation

● MR Pulse Sequence and Data Acquisition

The Total acquisition time (𝑇𝐴) (fully sampled k-space)

𝑻𝑨 = 𝑻𝑹 × 𝑵𝒚

Where,

𝑻𝑹 = Time required to collect a single line of k-space

𝑵𝒚 = Total number of PE lines that must be acquired

FFT
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● Image Resolution and Contrast

∆𝑘𝑥

∆𝑘𝑦∆𝑦

∆𝑥

Fourier
Transform
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Outline MR Image Formation

● k-space sampling trajectories
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Outline Limitations in Conventional MRI

● Major Limitations

 Scan duration of conventional MRI (30 to 40 mins)

 Too expensive (typically £350-£500 per hour)

 Long Breath hold (abdominal imaging)

 Moving structures (e.g. heart)

 Contrast changes( Flowing blood )
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Outline Parallel MRI

● Multichannel receiver coils 

● Reduce acquisition time

● Advanced pMRI Techniques 

(GRAPPA, SENSE etc.)

● Key properties of pMRI techniques

1. Acceleration factors

2. Reconstruction accuracy

3. Reconstruction time

Parallel Imaging using multi-channel 
receiver coils  

Example of 4-channe receiver coil

► MPIRG at Glance 

► Overview
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Outline Parallel MRI

Image based reconstruction 
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Outline Parallel MRI

Parallel MRI 

Cartesian pMRI non-Cartesian pMRI

e.g. SENSE e.g. GRAPPA e.g. CG-SENSE
e.g. Non-Cartesian 

GRAPPA

Image based k-space based Image based k-space based
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● k-space based pMRI

● Inspired by VD-Auto-
SMASH technique

● Siemen‘s Health Care

● Abdominal and lung 
imaging

● Calibration Phase

● Synthesis Phase

GRAPPA reconstruction process

**M. A. Griswold, et al., "Generalized autocalibrating partially parallel acquisitions (GRAPPA),“ 
Magnetic Resonance in Medicine, vol. 47, pp. 1202-1210, 2002.
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Outline GRAPPA Reconstruction

● Calibrations Phase  (𝑵𝑪 =1 )

ACS

𝒕𝐦 𝒙𝒍 = 𝑺𝐦×𝒏 × 𝒘𝐧×𝒍 𝒎 > 𝒏

𝒘𝒏×𝒍 = 𝑺𝐦×𝒏
𝑯𝑺𝐦×𝒏

−𝟏
𝑺𝐦×𝒏

𝑯𝒕𝐦 𝒙𝒍

𝒘𝒉𝒆𝒓𝒆, 𝒎 = 𝑵𝒑𝑵𝑭, 𝒏 = 𝒅𝒙𝒅𝒚𝑵𝒄 and 𝒍 = 𝑵𝑪 𝒂𝒇 − 𝟏

GRAPPA calibration equation

GRAPPA weight Sets
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Outline GRAPPA Reconstruction

Practical gains in the performance of parallel imaging
using GRAPPA are offset by the long image reconstruction
time

● Major Challenge

● Keys Issues

i. Multiple sequential GRAPPA kernel fittings on the 
auto-calibration signals (ACS lines) 

ii. Estimation of GRAPPA weight sets Wnxl by finding 
least  squares solution to a large over-determined 
system of linear equations

ŵ = min
w

Sw − t 2

iii. Iterative sequential convolutional kernel fittings
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Outline GRAPPA Reconstruction

To meet the rising demands of fast image processing in
real-time clinical applications

● Objective

● Keys features

Thursday, March 21, 2019

i. Parmeterizable  (ACS lines,𝐴𝑓 , Kernel sizes)

ii. Parallel fittings of GRAPPA kernel on ACS lines 

iii. Parallel estimations of the reconstruction 
coefficients; 

iv. Parallel interpolations in the under-sampled k-space 
of receiver coils.
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Outline GPU based GRAPPA Reconstruction 

using CUDA

Proposed Architecture 
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Outline GPU based GRAPPA Reconstruction 

using CUDA

Optimized CUDA kernels

● kernel_SRC_EXT

● kernel_TARG_EXT

● kernel_TRANS_MUL

● kernel_MAT_INV

● kernel_GET_SRC

● kernel_CONV

 Performs concurrent GRAPPA kernel fittings on 
the ACS lines to collect the calibration data points 
in the source 𝑺𝐦×𝒏 and target 𝑻𝐦×𝒍 matrices

 Estimation of GRAPPA weight sets (𝐖)
𝑾𝐧×𝒍 = 𝑺𝐦×𝒏

′𝑺𝐦×𝒏
−𝟏𝑺𝐦×𝒏

′ × 𝑻𝐦×𝒍

 Complex matrix Inversion
 Parallelized Gauss Jordan algorithm 

 Complex matrix-matrix multiplications 
 Tile partitioning 

 Performs parallel kernel fittings to extract a new 
set of source matrices 𝑺𝒏𝒆𝒘

 Performs parallel convolutions for interpolation 
of the under-sampled k-space data in each 
receiver coil. 
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GPU based GRAPPA Reconstruction 

using CUDA

METHODOLOGIES

In-vivo
8-channel human head dataset acquired on 1.5T scanner, St Mary’s 
Hospital London.

Outline
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GPU based GRAPPA Reconstruction 

using CUDA

RESULTS

GRAPPA reconstruction time for 8-channel 1.5T in-vivo human head data using 
kernel size [2x3] and no of ACS lines=32

Outline
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GPU-enabled-GRAPPA

(Proposed Method)
CPU-based GRAPPA Speed up

Processing 

time 𝒑

(𝒎𝒔)

Memory

Latency 𝒎

(𝒎𝒔)

𝝉𝒈𝒑𝒖 = 𝒑 + 𝒎

(𝒎𝒔)

𝝉𝒄𝒑𝒖

(𝒎𝒔)
𝝉𝒄𝒑𝒖

𝝉𝒈𝒑𝒖

Calibration 900 5 905 7955 9x

Synthesis 100 20 120 1154 10x

Total 1000 25 1025 9109 9x

► MPIRG at Glance 

► Overview

► Parallel MRI

► GRAPPA
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GPU based GRAPPA Reconstruction 

using CUDA

RESULTS

GRAPPA reconstruction time for 8-channel 1.5T in-vivo human head data using 
kernel size [4x7] and no of ACS lines=48
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GPU-enabled-GRAPPA

(Proposed Method)
CPU-based GRAPPA Speed up

Processing 

time 𝒑

(𝒎𝒔)

Memory

Latency 𝒎

(𝒎𝒔)

𝝉𝒈𝒑𝒖 = 𝒑 + 𝒎

(𝒎𝒔)

𝝉𝒄𝒑𝒖

(𝒎𝒔)
𝝉𝒄𝒑𝒖

𝝉𝒈𝒑𝒖

Calibration 4756 34 4790 74922 16x

Synthesis 160 50 210 2581 12x

Total 4916 84 5000 77503 15x
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GPU based GRAPPA Reconstruction 

using CUDA

RESULTS

Outline

Thursday, March 21, 2019

GRAPPA reconstruction results (CPU vs GPU) of 8-channel 1.5T in-vivo human 
head using kernel size [2x3] and no of ACS lines=32. (Left) Image reconstructed 

using CPU-based-GRAPPA; (Right) Image reconstructed using GPU-enabled-
GRAPPA 
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GPU based GRAPPA Reconstruction 

using CUDA

CONCLUSION

Outline

Thursday, March 21, 2019

● Proposed frame work is scalable to different GRAPPA parameter 

settings

● Significantly reduces the latency of the calibration and synthesis 

phases, thereby resulting up to 15x speedup (8-channel 1.5T 

human head dataset)

● Proposed method is a suitable choice to accelerate the GRAPPA 

reconstruction process as the thread creation and memory 

transfer overheads are negligible  (i.e. a memory latency is 0.017% 

of the total reconstruction time)

● Future: Cardiac MRI (32 channel receiver coil)

► MPIRG at Glance 

► Overview

► Parallel MRI

► GRAPPA

► GPU based GRAPPA 

► SENSE 

► GPU based SENSE 

► Non-Cartesian pMRI methods

► GPU based Gridding 

► Magnetic Resonance Finger 

printing

► Acknowledgements

44



Thursday, March 21, 2019

SENSE Reconstruction 
Method

Outline
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Outline

● Performs reconstruction in Image Space

● Siemens (mSENSE)

● GE (ASSET)

● Philips (SENSE)

● Hitachi (RAPID - "Rapid Acquisition through Parallel 
Imaging Design")

● Canon (SPEEDER)

● Involves 4 steps

1. Sensitivity Maps Estimation

2. Acquired Partia k-Space

3. Reconstruct partial FOV images from each coil

4. Combined partial FOV images by matrix inversion

**Preussmann KP, Weiger M, Scheidegger MB, Boesiger P. 1999. SENSE: sensitivity 
encoding for fast `MRI. Magn Reson Med 42:952–962

SENSE Reconstruction
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Outline

● Combining aliased images 

SENSE Reconstruction

Coil 
Sensitivities

=

Accelerated Image (AF = 2)
Four receiver Coils

𝑭𝑶𝑽𝑹𝒆𝒅
𝐼1 Fully 

Sampled 
Image

𝑭𝑶𝑽𝑭𝒖𝒍𝒍𝝆1

𝝆1

×

𝑪1𝟏

𝑪1𝟐

𝐼2

𝐼3

𝐼4

 𝑰

𝑪2𝟏

𝑪22

𝑪3𝟏

𝑪32

𝑪4𝟏

𝑪42

Ĉ 𝝆

𝑰𝟏 = 𝑪𝟏𝟏𝝆𝟏 + ∁𝟏𝟐𝝆𝟐

𝑰𝟐 = 𝑪𝟐𝟐𝝆𝟏 + ∁𝟐𝟐𝝆𝟐

𝑰𝟑 = 𝑪𝟑𝟏𝝆𝟏 + ∁𝟑𝟐𝝆𝟐

𝑰𝟒 = 𝑪𝟒𝟏𝝆𝟏 + ∁𝟒𝟐𝝆𝟐
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Outline

● Inversion

SENSE Reconstruction

𝑰𝟏 = 𝑪𝟏𝟏𝝆𝟏 + ∁𝟏𝟐𝝆𝟐

𝑰𝟐 = 𝑪𝟐𝟐𝝆𝟏 + ∁𝟐𝟐𝝆𝟐

𝑰𝟑 = 𝑪𝟑𝟏𝝆𝟏 + ∁𝟑𝟐𝝆𝟐

𝑰𝟒 = 𝑪𝟒𝟏𝝆𝟏 + ∁𝟒𝟐𝝆𝟐

𝑰𝟏

𝑰𝟐

𝑰𝟑

𝑰𝟒

=

𝑪𝟏𝟏 𝑪𝟏𝟐

𝑪𝟐𝟏 𝑪𝟐𝟐

𝑪𝟑𝟏 𝑪𝟑𝟐

𝑪𝟒𝟏 𝑪𝟒𝟐

×
𝝆𝟏

𝝆𝟐

Encoding MatrixAliased Image
Matrix

Unknown Image  
Matrix to be 

reconstructed

Inverse of 
Rectangular 

Matrix

 𝑰 = Ĉ × 𝝆

𝝆 = Ĉ-1 ×  𝑰

• Due to size of encoding matrix, direct inversion is computational expensive
• Ĉ = 131072 × 65536 for Image size = 256 × 256 having AF =2 with 4 

receiver coils
• Encoding matrix is divided into smaller sub matrices

• Inverse of each sub-matrix is sequentially computed
• Generally those submatrices are rectangular matrices

• Matrix decomposition methods are required to take inverse of rectangular 
matrix instead of simple inverse techniques
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Outline SENSE Reconstruction

Inversion of the rectangular encoding matrix is the most
computationally expensive task in SENSE algorithm

● Major Challenge

● Keys Issues

A fast (with optimal computational complexity) and
stable algorithm is required to perform the inversion of
the encoding matrix in SENSE reconstruction
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Outline SENSE Reconstruction

To meet the rising demands of fast image processing in
real-time clinical applications

● Objective

● Keys features

Thursday, March 21, 2019

i. Parametrizable  (image sizes, Af)

ii. Parallel matrix inversions using QR-decomposition
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Outline GPU based SENSE using CUDA

Proposed Architecture 
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● In-vivo
 St. Mary’s Hospital London, UK
 University Hospitals of Cleveland, Case Western Reserve University (CWRU),

USA

Outline
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Data Receiver coils Scanner AFs Image size Slice

thickness

Phantom

dataset

8 1.5 T

GE scanner

2,3,4 256 x 256 3mm

Human 

head

dataset

8 1.5 T

GE scanner

2,3,4 256 x 256 3mm

Human 

head

dataset

12 3T. 

Siemens Skyra

scanner

2,4,6 448 x 224 5mm

Cardiac 

dataset

(11 frames)

30 3T. 

Siemens Skyra

scanner

5,8,12 512 x 252 8mm
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Reconstructed Images of Phantom, receiver coil = 8, Af = 2 and 4

Outline
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(a) (b) (c) 
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Difference image 

between the 

reconstructed 

image and the 

reference image 

at AF = 4 
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Visual Result for in Vivo human head dataset, Receiver coils = 12,  AF = 2,4 and 6 
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Visual Result for 30 channel 
Cardiac Dataset, AF = 5, 11 

Frames
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GPU based GRAPPA Reconstruction 

using CUDA

RESULTS

Outline

Thursday, March 21, 2019

Dataset Type

and Dimension

AF Reconstruction Time GPU (ms) Total 

Time

GPU (ms) Artifact PowerData Latency Time GPU 

processing 

time
Memory

Allocation

𝑫𝑻𝐂→𝑮 𝑫𝑻𝐆→𝑪

Phantom

Dataset 

256X256

2 0.12 1.517 0.8 4.76 7.2 𝟏. 𝟒𝟎𝟕𝟔 × 𝟏𝟎−𝟓

3 0.13 1.55 0.8 9.523 12 𝟕. 𝟔𝟗𝟓𝟖 × 𝟏𝟎−𝟓

4 0.126 1.49 0.8 15.685 18.1 𝟐. 𝟖𝟏𝟒𝟔 × 𝟏𝟎−𝟒

In-Vivo Human

Head Dataset

256X256 

(8 coils)

2 0.12 1.517 0.8 5.023 7.46 𝟐. 𝟏𝟏𝟑𝟐 × 𝟏𝟎−𝟓

3 0.13 1.55 0.8 9.7 12.18 𝟓. 𝟑𝟖𝟏 × 𝟏𝟎−𝟓

4 0.14 1.49 0.8 15.96 18.39 𝟏. 𝟓𝟏𝟔 × 𝟏𝟎−𝟒

In-Vivo Human 

Head Dataset 

448X224

(12 coils)

2 0.16 7.5 1.2 8.73 17.59 𝟗. 𝟎𝟕𝟑𝟏 × 𝟏𝟎−𝟒

4 0.18 7.4 1.2 21.38 30.16 𝟐. 𝟏 × 𝟏𝟎−𝟑

6 0.20 7.49 1.2 52.2 61.09 𝟑. 𝟒𝟏 × 𝟏𝟎−𝟐

Cardiac Dataset 

512X252 

(30 coils)

11 frames

5 0.24 20.2 1.7 92.41 114.55 𝟑. 𝟖 × 𝟏𝟎−𝟑

8 0.24 20.4 1.7 205.39 227.73 𝟑. 𝟐𝟓 × 𝟏𝟎−𝟐

12 0.27 20.6 1.7 441.26 463.83 𝟏. 𝟔𝟐𝟑 × 𝟏𝟎−𝟏
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GPU based SENSE Reconstruction using 

CUDA

CONCLUSION

● QR-decomposition is proposed for the rectangular encoding matrix 
inversion in SENSE reconstruction.

● The inherent parallelism of the proposed method is exploited by 
implementing it on a parallel platform(GPU) to further reduce the 
reconstruction time

● The proposed method is fully parametrizable
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Non-Cartesian Parallel 
Imaging
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● Gridding

● NUFFT

● GROG

● SC-GROG

Non-Cartesian Parallel MRI

● Reconstruction Methods
● Radial GRAPPA

● Spiral GRAPPA

● Pseudo Cartesian GRAPPA

● CG-SENSE

Scanner Data

k-space
trajectory

• Radial
• Spiral
• Rosette
• PROPELLER

GRIDDING

Reconstruction Frame Work

FFT
Reconstruction

Method
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Non-Cartesian Parallel MRI

● Self Calibration GRAPPA Operator Gridding
● Extended version of GROG

● Uses the properties of GRAPPA operator

● Shifts each non-Cartesian sample in a k-space by smaller 
intervals (δx and δy) in kx and ky directions

● Does not require additional data acquisition

● Works in two stages: 

1) Self-Calibration

2) Gridding

s kx + δx, ky + δy = Gx
δx ∙ Gy

δy ∙ s kx, ky

GROG weights are applied to shift
non-Cartesian data points in a k-space
by smaller intervals in 𝐤𝐱 and 𝐤𝐲

directions.
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M Blaimer, P Jakob, M Griswold, Magnetic Resonance in Medicine, Vol 59, 2008
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Non-Cartesian Parallel MRI

● Self Calibration GRAPPA Operator 
Gridding

● Conventional SC-GROG

Step 1 : Calculate all the possible
combinations of 2D gridding weight

sets for smaller shifts (Gx
δx, Gy

δy)

Step 2: Sequential Mapping

s kx + δx, ky + δy = Gxy(δx, δy) ∙

s kx, ky, kz

Step 3: Sequential Averaging
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Outline

Accelerating non-Cartesian parallel Imaging using GPU 
based SC-GROG

● Objective

● Keys Features

i. Parametrizable (Radial projections, coils and image size)

ii. Implementation of LUTs to update and store 2D gridding 
weight sets in parallel

iii. Parallel access to LUTs for concurrent shifting  of the non-
Cartesian samples to their nearest Cartesian grid locations 
(to avoid race condition)

iv. The total number of points shifted at the same Cartesian 
location are averaged in parallel

GPU based SC-GROG using CUDA
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Outline
PROPOSED ARCHITECTURE

● Self-Calibration  
(CPU)

● Gridding (GPU)

1) kernel_ws

2) kernel_map

3) kernel_avg

● Employs look-up-
tables (LUTs) to 
avoid race 
conditions

GPU based SC-GROG using CUDA
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Outline

MEHODOLOGIES

GPU based SC-GROG using CUDA

● Radial Data sets (In-vivo)

 St. Mary’s Hospital London, UK

 University Hospitals of Cleveland, Case Western Reserve University
(CWRU), USA

● Phantom

 Standard Shepp-Logan phantom (simulated 24-channel, with 64 to 400
projections, 256 readout points

● Simulation Platforms

 CPU: Intel(R) Core(TM) i5-3210M @ 2.50GHz, 2501MHz, Memory 4GB

 NVIDIA GeForce GTX 780 (876 MHz, 2880 shared cores, 3GB Memory)

Data Channels Scanner Projections Read out points

Cardiac data sets 30 3T
(GE)

144 256

Human head data 12 3T
(Siemens Skyra)

256 256
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METHODOLOGIES

GPU based SC-GROG using CUDA

Simulated Shepp-Logan 
phantom with different no of 
radial projections ranging 
from 64 to 400

Self-Calibration and Gridding process as % of total  computation time
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RESULTS

GPU based SC-GROG using CUDA

Performance comparison between GPU-based gridding and CPU-based gridding
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Outline

RESULTS

GPU based SC-GROG using CUDA

Overall speedup gain in the total computation time of SC-GROG
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RESULTS

GPU based SC-GROG using CUDA

Comparison between the GPU-based SC-GROG and CPU-based SC-GROG 
reconstruction results
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RESULTS

GPU based SC-GROG using CUDA

Comparison of the center line profiles of the reconstructed images between the GPU-
based SC-GROG and CPU-based SC-GROG
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RESULTS

GPU based SC-GROG using CUDA

Speedup gains in the gridding operation

Overall speedup in SC-GROG
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RESULTS

GPU based SC-GROG using CUDA

12-channel human head data set with 256 projections and base matrix 256x256
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GPU based SC-GROG using CUDA

Speedup gains in the gridding operation

Overall speedup in SC-GROG
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Outline

RESULTS

GPU based SC-GROG using CUDA

30-channel cardiac data with 144 projections, 25 frames and base matrix 128x128
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● Proposed frame work is scalable to different gridding parameters 
and can be used with many non-Cartesian parallel MRI methods 
e.g. CG-SENSE, radial GRAPPA, Pseudo Cartesian GRAPPA etc.

● Parameterizable

● Employs look-up-table (LUT) based kernels of CUDA to accelerate 
SC-GROG gridding operations

● Avoids race condition

● GPU-based SC-GROG can accelerate the data gridding process by 
factors ranging from 12 to 30

● Reduces the overall computation time of SC-GROG by factors 
ranging from 6 to 7 without compromising the quality of the 
reconstructed images

GPU based SC-GROG using CUDA

CONCLUSION
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Magnetic Resonance 
Fingerprinting

Outline
► MPIRG at Glance 

► Overview

► Parallel MRI

► Magnetic Resonance 

Finger printing
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Outline Magnetic Resonance Fingerprinting (MRF)

Randomized
Acquisition

Pattern 
Recognition

Information
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Outline Magnetic Resonance Fingerprinting (MRF)

Name
Cell#

Address
DOB
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Outline Magnetic Resonance Fingerprinting (MRF)

● MRF is a novel approach that consists of:
● Data Acquisition, Post Processing and

Visualization
● Revolutionizing MR Imaging
● Provides quantitative maps
● Local changes in T1 and T2 have been measured in

diseases (Table )

Neurological Psychological Genetic

Alzheimer’s
Parkinson’s

Multiple sclerosis

Epilepsy
Autism

Schizophrenia

Cancer

Table  Diseases known to have caused local changes 
in T1 and T2 relaxation times
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Outline

The execution of MRF algorithms requires a considerable
amount of computation time. Therefore, main limitation
of MRF in clinical realization is the computation
complexity.

● Major Challenge

● Keys Issues

MRF quantitatively examines many magnetic resonance
tissue parameters simultaneously by sequentially
processing the data majorly due to the limitation of the
data processing hardware(limited number of
computational cores in CPU)

Magnetic Resonance Fingerprinting (MRF)
► MPIRG at Glance 

► Overview
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► Magnetic Resonance 

Finger printing
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Outline

● Objective

● Keys features

Thursday, March 21, 2019

i. Parametrizable (MRF dictionary size)

ii. MRF algorithm is accelerated without any functional 
modifications in the native MRF algorithm

iii. MRF algorithm is accelerated without reducing data 
to be processed in the native MRF algorithm

Magnetic Resonance Fingerprinting (MRF)
► MPIRG at Glance 

► Overview

► Parallel MRI

► Magnetic Resonance 

Finger printing
► Acknowledgements

To reduce the computation complexity of MRF algorithms
that is an important step toward the clinically realization
of the MRF technology
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al), 33rd Annual Scientific Meeting of ESMRMB 2016, 2016, Vienna, Austria, 2016
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Outline MRF Magnetic Resonance 

Fingerprinting (MRF) ON CPU 
MRF Pattern Matching

Algorithm
MRF Dictionary 

Algorithm
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Outline GPU based MRF Magnetic Resonance 

Fingerprinting (MRF) using CUDA

PROPOSED PARALLEL FRAME WORK FOR DICTIONARY 

ALGORITHM 
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Outline GPU based MRF Magnetic Resonance 

Fingerprinting (MRF) using CUDA

PROPOSED PARALLEL FRAME WORK FOR PATTERN 

MATCHING
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● In-vivo
 Variable density spiral sampling Brain dataset from Case Western Reserve

University, USA

● CPU

 Intel Core i7 – 4510U @ 2.16 GHz with 8Gb RAM

● NIVIDIA GPUs

 Tesla k40C, GTX 780, GTX 560, GT 630m

Outline

Thursday, March 21, 2019

Data Coils Scanner Image size

Human head
dataset

32
1.5T Espree, Siemen
Healthcare Scanner

192x192

GPU based MRF Magnetic Resonance 

Fingerprinting (MRF) using CUDA

RESULTS
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Finger printing
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GPU based MRF Magnetic Resonance 

Fingerprinting (MRF) using CUDA

RESULTS

Outline

Thursday, March 21, 2019

MRF Dictionary
NVIDIA 

GT 630m

NVIDIA 

GTX 560

NVIDIA 

GTX 780

NVIDIA

Tesla k40c

Computational 

Time(seconds)
602.25 491.53 226 210

MRF Pattern 

Matching Algorithm

NVIDIA 

GT 630m

NVIDIA 

GTX 560

NVIDIA

GTX 780

NVIDIA

Tesla k40c

Computational 

Time(seconds)
715.115 164.656 54.186 50

MRF Algorithm
4th Gen Core-i7 

NVIDIA 
Tesla k40C

Speed-up using 
parallel framework for MRF

MATLAB C++
Data Processing 

time
w.r.t MATLAB w.r.t C++

Computation Time 348 mins
90 

mins
4.5 mins 69.6 x 18x
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► MPIRG at Glance 

► Overview

► Parallel MRI

► Magnetic Resonance 

Finger printing

► GPU based MRF
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Figure 4. Intensity Maps constructed using the 
conventional MRF algorithms (MATLAB)

Reference Images (Matlab)

Figure 5. Intensity Maps constructed using our 
C++ implementation

Reconstructed Images (C++)

Figure 6. Intensity Maps constructed using our 
MRF Integrated CUDA Application

Reconstructed Images (CUDA)

Figure 7. Difference between reference maps 
and maps reconstructed using CUDA 

application

Difference Images  
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GPU based MRF Magnetic Resonance 

Fingerprinting (MRF) using CUDA

CONCLUSION

Outline
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● Accelerated image reconstruction without any compromise on the 
quality of image

● MRF algorithm is accelerated without any functional modifications 
or reducing data to be processed in the native MRF algorithm

● Proposed parallel framework has the potential to process MRF 
algorithm in clinical feasible Computation time

► MPIRG at Glance 

► Overview

► Parallel MRI

► Magnetic Resonance 

Finger printing

► GPU based MRF

► Acknowledgements
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Outline

OPTIMIZED CUDA KERNELS

● 2D weight sets for each shift are calculated in parallel 

● LUTs (wxsetLUT and ywsetLUT) are updated in parallel to store 
all the 2D gridding weight sets

GPU based SC-GROG using CUDA
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