PHYSX 4: RAISING THE FIDELITY AND PERFORMANCE OF PHYSICS SIMULATION IN GAMES

Kier Storey, Principal Software Engineer | Date | Booth S466| South Hall
PHYSX

Scalable, robust rigid body simulation
Cross-platform
Multi-threaded and GPU accelerated
Visual debugging and profiling tools
Integrated into numerous tools and existing game engines
RIGID BODIES

Efficient and accurate distance-based contact generation

Sweep-based CCD and speculative CCD

Support for common joint types (spherical, revolute, fixed, prismatic, distance, custom)

Fast and robust iterative solver

Efficient scene query system

Flexible filtering system

Extensions for vehicles and characters

Two interfaces: “retained” and “immediate” mode
PHYSX 4

Open-source BSD license

TGS: New, more robust, non-linear rigid body solver

New reduced coordinate articulation implementation

Provides game-level performance with robotics-quality simulation fidelity

More scalable broad phase

Overhauled joint implementation

Optimizations for complex multi-shape actors
TGS SOLVER

Non-linear iterative solver

Improved robustness to ill-conditioned cases

Significantly faster converging than PGS

Improved high-mass ratio simulation

Provides “gentle de-penetration” without damaging convergence

Improved joint drive handling

Similar performance to PGS solver
TGS COMPARISON
Revolute Chains with Drives
TGS COMPARISON
High-mass Ratio Chains
TGS COMPARISON
Toy-scale Kapla tower
Hierarchical kinematic tree multi-body system

Currently supports fixed, revolute, spherical and prismatic joints

Support for limits, PD drive controllers and joint friction

Loop joints, self-collisions and interactions with external bodies handled through PGS/TGS solver

Inverse dynamics

Closely-matches analytical models

Deep integration with TGS solver yields improved simulation robustness
RESULTS

PhysX Warehouse Demo
RESULTS

ANYmal training
IMMEDIATE MODE

Direct access to PhysX low-level functionality

Contact generation

Constraint definitions (contacts and joints)

Low-level rigid body solver

Extremely low-overhead. Ideally-suited for simulating small sets of bodies with as little latency as possible.
RETAINED MODE

PxScene* scene = gPhysics->createScene(desc);

scene->addActor(*PxCreatePlane(*gPhysics, PxPlane(0,1,0,0), material));

PxShape* box = gPhysics->createShape(PxBoxGeometry(PxVec3(1.f), material);
PxRigidDyn* dyn;

for(int i = 0; i < 1000; ++i)
{
 dyn = gPhysics->createRigidDynamic(PxTransform(PxVec3(0.f, 1.f+2.f*i, 0.f));
 dyn->attachShape(*box);
 updateMassAndInertia(*dyn, 1.f);
 scene->addActor(*dyn);
}

for(int frame = 0; frame < 100; ++frame)
{
 scene->simulate(1.f/60.f);
 scene->fetchResults(true);
}

IMMEDIATE MODE

using namespace physx::immediate;
const int nbBodies = 10;
PXRigidBodyData bodyDescs[nbBodies];
PxSolverBodyData data[nbBodies+1];
PxSolverBody solverBodies[nbBodies+1];
PxConstraintDesc contacts[nbBodies];
PxConstructStaticSolverBody(PxTransformFromPlaneEquation(PxPlane(0,1,0,0)), data[0]);
PxConstructSolverBodies(bodyDescs, &data[1], 10);
PxReal dt = 1.f/60.f, invDt = 60.f;

for(int frame = 0; frame < 100; ++frame)
{
 applyGravity(&data[1], gravity, nbBodies, dt);
 int cts = 0;
 for(int i = 0; i < nbBodies; ++i){
 if(generateContacts(boxGeom, planeGeom, data[i+1], data[0], contacts[cts])))
 cts++;
 for(int i = 0; i < cts; ++i)
 createConstraints(contacts[i], invDt);

 solveConstraints(contacts, solverBodies);
 integrateSolverBodies(solverBodies);
}

}
GPU RIGID BODIES

Hybrid CPU/GPU rigid body simulation
Enabled with flags on the scene
Exact same interface and feature set as CPU simulation
Highly-scalable GPU broad phase
GPU-accelerated distance-based contact generation
GPU-accelerated PGS and TGS solver
Automatically handles transfer of data between host and device
Designed for interactive/gameplay-effecting simulation, not just visual effects
PHYSX 4.1

Extends immediate mode to support articulations and TGS solver

GPU-accelerated articulations (coming soon)

Significantly optimized CPU articulations

Optimizations and bug fixes
ARTICULATION SOLVER

Forward dynamics optimizations and fixes

Optimized contact/joint solver solves simple constraints (articulation-rigid) in $O(1)$ time rather than $O(\log n)$ time

Improved accuracy of joint drives/limits

Improved convergence

Improved spherical joint support
PERFORMANCE IMPROVEMENTS

1000 24 DOF Articulations on the ground

PhysX 4.0 PhysX 4.1
IMMEDIATE MODE ARTICULATIONS

Small/simple API

Direct access to link/joint properties

Direct simulation functions for forward dynamics on a single articulation

Coupled solver function that solves constraints between articulations and rigid bodies

New snippets showcasing immediate mode articulations and joints
IMMEDIATE MODE PERFORMANCE

1 Articulation
MULTIPLE INDEPENDENT SIMULATIONS

400 simple articulations
IMMEDIATE MODE PERFORMANCE

400 Articulations
WHEN EVERYTHING INTERACTS!
400 Articulations
GPU ARTICULATIONS

Work-in-progress

Extends GPU PGS and TGS Rigid Body solver to support articulations

Supports mixed simulation (rigid bodies + articulations)

Provides significant performance uplift compared to CPU-based articulations

Ideally-suited to simulations of 100s or 1000s of articulations and rigid bodies
GPU ARTICULATION PERFORMANCE

1800 swinging 18-dof chains with limits
GPU ARTICULATIONS

Future work

Faithful port of PhysX 4.0 articulation solver completed

Multi-body interaction between articulations and rigid bodies/other articulations complete

GPU version of optimized PhysX 4.1 contact/joint solver currently in the works

Articulation support in GPU TGS solver in progress
PHYSX FOR GAMES

PxScene simulation provides a scalable, asynchronous n-body simulation

Ideally-suited for simulating the main gameplay-effecting bodies

Immediate mode ideally suited for smaller-scale physics simulation

Local secondary physics for characters, network replays etc.

GPU simulation can be used to scale simulations massively

e.g. scalable destruction, server-side destruction/simulation etc.
NON-GAMING APPLICATIONS

Industrial simulation

Robotics

Reinforcement learning
 Immediate mode for low-latency small-scale simulations
 GPU articulations for larger-scale simulations

Model-based control
 Forward and inverse dynamics

Visual FX
BEYOND GAME VEHICLE PHYSICS?

Gordon Yeoman, Developer | 14 March, 2019 | Booth S466 | South Hall

www.nvidia.com/GDC
PhysX Vehicles are now being used in non-gaming vehicle simulation applications such as NVIDIA DriveSim.

Using games technology in non-gaming applications leads to an obvious question.

Q: What is the integrity of the PhysX vehicle model in scenarios currently of interest?

A: Let’s compare with world class, industry-standard vehicle dynamics simulators and analyse the results.
What is a PhysX vehicle?

- Engine (1-d rigid body, drive torque curve, damping)
- Drivetrain (clutch, gearbox, final drive, differential)
- Suspension (spring-damper)
- Wheels (1-d rigid body)
- Tires (longitudinal/lateral slip angles/forces, non-linear response, friction)
- 3d rigid body (jointed to sidecars, trailers etc)
SIDE BY SIDE COMPARISION I

Test methodology

- Run PhysX side by side with leading 3rd party simulator used widely by automotive industry
- Configure vehicle data to be as closely matched as possible
- Run PhysX and leading 3rd party simulator and compare simulation results
- Test acceleration, braking, steering conditions that represent usual and safe driving behaviors
SIDE BY SIDE COMPARISON II

Test methodology

- Drive PhysX and 3rd party simulator with identical driving input (steer, brake, throttle) updated at 75Hz
- PhysX and 3rd party simulator drive on the same road geometry and friction
- Run PhysX and 3rd party simulator at 1KHz
- Sample simulation state (wheel rolling speed, vehicle speed) at 60Hz.
- Plot trajectory of maneuver
THROTTLE AND BRAKE

Rev the engine
Engage the clutch
Accelerate to top speed in 1st gear
Apply the brake at 30 seconds
LANE CHANGE MANEUVER

Rev the engine
Engage the clutch
Throttle forwards
Steer maneuver to change lanes
(note: placeholder images)
QUESTIONS
Gordon Yeoman | gyeoman@nvidia.com
BEYOND GAME VEHICLE PHYSICS?

Gordon Yeoman, Developer | 14 March, 2019 | Booth S466 | South Hall
PhysX Vehicles are now being used in non-gaming vehicle simulation applications such as NVIDIA DriveSim.

Using games technology in non-gaming applications leads to an obvious question:

Q: What is the integrity of the PhysX vehicle model in scenarios currently of interest?

A: Let’s compare with world class, industry-standard vehicle dynamics simulators and analyse the results.
PHYSX VEHICLE FEATURE SET

What is a PhysX vehicle?

- Engine (1-d rigid body, drive torque curve, damping)
- Drivetrain (clutch, gearbox, final drive, differential)
- Suspension (spring-damper)
- Wheels (1-d rigid body)
- Tires (longitudinal/lateral slip angles/forces, non-linear response, friction)
- 3d rigid body (jointed to sidecars, trailers etc)
SIDE BY SIDE COMPARISON I

Test methodology

- Run PhysX side by side with leading 3rd party simulator used widely by automotive industry
- Configure vehicle data to be as closely matched as possible
- Run PhysX and leading 3rd party simulator and compare simulation results
- Test acceleration, braking, steering conditions that represent usual and safe driving behaviors (accelerate, brake, lane change steering)
SIDE BY SIDE COMPARISON II

Test methodology

- Drive PhysX and 3rd party simulator with identical driving input (steer, brake, throttle) updated at 75Hz
- PhysX and 3rd party simulator drive on the same road geometry and friction
- Run PhysX and 3rd party simulator at 1KHz
- Sample simulation state (wheel rolling speed, vehicle speed) at 60Hz.
- Plot trajectory of maneuver
THROTTLE AND BRAKE

Rev the engine
Engage the clutch
Accelerate to top speed in 1st gear
Apply the brake at 30 seconds
LANE CHANGE MANEUVER

Rev the engine
Engage the clutch
Throttle forwards
Lane change maneuver begins at 10s
Lane change maneuver ends at 16s
QUESTIONS
Gordon Yeoman | gyeoman@nvidia.com