
www.nvidia.com/GDC

EXPLORING RAYTRACED FUTURE IN
METRO EXODUS

Oles Shyshkovtsov, 4A Games

Sergei Karmalsky, 4A Games

Benjamin Archard, 4A Games

Dmitry Zhdan, NVIDIA

2

“My old dream was to see global illumination in an

interactive application, which doesn't depend

on any precomputation and works with 100%

dynamic lighting conditions and a similarly

dynamic environment.”

Oles Shyshkovtsov, 4A Games (GPU Gems 2, 2005)

3

AGENDA

1. Introduction

2. Implementation

3. Denosing

4. Artist point of view

4

INTRODUCTION
The Quest for the Holy Grail

5

MOTIVATION
RTX OFF

6

MOTIVATION
RTX ON

7

THE QUEST BEGINS
Know what you want to achieve

Everything?

Ok, fine. Global Illumination!

Ok, fine. A hybrid, indirect first-

bounce, diffuse, Global

Illumination and Deferred

rendering pipeline.

Right. Off you go.

8

A CUTTING EDGE ENGINE

A standard deferred renderer

Calculate G-Buffer and lighting buffers, accumulate light and effects, TAA, post-process

Relies heavily on stochastic methods followed by TAA to reduce noise

Legacy version

GBuffer / Deffer Lighting Buffers

Shadows
and SSAO

Albedo / AO
Normals
Materials

Depth

Volumetric
Atmospheric
Integration

RSM / Voxel
Global

Illumination

Lighting Accumulation

Sun,
Clustered

Lights / IBLs,
SSR, GI

Forward
Effects,

Access To L-
Clusters

TAA / Post-Process

Distortions, TAA,
Motion Blur, Tone-
Mapping and Post

Effects

9

A CUTTING EDGE ENGINE
RTX ON

The raytraced elements merge nicely with standard deferred renderer

Added buffer to cache raytrace data for use in RTAO and RTGI passes

Stochastic ray generation: Image is figuratively shouting at us, so a good denoiser is critical

GBuffer / Deffer

Albedo / AO
Normals
Materials

Depth

TAA / Post-Process

Distortions, TAA,
Motion Blur, Tone-
Mapping and Post

Effects

Lighting Buffers

Perform and
Cache Trace

SSAO + RT

Standard
Shadows
and VIA

New RTGI
Denoiser
Passes

Lighting Accumulation

Raytracing
Contribution

Standard
Lighting and

Forward
Effects

10

STOCHASTIC METHOD

Monte Carlo Integration: the approximation of large data sets with few samples

Rather than adding up every single ray/photon, pick a few as “representative”

You may lose some specific details, but will get the big picture

Desirable for a GI solution

Results get to the point of diminishing returns at a tiny fraction of the total set

This doesn’t just apply to raytracing

Shadows, volumetrics, reflections, hair

Apply to any suitably complex effect

Why do it 1000 times when once will do?

11

STOCHASTIC METHOD

Beware of noise and aliasing, both are issues, aliasing is worse

You are going to produce a noisy data set, and you will run denoisers

Jitter, Importance sampling and Probability Density Function (PDF) provide leverage over
sample distribution

Output data is buffered for analysis, filtering and use later on

Produces good general purpose (input agnostic) data on scene illumination

If your image is still noisy at the end of the frame (it will be) add TAA

The importance of samples

12

STOCHASTIC METHOD
Know your noise

Noise breaks up patterns when

sampling below input frequency

Must be repeatable, it is used later

for re-construction of the hit

location from stored distance value

Temporally and spatially uniform to

avoid “clumping” and “swimming”

Sample small blue noise texture

across the screen, oscillate across

frames

// Sample noise from screen position and frame index

float2 uv = t_blue_noise_64.Load(uint4(

(pixID.xy+32*(frmID&1))&63, frmID&63, 0)).xy;

// Generate ray on hemisphere

float3 vRay = HemisphereSample(uv);

// Transform to local space of the surface using

// surface normal

float3 T, B; BasisFromDirection(N, T, B);

return normalize(FromLocal(ray, T, B, N));

13

AO is a poor-man replacement for GI. We are doing real GI already so why bother?

We are running hybrid pipeline, which is smoothly blended into “old” pipeline

250m transition from foreground RTGI to “regular” pipeline

Regular pipeline expects AO available at different stages

All image-based lighting (light-probes) are directly multiplied by AO

Some “fake” lights use AO as their shadow approximation. Shame on us :)

Even sun shadow-map blends into AO at some distance

Searching for usage in shader-code finds 79 places...

Also, it’s cheap and helps guide the denoiser! :)

RTAO
Why?

14

SSAO TO RTAO
Reuse and Improve

SSAO
Captures nearby details

RTAO
Recognise enclosed space

SSAO
Misses interior occlusion

RTAO
Progressively darkens

15

VOXEL-BASED GI TO RTGI
Night vs Day

Voxel GI
Broad directional light,
insufficient detail for

shadows

RTGI
Light bounce and contact

shadows from nearby
objects

Voxel GI
No sense of depth

RTGI
Gradual self-occlusion on

object interiors

16

RTX OFF RTAO PASS

RTGI PASS RTX ON

17

RTX OFF RTAO PASS

RTGI PASS RTX ON

18

RTX OFF RTAO PASS

RTGI PASS RTX ON

19

RTX OFF RTAO PASS

RTGI PASS RTX ON

20

PUTTING IT ALL
TOGETHER
Ok. Now it works. Just...

RTX fitted in well with 4A engine

The game was balanced for the
traditional pipeline, but RTX
walked in made it its own

We want more “rays”: We
generate as few as possible for
performance, but we can always
find as use for more them

Lots of options for the future...

21

IMPLEMENTATION
It WILL just work, if you work at it

22

RSM rendering (replaced with cheaper depth-only shadow-map rendering)

Geometric ESM-AO (approximation of 16 rays)

SH-voxel-grid computation/gather

SH-voxel-grid temporal blending

SH-voxel-grid screen-space resolve

IMPLEMENTATION (1)
Remove unnecessary pipeline stages

23

SSAO-pass now computes accumulation weights and accumulates raytraced AO

Velocity, depth disocclusion, etc.

Weights used for both AO accumulation and GI

AO-filter pass

Before:

SSAO filtering, geometric ESM-AO sampling

Blending with terrain AO, precomputed AO maps, per-vertex AO

Now:

Denoising and RTAO accumulation

IMPLEMENTATION (2)
Modify some pipeline stages

24

Raytracing☺ + screen-space pre-tracing

Geometry skinning and animation

Albedo updates/management

BLAS updates

TLAS rebuilds

Deferred shading of hit-positions

Denoising & accumulation

IMPLEMENTATION (3)
Add new pipeline stages

25

Handles skinning and geometric animation

Handles all BLAS updates/TLAS rebuilds

Separate instance-culling (expanded frustum, contribution)

Instance transforms, logical/game visibility

Separate memory manager

Separate command lists

Just 3 .cpp files, ~1500 lines DXR API, ~1100 lines logic, ~200 lines “glue”

RT MODULE
Separate mini-engine from the rest of the pipeline

26

BLAS = update only for skinned/animated instances; TLAS = rebuild only from scratch

TLAS quality and compactness is extremely important

TLAS selects those which are inside expanded frustum (+logical visibility, + contribution culling)

Usually we have more than 100k potentially active instances; less than 5k will survive the culling

Relatively fast, but each update/rebuild is multi-pass, under utilizes GPU

Hide with async-compute!

We hide it with pre-trace CS and SSR CS

Alternatively run it from compute queue parallel to the gbuffer rendering

We have both modes implemented, statistically insignificant perf difference

BVH MANAGEMENT
Recipe

27

Every entity update increases priority of RT-instances

Visible = higher priority, small and/or distant = lower priority

Sort instances based on accumulated (across frames) priority

Select a few (16 in our case) with highest priority

Select a few (4 in our case) randomly from the remaining set with non-zero priorities

High priority objects should not block other stuff updating!

Shrinks queue to "balanced" state in a matter of seconds

"Balanced" state is just 5k-6k instances "outdated" :) out of 20k+

Additionally limit the vertex count as well

Necessary to avoids rare "spikes" in processing

BLAS UPDATE THROTTLING
Skinned and animated vertices processing

28

Depth impostor cache / Simplified IB (separate position-only VB if shader allows)

Reuse those simplified "shadow" meshes for RT!

Result: BLAS meshes are about 4x smaller than the “real” geometry

There are scenes where it translates into 30% perf gain in raytracing

All vertex animation and skinning become cheaper

Memory usage: ~1GB instead of ~4GB

Zero or close to it difference in quality!

METRO IS EXTREMELY GEOMETRY HEAVY
20,000,000 polygons is a lot to render just for the sun shadow

29

Shoot rays at every pixel in all directions (ok, according to BRDF lobe)

Gather lighting at the contact point; multiplied by albedo of that point

Accumulate that!

Hit distance gives us "free" RTAO

RAYTRACED GI
Basic idea

30

PIPELINE STAGES
Raytracing Specific GPU Pipeline

Ambient Occlusion

RT-AO

RAYTRACING !!

Perform
Raytracing!

Store Results

SSAO and SSR
Pre-trace

Ray Culling

RT-AO
Filtering

Global Illumination

Deferred
Lighting for RT-

GI

RT-GI
First Denoising

Pass

RT-GI
Second

Denoising Pass

Screen-space pre-trace + all actual raytracing

Ambient Occlusion + Filtering

Global Illumination + Two pass denoiser

31

[insert picture of pipeline before and after]

Initial implementation took around one person-month

here

32

Exactly the same ray-generation as the real raytrace

Ray-march against depth buffer

Runs as async-compute, parallel to BVH updates/rebuilds

Fixes missing "alpha-tested" geometry in most cases

We aggressively filter it out whenever we can

Almost constant distance in screen-space (cache-friendly)

Outputs into UAV hit-distance and albedo (from g-buffer)

PRE-TRACE
Ray tracing in screen space

33

Only spawn the real ray if pre-trace failed to find intersection

Leads to a small perf-boost

Ray-marches terrain’s heightmap inside the "raygen" shader

Limit ray distance if intersection is found

Almost free here (if done carefully) due to GPU latency hiding

Extremely simple pipeline config

Only [shader("closesthit")] is necessary for us to get hit results

Payload is a single UINT

Outputs to the same UAV, distance + albedo (packed into a single UINT)

Needs to be careful with precision and tolerances

Floating point precision hit us several times

RAYTRACING
Real rays!

34

Run exactly the same ray generation as in main trace

Reconstruct hit position (or indication of "miss") and albedo

MISS = sample skybox HIT = compute lighting

Encode information, more on that later

Accumulate with history

DEFERRED LIGHTING
Hit-positions processing

35

Tech stabilized quite late in the development cycle (late Q4/2018)

Content was mostly done and locked in at the time

Implemented 1st bounce contribution from all lights, out of curiosity

Lighting already computed in a deferred way? use it

In frustum, but occluded? Use precomputed lighting from atmosphere

Out of frustum - run real computation

Extremely cheap (~0.2ms on an RTX 2080ti), could be a big perf-boost if we managed to remove

AO/IBL, but...

It conflicts with hand-crafted lighting and visuals :(

It breaks the game, especially the stealth mechanic

Simply put: we were out of time to fix current content across the huge game

DEFERRED LIGHTING
Why only the sun/moon and sky?

36

Color bleeding is mostly visible on close to contact surfaces

Usually those are found by initial screen space pre-trace

Just sample albedo from gbuffer

Integration across the whole hemisphere is a low-pass filter in essence

It is a good idea to pre-filter signal to lower denoiser’s input noise level

We do that pre-filtering extremely aggressively - we store average albedo per-instance :)

Low input noise and extremely fast :)

COLOR TRANSPORT
Where to get albedo for hit results?

37

G-buffer (the pre-trace samples this) Per-instance albedo (raytracing samples this)

COLOR TRANSPORT
Where to get albedo for hit results?

38

Usually average albedo color pre-calculated per-texture suffices

What to do with metals? Theirs albedo is essentially zero…

Solution: Albedo * (1 - F0) + F0

What if complex shading changes visible albedo?

Or maybe it is texture-atlas and average doesn't make sense?

Solution: pre-render that exact combination of mesh-shader-textures-params!

Then average visible albedo from 6 directions

Store into sparse database/hash table

Still allow artists to “override” it

Database shipped in the first “hotfix”

COLOR TRANSPORT
A few problems

39

Color bleeding - RTX ON

40

Decompose HDR-RGB into Y and CoCg

Encode Y as L1 spherical harmonics (world space), leave CoCg as scalars

Human eye more sensitive to intensity, not color

4xFP16 for Y

2xFP16 for CoCg

96 bits per pixel in total

All the accumulation and denoising happens in this space

IRRADIANCE STORAGE & ENCODING
Directional color space

Illustration from paper “Stupid Spherical Harmonics (SH) Tricks” by Peter-Pike Sloan

41

Denoisers could go really wide under certain conditions

Loss of normal-map details

Loss of "contact" details and general blurriness

Loss of denoising quality if we weight heavily against normals of samples, less information could be "reused"

96 bits? Why not less?

Tried to reduce it down to 64 bits - failed

Mostly because of "recurrent" nature of denoisers which could be extremely aggressive on temporal

accumulation and thus precision

In case of LDR, Y would be in range of [0..1] and CoCg in [-1..1], in our case it is actually in [0..HDR] and [-

HDR..+HDR]

WHY NOT JUST COLOR?
would R11G11B10 be enough?

42

This encoding is actually a low order approximation of cubemap

But at each individual pixel!

This allows us to reconstruct indirect specular!

Crucial for metals where albedo is zero or close to it

SPECULAR!
Important for PBR materials consistency

(Illustration from paper “Stupid Spherical Harmonics (SH) Tricks” by Peter-Pike Sloan)

43

Resolve SH as usual against pixel's BRDF to get diffuse

Extract dominant direction out of SH

Compute SH degradation into non-directional/ambient SH

If SH is non-directional - it means incoming light is uniform over hemisphere

And if it is uniform - that’s the same as if material is "rough" -> recompute new roughness

Run regular GGX with (extracted_direction, recomputed_roughness)

DECODING IRRADIANCE
Details

44

SPECULAR GI OFF
Booooooooo

45

SPECULAR GI ON!
Yay \(•◡•)/

46

THE POWER OF
PIPELINE
Details

The BRDF importance sampling

doesn't care what to integrate at

all, it is "unbiased" in that sense

Be it 1st, 2nd or 3rd bounce indirect

lighting or "direct" lighting or

whatever

What if we put something

emissive in the scene?

DEMO TIME!

47

POLYGONAL LIGHTS
Details

Yes, that's arbitrary shaped and

textured polygonal lights

I saw a lot of research on that…

But nobody does shadows,

right? ☺

It is free!

48

Game-scale realtime 1st bounce indirect lighting from any analytic light

Not limited to 1st bounce at all, but… Xms trace Yms light per bounce

Even 2nd bounce gives diminishing returns compared to cost

Direct lighting and shadowing from arbitrary shaped polygonal area lights

Or sky, or whatever… Artistic freedom...

Computes both diffuse BRDF (Disney) and specular BRDF (GGX)

Everything is fully dynamic, both the geometry and lighting (no precomputation!)

In fact 4A-Engine doesn’t really have a concept of something static (prebaked)

Massive scenes

~150 000 000 triangles on a typical Metro level in TLAS before culling

WRAPPING THINGS UP
“Holy Grail” cracked!

49

DENOISING
Trapping the beast in 15 mins

50

DENOISING

Denoising (or noise reduction) is the process of removing noise from a signal

Can be convolution or Deep Learning based

DL-based solution is barely explored in real-time graphics

Our approach is convolution-based and has spatial and temporal components

What is it?

51

EXAMPLE
Denoised vs Noisy input

52

EXAMPLE
Noisy input vs Denoised

53

DENOISING IS NOT A FUN...

Keeps you sad - IQ is always lower than it needs to be

Friendship is very fragile - a small change can ruin IQ completely

Small gifts don’t help – tiny tunings here and there turn the algorithm into
Frankenstein’s creature

Demands too much of attention – single pass denoising works badly or inefficiently

...but casting rays is :)

54

DENOISING

Spatial component:

Sampling space, distribution and radius?

Sample weight?

Number of samples?

Temporal component:

Feedback link or links?

Feedback strength and ghosting?

Problem decomposition

55

Take a lot of samples around current pixel

Accumulate weighted sum

The weight depends on the signal type (AO or GI, reflections, shadows)

Same as Monte Carlo integration:

DENOISING: SPATIAL COMPONENT (1)
As a single-pass blur

Final reconstructed signal
(GI, AO)

Weighted sum (N samples)
f(x) - noisy input

56

DENOISING: SPATIAL COMPONENT (2)
Screen- vs world- space sampling

NO YES

Screen space problems:
- thin objects
- surfaces at glancing angle
- lots of samples are wasted
due to anisotropy caused by
perspective

57

DENOISING: SPATIAL COMPONENT (3)
Importance sampling

Final reconstructed
signal (GI, AO)

Weighted sum (N samples)
f(x) - noisy input

p(x) - Probability Distribution Function (PDF) allows to replace
uniform distribution with something more relevant…

58

DENOISING: SPATIAL COMPONENT (4)
Sampling distribution & distance weight

NO YES

Weight = non_linear_F(d) Weight = linear_F(d) or step(d, R)

Moving distance falloff math to the distribution and simplifying weight
calculation to “step” function leads to output noise reduction!

d

d

Uniform Quadratic

59

DENOISING: SPATIAL COMPONENT (5)
Distance weight

Most important samples are on tangent plane

Use plane distance to calculate falloff

Use absolute value, otherwise denoising will skip all rounded objects

N

Tangent plane

+plane dist

-plane dist

Zone of
interest

60

DENOISING: SPATIAL COMPONENT (6)

Using pow is incorrect because it

explicitly contradicts lighting theory

It makes your result very oriented

Using x instead of pow(x, 8) is a

good idea

Normal weight

// Please, don’t use ‘pow’!

float NormalWeight(float3 Ncenter, float3 Nsample)

{

float f = dot(Ncenter, Nsample);

return pow(saturate(f), 8.0);

}

61

DENOISING: SPATIAL COMPONENT (7)

Leads to 2x-5x slowdown!

Input signal is already noisy (applying noise on top of noise isn’t worth it)

Use per frame random rotation to improve quality of temporal accumulation!

Per pixel kernel rotations

NO!

62

DENOISING: SPATIAL COMPONENT (8)
Radius of denoising

Needs to be large, but can be scaled with distance

Compute variance of the input signal, blur less if variance is small

Blur less in “dark corners”, i.e. multiply by AO

Signal-to-noise ratio - blur less where direct lighting is strong

R = BaseRadius ⋅ F(viewZ) ⋅ F(variance) ⋅ F(AO)

63

DENOISING: SPATIAL COMPONENT (8)
Number of samples

A lot of samples are required! 32? 64? 128? (depending on
number of passes)

Compute variance of the input signal, adaptively reduce
number of samples if variance of the input signal is
small...

...but variance computed for the current frame is always
big! Solution - add temporal component \O/

Obviously, accumulated signal will get less and less
variance over time!

64

DENOISING: TEMPORAL COMPONENT (1)
Common ideas

TEMPORAL
ACCUMULATION

GI/AO

DENOISING

A B

TEMPORAL
ACCUMULATION

GI/AO

DENOISING

Better
Low frequencies

Less ghosting

Better
High frequencies

65

DENOISING: TEMPORAL COMPONENT (2)
Our idea

TEMPORAL
ACCUMULATION

GI/AO

DENOISING

More frequencies over time (mixture of low and

high)

Requires less samples per frame

Less ghosting (denoising smoothes out

reprojection artefacts)

(AO denoising uses this scheme, adaptive

sampling with up to 64 samples, processes 2

pixels per thread sharing results between them

if no edges)

66

DENOISING: LITTLE MONSTER (1)
GI denoiser

GI Denoiser #1Temporal
accumulation

Hit
distances

Denoised diffuse
GI and indirect

specular

Temporal
accumulation

Denoiser #2

Combiners

Temporal
feedback Signal pass-

through

67

DENOISING: LITTLE MONSTER (2)
Denoiser block

Computes variance of the input signal (3x3 pixels)

Computes radius scale as “F(viewZ) ⋅ F(variance) ⋅ F(AO)”

Computes adaptive step N = F(scaleRadius) (small radius = bigger step)

Processes each Nth sample from a poisson disk (up to 32 samples per pass)

The combiner just mixes up denoised and noisy input signals as:

Combiner = lerp(denoisedSignal, inputSignal, 0.5 * accumSpeed) (accumSpeed = 0.93 if no motion)

Combiner

68

DENOISING: LITTLE MONSTER (3)
GI denoiser

GI Denoiser #1Temporal
accumulation

Hit
distances

Denoised diffuse
GI and indirect

specular

Temporal
accumulation

Denoiser #2

Temporal accumulation always happens before denoising to eliminate ghosting and
reprojection artefacts

History is always rejected if out-of-screen sampling or z-occlusion are detected

Combiners

69

DENOISING: LITTLE MONSTER (4)
GI denoiser

GI Denoiser #1Temporal
accumulation

Hit
distances

Denoised diffuse
GI and indirect

specular

Temporal
accumulation

Denoiser #2

The output of each denoiser is always a combination of denoised and noisy input signals!

It helps to preserve tiny details

Combiners

70

DENOISING: LITTLE MONSTER (5)
GI denoiser

GI Denoiser #1Temporal
accumulation

Hit
distances

Denoised diffuse
GI and indirect

specular

Temporal
accumulation

Denoiser #2

First pass of denoising doesn’t take normals into account

It has wider base radius (6m)

Combiners

71

DENOISING: LITTLE MONSTER (6)
GI denoiser

GI Denoiser #1Temporal
accumulation

Hit
distances

Denoised diffuse
GI and indirect

specular

Temporal
accumulation

Denoiser #2

Second pass of denoising takes normals into account

It has smaller base radius (3m)

Physically it’s same denoiser which applies “normal weight” on top of geometry weight

Combiners

72

DENOISING
Tips & tricks

Use NSIGHT GRAPHICS GPU Trace utility to understand your limiters

Fetch heavy data only if weight is non-zero

TAA is your friend - it’s a free pass of denoising

SH irradiance is your friend - solves “blurriness” problem

Know your noise - perfection in image “cleanness” is not needed

73

PERFORMANCE
RTX 2080 at 2560x1440

Stage HIGH ULTRA

Pretrace ~0.4 ms ~0.8 ms

BLAS/TLAS (completely hidden by async) ~0.5 ms ~0.5 ms

Raytracing 1 to 3 ms 2 to 6 ms

AO Denoising ~0.6 ms ~0.9 ms

GI computation ~0.6 ms ~1.0 ms

GI denoising ~1.6 ms ~2.1 ms

Total Frame Time Overhead (vs RTX OFF) ~20% ~30%

74

ARTIST POINT OF VIEW
Just make it work for us

75

OUR FIRST RTAO SHOT
...Which one is RT ON?

76

DEFENDING THE CHOICE OF RTGI

There were not many people who believed RTGI was a good direction of research

From audience to stakeholders (oops)

Especially when convincing solutions already exist:

SSAO and geometric ESM-AO for world space AO

Super-lazy-realtime grid of probes for GI

Voxel GI (which we already have nicely integrated with PBR in Exodus)

Why not do reflections instead?

77

Reflection probes or lightmaps for GI?

not a realtime solution

SSAO for AO?

suffers from its screen-space nature

limited to 1m tracing (good for features of... <1m in size)

LIMITATIONS ARE ALSO WELL KNOWN
And we accepted them for years

78

SIZE MATTERS
1m is not enough (°╭╮°)

In large scenes short rays

produce no more than an

‘edge trace’ effect

79

50m ray tracing

Billions of rays per second

Per-pixel details at any scale:

pencils on table 1mm scale

ships 20m scale

canyons, skyscrapers 100m+ scale

And at no cost!.. Well, almost

NEW INSANE POSSIBILITIES
Literally insane

80

1m vs 50m

81

1m vs 50m

82

LEGACY AO

83

RTGI

84

SSAO NO MORE
GI replaces the need for it

Legacy AO:

Tons of AO sources mixed

Multiplied directly on shadows

Effectively a patch

RTGI:

Solves it all

85

SKYLIGHT SHADOWS
No direct lights involved

Single frame took several

minutes of rendering in ‘99

Mesmerizing to watch

86

GI FROM LIGHT
SOURCES
Interiors fully lit by sun

Пиши умное, э

87

GI BY LIGHT PROBES

88

PER-PIXEL RTGI

89

IMPLEMENTATION
CONTINUES...
Still missing something

Specular GI

Specular lighting

contributes up to 50% of

light on rough surfaces

Color bleeding

The most prominent

feature in GI

90

COLOR BLEEDING OFF

91

COLOR BLEEDING ON

92

CLOSE TO RELEASE
Content fixes and polishing

Making content work well in

both modes

Revert fake artsy lights

Adjust non-RTX mode content to

match RTX in extreme cases

Both versions must look

good!

There cannot be a loser

it's Exodus vs Exodus

93

RELEASE

BEER TIME!

94

NEW MEASUREMENT OF
‘BETTER’
Enough of concerns

We do not expect RT-lighting to

be exactly 'better'

Especially in an art-directed game

Results are clearly different

Mathematically stable solution

makes them believable and

natural

Or just convincing

95

RTX ?

96

RTX ?

97

HOW RT MAKES US
HAPPY
A tool to play with

An achievement

Fully dynamic solution - 4A’s pillar

Lighting reference tool

Emergent results

98

99

100

OUR NEXT DREAMS
What would Oles dream of next?

AO and GI are nailed

Area lights with soft shadows

Caustics. Magic in real life

Raytracing as one unified

solution

Light-based gameplay logic

Deferred+Forward

Volumetrics

RT on consoles

101

USEFUL LINKS

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-
precomputedgiobalilluminationinfrostbite.pdf

http://orlandoaguilar.github.io/sh/spherical/harmonics/irradiance/map/2017/02/12/Spheric
alHarmonics.html

http://cg.ivd.kit.edu/publications/2017/svgf/svgf_preprint.pdf

https://cg.ivd.kit.edu/publications/2018/adaptive_temporal_filtering/adaptive_temporal_filt
ering.pdf

https://media.contentapi.ea.com/content/dam/eacom/frostbite/files/gdc2018-precomputedgiobalilluminationinfrostbite.pdf
http://orlandoaguilar.github.io/sh/spherical/harmonics/irradiance/map/2017/02/12/SphericalHarmonics.html
http://cg.ivd.kit.edu/publications/2017/svgf/svgf_preprint.pdf
https://cg.ivd.kit.edu/publications/2018/adaptive_temporal_filtering/adaptive_temporal_filtering.pdf

www.nvidia.com/GDC

Спасибо!

Oles Shyshkovtsov | oleksandr.shyshkovtsov@4a-games.com.mt

Sergei Karmalsky | sergei.karmalsky@4a-games.com.mt

Benjamin Archard | benjamin.archard@4a-games.com.mt

Dmitry Zhdan | dzhdan@nvidia.com

Slides at bit.ly/4agames

mailto:oleksandr.shyshkovtsov@4a-games.com.mt
mailto:sergei.karmalsky@4a-games.com.mt
mailto:benjamin.archard@4a-games.com.mt
mailto:dzhdan@nvidia.com

103

BONUS SLIDE!
Color to spherical harmonics

104

BONUS SLIDE!
Spherical harmonics to color (no resolve)

105

BONUS SLIDE!
Spherical harmonics resolve

