
www.nvidia.com/GTC

Holger Gruen (NVIDIA), Jon Story (NVIDIA), Michiel Roza (Nixxes)

03/19/2019

“SHADOWS” OF THE TOMB RAIDER –
A RAY TRACING DEEP DIVE

2

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

3

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

4

5

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

6

Shadow Mapped

7

Shadow Mapped

8

Shadow Mapped

9

Raytraced

10

WHY RAY TRACED SHADOWS?

Pixel perfect shadows

Translucent shadows

Point lights

Currently faked by using two spot lights

Area lights

There’s so much that shadow mapping can’t do!

11

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

12

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

13

BLAS

DXR SHADERS
DXR Mini intro

TLAS

BLASBLASBLAS
BLAS

BLAS

Acceleration StructuresShaders

Raygen()

Anyhit()

ClosestHit()

14

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

15

DXR SHADERS
Noise / random number generation

Penumbra Umbra

Ideally we want to

trace many rays to

find out how much of

the light source a

point can see

16

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

17

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

18

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

19

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

20

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

21

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

22

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

23

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

24

• For great performance we want to shoot only 1 ray per pixel

• So instead of one pixel shooting many rays, a neighborhood of pixels samples
‘enough’ random positions on the light source

DXR SHADERS
Noise / random number generation

1 2 3

4 5 6

7 8 9

25

DXR SHADERS

• Random positions on the light are based on generating pseudo random numbers

• The trick is to choose the right random seed for the generator

• We use a seed that is based on the 2D position of the pixel

Noise / random number generation

Seed((pixel_2d_pos) % TILE_SIZE_2D);

http://www.reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/

http://www.reedbeta.com/blog/quick-and-easy-gpu-random-numbers-in-d3d11/

26

Noisy shadows

27

DXR SHADERS
Noise / random number generation

28

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

29

We use specialized raygen shaders for each light type for optimal
performance

DXR SHADERS
Ray generation

Directional light

source with an

angular extent
Area Cone light

Point light with

a spherical area

Rectangular

area cone light

30

All light types

DXR SHADERS
Ray generation

z-buffer

WS Pixels

N

Move some small distance along the normal to prevent self-shadowing!

31

DXR SHADERS

All light types

Ray generation

z-buffer

WS Pixel

No rays for pixels that face away from the current light!

N

32

Directional lights

DXR SHADERS
Ray generation

z-buffer

WS Pixels

33

DXR SHADERS

Spot lights

Ray generation

z-buffer

WS Pixels
Rays only get generated for pixels:

• Inside the cone of the light

• Within reach of the light

34

Point lights

DXR SHADERS
Ray generation

z-buffer

WS Pixels

Rays only get generated for pixels:

• Within reach of the light

35

Rectangular lights

WS Pixels

DXR SHADERS
Ray generation

z-buffer

Rays only get generated for pixels:

• Inside the cone of the light

• Within reach of the light

36

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

37

DXR SHADERS

• We don‘t use the closest hit along the ray

• Instead we use the first opaque one that gets reported to anyhit()

• Translucency for DXR ultra quality is an exception

• We fetch texture coords for alpha tested prims to carry out the
alpha test

Hit shaders

38

DXR SHADERS

• Opaque Geometry

• Alpha-tested Geometry

Hit Shaders

void OpaqueClosestHit(…)

{

payload.hitT = RayTCurrent();

payload.visibility = 0.0f;

}

void OpaqueAnyHit(…)

{

AcceptHitAndEndSearch();

}

void AlphaClosestHit(…)

{

payload.hitT = RayTCurrent();

}

void AlphaAnyHit(…)

{

float alpha = GetHitAlpha(bary);

if(alpha < g_fAlphaThreshold)

IgnoreHit();

else {

payload.visibility = 0.0f;

AcceptHitAndEndSearch();

}

}

39

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

40

DXR SHADERS

• Adaptive raytracing is only used for ultra DXR quality

• In this mode we cast more than 1 ray for some pixels

• Let’s dive into the details …

Adaptive raytracing

41

Phase 1 – Cast 1 ray per pixel

Phase 2 – Cast up to 2 more rays ‚where necessary‘

DXR SHADERS
Adaptive raytracing

Visibility

hitT

Neighborhood of pixel

Visibility:

• Black => can’t see the light

• White => can see the light

hitT:

• Distance to blocker along ray

• White means ‘infinity’

• Dark means close-by blocker

42

Phase 1 – Cast 1 ray per pixel

Phase 2 – Cast up to 2 more rays ‚where necessary‘

DXR SHADERS
Adaptive raytracing

Visibility

hitT

Neighborhood of pixel

No additional

rays

43

Phase 1 – Cast 1 ray per pixel

Phase 2 – Cast up to 2 more rays ‚where necessary‘

DXR SHADERS
Adaptive raytracing

Visibility

hitT

Neighborhood of pixel

No additional

rays

44

Phase 1 – Cast 1 ray per pixel

Phase 2 – Cast up to 2 more rays ‚where necessary‘

DXR SHADERS
Adaptive raytracing

Visibility

hitT

Neighborhood of pixel

1 more ray

Visibility = (Visibility0+Visibility1)/2

45

Phase 1 – Cast 1 ray per pixel

Phase 2 – Cast up to 2 more rays ‚where necessary‘

DXR SHADERS
Adaptive raytracing

Visibility

hitT

Neighborhood of pixel

2 more rays

Visibility =

(Visibility0+Visibility1+Visibility2)/3

46

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

47

DXR SHADERS

• Ultra DXR quality also features translucent shadows

• We support up to 3 layers of translucency

• Mainly to keep performance at acceptable levels

• Translucency should be straightforward with DXR right?

• Want to keep on using anyhit() instead of iterated closesthit()

• Let’s look at the details …

Translucency

48

WS Pixel

DXR SHADERS
Translucency

anyhit() order non-

deterministic

1

3

2

49

WS Pixel

DXR SHADERS
Translucency

anyhit() order non-

deterministic

1

2

3

50

WS Pixel

DXR SHADERS
Translucency

Subtraction is order independent:
➢ Let each layer subtract 1/3 of the light

➢ Pixel in full shadow after 3 order independent hits

51

DXR SHADERS
Translucency

void TranslucentAnyHit(…)

{

float alpha = GetHitAlpha(bary, PrimID);

if(alpha >= g_fAlphaThreshold)

payload.visibility -= (1.0f / 3.0f);

if(payload.visibility < 0.01f) {

payload.visibility = 0.0f;

AcceptHitAndEndSearch();

}

else

IgnoreHit();

}

52

Opaque raytraced shadows

53

Translucent raytraced shadows

54

DXR SHADERS

• Noise / random number generation

• Ray generation

• Hit shaders

• Adaptive raytracing

• Translucency

• TAA and jittering

Mini Agenda

55

DXR SHADERS

• Like many games SotTR uses jittered TAA

• Each frame adds a ‘random’ subpixel offset to all geometry

• Surprisingly this creates problems with flickering shadows!

TAA + Jittering

56

DXR SHADERS
TAA + Jittering

a 2x2 pixel grid
• The red dots are the pixel

centers

• This is where rasterized

geometry is sampled

57

DXR SHADERS
TAA + Jittering

Rasterizing a

3D quadrangle

The intermediate positions

and the grid are shown to

help understand how 3D

positions change across

the quad

58

DXR SHADERS
TAA + Jittering

Jitter somewhat …

59

DXR SHADERS

• Jittering changes the WS position that is sampled at pixel centers

• It also changes the depth values at the pixel centers

• Jittering changes the reconstructed world space positions

TAA + Jittering

Shadow ray origins

jitter as well

60

DXR SHADERS

Jittered ray positions are not problematic in general, but:

• We typically shoot only one ray per pixel

• Which is equivalent to ‘point sampling‘ of the visibility signal

• Large areas of flat ground are problematic

• Vertical jittering leads to large differences in WS positions

• Also visible with shadow maps but less because of SM filtering

TAA + Jittering

61

VIDEO

62

DXR SHADERS

Solutions:

1. Currently we render an extra depth pass without jittering

• Use non-jittered depth to reconstruct WS ray origins

2. Future: Render ddx/ddy(1/z_buffer_depth) with depth pass

• Reconstruct non-jittered depth

• Use non-jittered depth to construct WS ray origins

• 1/z-buffer-depth is linear in screen space

TAA + Jittering

63

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

64

INPUT / OUTPUT

Visibility

HitT

Normals

Depth

Light
Desc

Params

GameWorks Spatial
Denoiser

Edward Liu &
Jon Story

65

ISOTROPIC KERNEL

66

ANISOTROPIC KERNEL

67

OVERLAPPING PENUMBRA #1

68

OVERLAPPING PENUMBRA #2

69

Need to detect depth boundaries

BLEEDING
ARTIFACTS

70

CUSTOMIZED BOUNDARY DETECTION

71

COULD WE DO LESS WORK?

72

PENUMBRA MASK

73

IMPORTANT FEATURES

Half resolution denoising

Drastically improves performance

SOTTR uses this mode for ALL light types

MSAA input Depth & Normal buffers supported

Still only requires single sample Visibility & HitT buffers

Produces MSAA shadow mask

Sub-viewports supported for local light sources

Just need to figure out screen area affected

74

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

75

BLAS

Vertex and index buffers for each geometry

Straightforward for static geometry

“a mesh”
struct D3D12_RAYTRACING_GEOMETRY_TRIANGLES_DESC

{

DXGI_FORMAT IndexFormat;

DXGI_FORMAT VertexFormat;

UINT IndexCount;

UINT VertexCount;

D3D12_GPU_VIRTUAL_ADDRESS IndexBuffer;

D3D12_GPU_VIRTUAL_ADDRESS VertexBuffer;

}

76

BLAS

Each vertex needs to be fully transformed!

Foundation Engine uses shader graphs

Added a shader permutation in VS template for
exporting a transformed vertex buffer

Run a pass for all dynamic objects before
building

What about skinned objects

and vertex animations?

#if ExportVertexBuffer

RWStructuredBuffer<float3> OutVertexBuffer;

#endif

VertexOutput main(

in VertexInput vi,

uint vertID : SV_VertexID)

{

VertexOutput vo;

%ShaderGraph%

#if ExportVertexBuffer

OutVertexBuffer[vertID] = vo.OutPosition;

#endif

return vo;

}

77

Skinning gone wrong: Inner demon ☺

78

BLAS

PureHair, an evolution of TressFX

Simulates control points

Renders strands of hair as camera facing quads

Everything needs to be actual geometry in the AS

Make the simplest cylinder possible for every strand

Lara’s hair

79

BLAS

Two modes of updating dynamic BLASes in DXR:

Rebuild, essentially “replacing” the old one (~100M tris/sec)

Refit, for “small” model changes (~1000M tris/sec, 10x as fast!)

Catch: ray trace performance might degrade!

Top refitting throughput only for large enough workloads

We chose to always refit BLAS unless # vertices change

Rebuild/refit strategy

80

TLAS

Static BLASes can be instanced

Always rebuilding TLAS seems to be fast enough
(<1ms)

“A scene”

struct

D3D12_BUILD_RAYTRACING_ACCELERATION_STRUCTURE_INPUTS

{

UINT NumDescs;

D3D12_GPU_VIRTUAL_ADDRESS InstanceDescs;

}

81

ACCELERATION STRUCTURE

Every LOD level is stored in a separate BLAS

Using LOD 0 for everything caused
self-shadowing artifacts!

Just use the same LOD we use for rendering

What about LOD fading?

Use “most visible” LOD

About LODs of meshes

82

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

83

RENDER PIPELINE

Depth pass
Shadow map

pass
Shadow
resolve

Forward
opaque pass

Forward+ renderer

84

RENDER PIPELINE

Vertex
transform

Build AS
Depth pass
Jittered/

Non jittered

Shadow map
pass

(Ray traced)
Shadow
resolve

Forward
opaque pass

Now with ray traced shadows!

85

RENDER PIPELINE

Vertex
transform

Build AS
Depth pass
Jittered/

Non jittered

Shadow map
pass

(Ray traced)
Shadow
resolve

Forward
opaque pass

Now with ray tracing!

4ms0.5ms 2ms 3ms 5ms 3ms

86

RENDER PIPELINE

Vertex
transform

Build AS
Depth pass
Jittered/

Non jittered

Shadow map
pass

(Ray traced)
Shadow
resolve

Forward
opaque pass

4ms0.5ms 2ms 3ms 5ms 3ms

Can run async with depth and
shadow map passes! ☺

87

Vertex

transform

Depth pass
Jittered/

Non jittered
Shadow map pass

(Ray traced)
Shadow resolve

Forward opaque
pass

3ms

RENDER PIPELINE
Async compute

Build AS

4ms
completely hidden!

0.5ms 2ms 5ms 3ms

88

WHY DO WE STILL NEED SHADOW MAPPING?

Translucent rendering has no depth write

Can’t use shadow resolve pass!

We cannot shoot rays from pixel shaders

Translucent rendering

89

WHY DO WE STILL NEED SHADOW MAPPING?

Updating entire scene full of dynamic objects costs up to 20ms of BLAS refits

AS culling using existing shadow map culling

Performance!

90

WHY DO WE STILL NEED SHADOW MAPPING?

For directional lights:

Replace only nearest cascades with ray traced shadows

For local lights:

Distance based fade to shadow map

How do we choose these distances?

Performance!

91

ARTIST TOOLS
Let lighting artists decide!

92

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

93

No point light shadows

94

Raytraced point light shadows

95

Shadow mapped area light shadows

96

Raytraced area light shadows

97

Shadow mapped sun light shadows

98

Raytraced sun light shadows

99

AGENDA

“Shadows” of the Tomb Raider
Shadow of the Tomb Raider

Why ray traced shadows?

DXR shaders (ray generation)

GameWorks spatial denoiser

DXR acceleration structure

Integration in render pipeline

Results

Future work

100

FUTURE WORK

Reconstruct non-jittered depth

Ray traced shadows on translucent geometry

Tessellation

Content authoring with ray tracing in mind

Use vertex transform pass for rasterization as well

GI / Reflections / AO / … ?

www.nvidia.com/GTC

Holger Gruen (hgruen@nvidia.com)

Jon Story (jons@nvidia.com)

Michiel Roza (mroza@nixxes.com) @Paramike86

QUESTIONS

mailto:hgruen@nvidia.com
mailto:jons@nvidia.com
mailto:mroza@nixxes.com

