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Game Changing Innovation

Answers:
ORI REIo I [l JAEIEI  #1 Al / Machine Learning
do you expect will be a #2 Data Analytics
game changer for your #3 Cloud
organization? #4 Digital Transformation

Source: Gartner, Insights From the 2019 CIO Agenda Report, by Andy Rowsell-Jones, et al.

—

Hewlett Packard @ b d
Enterprise .«em.ylml'(!dgmn pq;twa



Al, Machine Learning, and Deep Learning
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Deep learning (DL)

e > 2 Subset of ML, using dee
Artificial mtelllgence (A artificial neural netv%orks gs
models, inspired by the
structure and function of the
human brain.

Mimics human behawvior. Any technique
that enables machines to solve a task

in a way like humans do. Deep Iearning

Example:
@ gample: @ Self-driving car
iri

Machine learning (vL)

Machine learning _
Algorithms that allow

computers to learn from
examples without being

Artificial intelligence e T

G Example:
Google Maps
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Why should you be interested in Al / ML / DL?

Everyone wants Al / ML / D.

and advanced analytics....

Al and advanced analyticsrepresent .

2 of the top 3 CIO prioritie

Al and advanced anal. 1

infrastructure could constitute 2 TS A /i

15'20A) of the market by 2021 R L e / Use cases
& New roles, skill gaps

Enterprise Al adoption Culture and change

2.7X erowth TN 2NN L | Data preparation
| Legacy infrastructure

—

Hewlett Packard
Enterprise




What opportunities does Al bring to your
business? What are the major use cases?

How do you get started with gaining intelligence
with your data?

What isthe best way to prepare your company for
a data-centric and Al future?

How do you integrate your Al and data ecosystem
for ML / DL and advanced analytics?

How do you modernize, consume, and prepare
your EDW or Hadoop big data foundation for Al?
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HPE can help

Aggregating HPE products and services with our best in class partner and Al ecosystem

Al/ML libraries, models Al/ML languages Technologies Skills
Custom, cloud, pre-trained Python Java, SAS, MatLab Platforms, data, analytlcs softw are Trainings, data scientists, consulting

—
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Curating from multiple Al libraries... ...and software partners
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Financial services Government Energy Retail
Fraud detection, ID verification Cyber-security, smart cities and utilities Seismic and reservoir modeling Video surveillance, shopping patterns

S —

Health Consumer tech Service providers Manufacturing
Personalized medicine, image analytics Chatbots Media delivery Predictive and prescriptive maintenance

—
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Example Enterprise Use Cases
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ML / DL in Financial Services

Example Use Cases
. .. * Know Your Customers (KYC)
Communications ,
Revenue * Customer Experience

Growth Awarenessand * Customer Value Modeling
Acquisition » Customer Churn Reduction

. e Origination Risk Underwriting
. Risk Losses o
Risk e Credit Risk Assessment

Control  Fraud Detection / Prevention
e Anti-Money Laundering (AML)

Fraud Losses

e Capacity Planning

Operational Costs

* Automation

Efficiency
— Financial Control * Portfolio Simulation
Howlet Paciard _ B bluedata
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More Financial Services Use Cases

Wide Range of ML / DL Use Cases for
Wholesale / Commercial Banking, Credit Card / Payments, Retail Banking, etc.

Risk Modeling & CLV
Fraud Detection Credit Worthiness Prediction and
Check Recommendation

Customer
Segmentation

. . Behavioral Analysis o
Real-Time Transactions Loan Defaults Historical Purchase Image Recognition

: Understanding
CreditCard Delayed Payments View - Customer Quadrant 'S\”-P '
Merchant Liquidity Patterr.w Recognition Effective Messaging & t'—:‘cunty .
Collusion ' Market & Currencies Retention Strategy e Er T Video Analysis
Impersonation Purchases and Upsell e QUG Gl
Social Engineering Payments Cross-Sell

i Support
Fraud TimeSeries Nurturing Enhanced Retention

CLV: Customer Lifetime Value



Fraud Detection Use Case

* One of the most common use cases for ML/ DL in
Financial Services is to detect and prevent fraud

* This requires:
— Distributed Big Data processing frameworks such as Spark
— ML / DL tools such as TensorFlow, H20, and others
— Continuous model training and deployment
— Multiple large data sets

—
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Fraud Detection Use Case (contd)

* Data science teams need the ability to create
distributed ML / DL environments for sandbox as well
as trial and error experimentation

e This requires:
— Hardware acceleration (e.g. GPUs)
— Multiple different ML / DL and data science tools
— Fast and repeatable deployment of clusters

—
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ML / DL in Healthcare - Use Cases

* Precision Medicine and Personal Sensing

— Disease prediction, diagnosis, and detection
(e.g. genomics research)

— Using data from local sensors (e.g. mobile
phones) to identify human behavior
* Electronic Health Record (EHR) correlation

— “Smart” health records
* Improved Clinical Workflow
— Decision supportfor clinicians
e Claims Management and Fraud Detection

— ldentify fraudulent claims
* Drug Discovery and Development

—
Hewlett Packard @ bl u edata
recently acquired by Hewlett Packard Enterprise

Enterprise




Use Case: Precision Medicine

Microbiome Genome Epigenome
. 2 VA
Many types. of data ® g «\V %
— Genomic ©. .| @ \Vad &
— Microbiome l
. Cytome Transcriptome
— R ———
E p Ige nome 6 Database
- EtC. ;«'-7” ’ | integration engine <
= e

* Huge volumes of data
(petabytes > exabytes)

uuuuuuuuuuu .. 1 Metabolomics paac 0
Proteomics—Genomics

Transcriptomics = § 77

2 Metabolome Lipidome Proteome

—
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360° View of the Patient
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Demographics

Patient

Genomics
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1l IIRESEARCH UPDATE

PERSONALIZED MEDICINE COMES TO CYSTIC FIBROSIS

with

Ivacaftor 6551D mutatii

b

targeted cystic fibrosis (CF) treat-

ment shows sustained lung function
improvement for patients with CF with a
certain mutation, according to a report
published in November in the New
England Journal of Medicine [Ramsey et
al,, 2011].

l phase 1II study of an experimental,

The experimental drug ivacaftor, also
known as VX-770, is the first personalized
treatment for CF. It targets an underlying
genetic cause of CE the G551D-CFTR
mutation, not just its symptoms. About 4-
5% of patients with CF have at least one
such mutation.

Ivacaftor produced substantial lung
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GCUAGGCG
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GAGUGAUA

Na 143K 3.7

BP 110/70
Megrd PHENOME
BUN 12.9
Pulse 110
PLT 150
WBC 92
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TRANSCRIPTOME
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function improvement in patients with CF
age 12 and older after two weeks. It sus-
tained this improvement through the 48
weeks of the study. Ivacaftor produced a 10.6
percentage point improvement in forced
expiratory volume in one second (FEV1)
over placebo at 24 weeks, reported by
Bonnie Ramsey, MD, Director of the Center
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ML / DL in Healthcare - Requirements

e Data security and data access
— HIPAA and other regulatory requirements
— Data is usually in siloes, and data scientists don’t want to share their data

e Support for multiple simultaneous clusters with varying QoS
— Want to offload low priority jobs from production cluster

* Low priority jobs require access to production data
— Want to avoid repeated copies of production data

e Support for multiple custom tools and analytics applications
— Need to accelerate the application deployment time

—
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Deployment Challenges for Distributed ML / DL
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Distributed ML / DL - Challenges

* Complexity, lack of repeatability and ;
reproducibility across environments ‘_.->[Illl.—>( i

. . . Laptop - -
* Sharing data, not duplicating data Orrerem Oft-Prem
* Need agility to scale up and down compute o i
e S
resources N
S
* Deploying multiple distributed platforms, _ dat atiente _
libraries, applications, and versions -_p:;:;mﬁ&?«- o 33*;-1 o
One si : fi - a-f |
* Onesize environmentfits none S = A0
L

* Need a flexible and future-proof solution

—
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Example Deployment Challenges

 How to run clusters on heterogeneous host hardware
— CPUs and GPUs, including multiple GPU versions

 How to maximize use of expensive hardware resources

* How to minimize manual operations
— Automating the cluster creation and and deployment process
— Creating reproducible clusters and reproducible results

— Enabling on-demand provisioning and elasticity
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Example Deployment Challenges

* How to support the latest versions of software
— Deployment complexity and upgrades
— Version compatibility

e How to ensure enterprise-class security
— Network, storage, user authentication, and access

[
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Docker Containers

is a computer program that
performs operating-system-level virtualization

also known as containerization.

allows the existence of
multiple isolated user-space instances.

Source: https://en.wikipedia.org/wiki/docker (software)

—
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https://en.wikipedia.org/wiki/docker_(software)

Distributed ML / DL and Containers

ML /DL applications are compute
hardware intensive

* They can benefit from the flexibility, '
agility, and resource sharing attributes

[ |
of containerization c‘“j“o"

 But care must be taken in how this is
done, especially in a large-scale
distributed environment

—
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Turnkey Container-Based Solution

Data Scientists Developers Data Engineers  Data Analysts
[ |

Spar{(\g %g katka I==EI HEO n 'r‘
cloudera d Big

Te s
Big Data Tools ML / DL Tools Data Science Tools Bl/Analytics Tools Bring-Your-Own

] 1 .
(1 1] S [ 1]
HEEER -" L1111

ElasticPlane™ — Self-service, multi-tenant clusters

|OBoost™—Extreme performance and scalability

DataTap™— In-place access to data on-prem or in the cloud

Compute CPUs GPUs ul

Storage NFS HDFS

On-Premises Public Cloud



One-Click Cluster Deployment

Create New Cluster
Cluster Detail
Cluster Name TensorFlow-SandBox
Cluster Description Sandbox for testing video monitoring
Pick from a list of
Select Cluster Type DataScience v .
pre-built and tested
Distribution CentOS 7.x with Python 3.6 Cuda 9.0 and TensorFlow 1.7 v Doc ke r_based images
Node Roles &3
Controller = Small - 4 VCPU, 8192 MB RAM v A . .
Assign specific resources
GPU - 4 VCPU, 16384 MB RAM, 1 GPU Devices
Large - 8 VCPU, 20480 MB RAM, 200 GB root disk (G PUSI CPUS) to the
Medium - 4 VCPU, 12288 MB RAM, 100 GB root disk cluster, depe ndlng on the
Small - 4 VCPU, 8192 MB RAM
o use case

—
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Architecture Example in Healthcare

Electronic Health Record Systems

& cerner [

Epic ||

B InterSystems

Monitors / Devices

PHILIPS
Drager
SIEMENS

Database Access

MysaL. ‘ ormcue"

S MusaL 2 L '.ﬁServerl‘

Kafka
Connect

Publishers
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Local Store E i Model Build ),

_________________
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Secure HDFS Data Lake
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Faster ML /| DL Deployment Time

Legacy Deployment

. 45 Days =2 ~10 Minutes

N

Deployment with BlueData

Submit Job / Model
SSH / Ul

‘ Cluster Configuration
Security (KDC, AD/LDAP, SSL)
Application Image

- T

Hardware




Bringing It All Together

Building blocks for Al / ML / DL Turnkey solution for distributed Al / ML / DL

Vs

~

2 ;; B> bluedata

N

App Stacks . . .
PP Accelerate innovation and time-to-value:
+ spaik’ H,0
S o & TEI’\SOFI . ML'D
Connectors and Accelerators J& O Caffe? Speed and aglllty for F|EX|bI|Ity for
- / . H
data science teams architecture teams
B onaas Data
e §rgkufku R N 45'?} Cost savings Enterprise-grade
for operations security forIT
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TensorFlow and Horovod on Containers with GPUs
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Distributed Tensorflow - Concepts

* Running TensorFlow training in parallel, on multiple
devices, using GPUs

* Goal is to improve accuracy and speed

e Different layers may be trained on different nodes
(model parallelism)

 Same model can applied on different subset of data, in
different nodes (data parallelism)

—
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Distributed Tensorflow - Schemes

e Data parallelism implementation

— Needs tosync model parameters

Broadcast model

— Uses a centralized or decentralized scheme to

communicate parameter update /7

e Centralized schemes use Parameter Server
to communicate updates to parameters

(gradients) between nodes | /m\
 Decentralized schedules use ring-allreduce — - %
scheme

Gradients

* Horovod is an open source framework W
developed by Uber that supports allreduce \/

—
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TensorFlow with Horovod on Docker

Docker Containers

%\f
Tensor

Horovod cluster on multiple GPUs, containers,and machines
NCCL 2.3.7 NCCL2.3.7 NCCL2.3.7
MPI3.1.3 MPI13.1.3 MPI3.1.3
TensorFlow 1.9 TensorFlow 1.9 TensorFlow 1.9

SE. GPU/ CUDA9 GPU/CUDA9

Shared Data

—
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Demo - TensorFlow with Horovod

* tensorflow_wrd2vec.py from git https://github.com/horovod/horovod
examples

* Data comes from shared NFS mounts, automatically surfaced by BlueData
into containers

e Passwordless ssh setup during cluster creation
e All prerequisites installed all nodes including
— nccl, cuda driver, cudnn app framework (NVIDIA components)
— tensorflow, pytorch, scikit-learn, ... (compute frameworks)
— mpi (runtime for distributed jobs)
— tensorboard for visualization

—
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https://github.com/horovod/horovod

Demo - TensorFlow with Horovod

mpirun-np2 /
--allow-run-as-root /
-d -H localhost:1,bluedata-301.bdlocal:1/
-bind-to none -map-by slot /
-x NCCL_DEBUG=INFO /
-x LD_LIBRARY_PATH /
-x PATH /
-mca pml ob1 /
-mca btl *openib python tensorflow_word2vec_logs.py

—
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Lessons Learned and Key Takeaways
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Lessons Learned and Takeaways

* Enterprises are using ML / DL today to solve difficult problems
(example use cases: fraud detection, disease prediction)

* Distributed ML/ DL in the enterprise requires a complex stack,
with multiple different tools (TensorFlow is one popular option)

* The only constantis change ... be prepared

— Business needs, use cases, and tools will constantly evolve
Deployments are challenging, with many potential pitfalls

— Containerization can deliver agility and cost saving benefits

H
Enterpris

Howt B t
ewlett Packard b l d
: el



Lessons Learned and Takeaways

* Leverage a flexible, scalable, and elastic platform for success

— BlueData provides a turnkey container-based platform for
large-scale distributed Al / ML/ DL in the enterprise

— Enterprise-grade security and performance, provenin
production at leading Global 2000 organizations

— Decouple compute from storage for greater efficiency, and
deploy on-premises, in a hybrid model, or multi-cloud

— Save time, save money, and accelerate innovation

—

Hewl blued
H ::v ett I:ackard @ u e ata
recently acquired by Hewlett Packard Enterprise

erpris



Thank You

To learn more, visit BlueData in the HPE booth (1129)

www.bluedata.com
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