Accelerate Innovation in the Enterprise with Distributed ML / DL on GPUs

Thomas Phelan and Nanda Vijaydev – BlueData (recently acquired by HPE) NVIDIA GTC – March 2019

Hewlett Packard Enterprise

- AI, Machine Learning (ML), and Deep Learning (DL)
- Example Enterprise Use Cases
- Deployment Challenges for Distributed ML / DL
- TensorFlow and Horovod on Containers with GPUs
- Lessons Learned and Key Takeaways

Game Changing Innovation

Gartner 2019 CIO Agenda Q: Which technology areas do you expect will be a game changer for your organization? Answers:
#1 Al / Machine Learning
#2 Data Analytics
#3 Cloud
#4 Digital Transformation

Source: Gartner, Insights From the 2019 CIO Agenda Report, by Andy Rowsell-Jones, et al.

AI, Machine Learning, and Deep Learning

Let's get grounded...what is AI?

Artificial intelligence (AI)

Mimics human behavior. Any technique that enables machines to solve a task in a way like humans do.

Example: **Siri**

Deep learning

Machine learning

Artificial intelligence

Deep learning (DL)

Subset of ML, using deep artificial neural networks as models, inspired by the structure and function of the human brain.

Example: Self-driving car

Machine learning (ML)

Algorithms that allow computers to learn from examples without being explicitly programmed.

Example: Google Maps

Why should you be interested in AI / ML / DL?

Everyone wants AI / ML / DI and advanced analytics....

Al and advanced analytics represent 2 of the top 3 CIO prioritie

Al and advanced analytics infrastructure could constitute

15-20% of the market by 20211

Enterprise AI adoption

2.7X growth in last 4 years²

....but face many challenges

Use cases

New roles, skill gaps Culture and change Data preparation Legacy infrastructure

Hewlett Packard 2 G

 1 IDC. Goldman Sachs. HPE Corporate Strategy.2018 2 Gartner - "2019 CIOSurvey: CIOS Have Awoken to the Importance of AI"

Key questions remain

Hewlett Packard Enterprise What opportunities does AI bring to your business? What are the major use cases?

How do you get started with gaining intelligence with your data?

What is the best way to prepare your company for a data-centric and AI future?

How do you integrate your AI and data ecosystem for ML / DL and advanced analytics?

How do you modernize, consume, and prepare your EDW or Hadoop big data foundation for AI?

HPE can help

Hewlett Packard Enterprise

Aggregating HPE products and services with our best in class partner and AI ecosystem

AI / ML / DL Adoption in the Enterprise

Financial services Fraud detection, ID verification

Government Cyber-security, smart cities and utilities

Energy Seismic and reservoir modeling

Retail Video surveillance, shopping patterns

Health Personalized medicine, image analytics

Consumer tech Chatbots

Service providers Media delivery

Manufacturing Predictive and prescriptive maintenance

Hewlett Packard Enterprise

Example Enterprise Use Cases

ML / DL in Financial Services

Example Use Cases

- Know Your Customers (KYC)
- Customer Experience
- Customer Value Modeling
- Customer Churn Reduction
- Origination Risk Underwriting
- Credit Risk Assessment
- Fraud Detection / Prevention
- Anti-Money Laundering (AML)
- Capacity Planning
- Automation
- Portfolio Simulation

More Financial Services Use Cases

Wide Range of ML / DL Use Cases for

Wholesale / Commercial Banking, Credit Card / Payments, Retail Banking, etc.

Fraud Detection	Risk Modeling & Credit Worthiness Check	CLV Prediction and Recommendation	Customer Segmentation	Other
 Real-Time Transactions Credit Card Merchant Collusion Impersonation Social Engineering Fraud 	 Loan Defaults Delayed Payments Liquidity Market & Currencies Purchases and Payments Time Series 	 Historical Purchase View Pattern Recognition Retention Strategy Upsell Cross-Sell Nurturing 	 Behavioral Analysis Understanding Customer Quadrant Effective Messaging & Improved Engagement Targeted Customer Support Enhanced Retention 	 Image Recognition NLP Security Video Analysis
		CLV		

CLV: Customer Lifetime Value

Fraud Detection Use Case

- One of the most common use cases for ML / DL in Financial Services is to detect and prevent fraud
- This requires:
 - Distributed Big Data processing frameworks such as Spark
 - ML / DL tools such as TensorFlow, H2O, and others
 - Continuous model training and deployment
 - Multiple large data sets

Fraud Detection Use Case (cont'd)

- Data science teams need the ability to create distributed ML / DL environments for sandbox as well as trial and error experimentation
- This requires:
 - Hardware acceleration (e.g. GPUs)
 - Multiple different ML / DL and data science tools
 - Fast and repeatable deployment of clusters

ML / DL in Healthcare – Use Cases

- Precision Medicine and Personal Sensing
 - Disease prediction, diagnosis, and detection (e.g. genomics research)
 - Using data from local sensors (e.g. mobile phones) to identify human behavior
- Electronic Health Record (EHR) correlation
 - "Smart" health records
- Improved Clinical Workflow

Hewlett Packard Enterprise

- Decision support for clinicians
- Claims Management and Fraud Detection
 - Identify fraudulent claims
- Drug Discovery and Development

Use Case: Precision Medicine

- Many types of data
 - Genomic
 - Microbiome
 - Epigenome
 - Etc.

Hewlett Packard Enterprise

 Huge volumes of data (petabytes > exabytes)

360° View of the Patient

Enterprise

ML / DL in Healthcare – Requirements

• Data security and data access

- HIPAA and other regulatory requirements
- Data is usually in siloes, and data scientists don't want to share their data
- Support for multiple simultaneous clusters with varying QoS
 - Want to offload low priority jobs from production cluster
- Low priority jobs require access to production data
 - Want to avoid repeated copies of production data
- Support for multiple custom tools and analytics applications
 - Need to accelerate the application deployment time

Deployment Challenges for Distributed ML / DL

Distributed ML / DL – Challenges

- Complexity, lack of repeatability and reproducibility across environments
- Sharing data, not duplicating data
- Need agility to scale up and down compute resources
- Deploying multiple distributed platforms, libraries, applications, and versions
- One size environment fits none

Hewlett Packard Enterprise

• Need a flexible and future-proof solution

Example Deployment Challenges

- How to run clusters on heterogeneous host hardware
 - CPUs and GPUs, including multiple GPU versions
- How to maximize use of expensive hardware resources
- How to minimize manual operations
 - Automating the cluster creation and and deployment process
 - Creating reproducible clusters and reproducible results
 - Enabling on-demand provisioning and elasticity

Example Deployment Challenges

- How to support the latest versions of software
 - Deployment complexity and upgrades
 - Version compatibility
- How to ensure enterprise-class security
 - Network, storage, user authentication, and access

Docker Containers

 Docker is a computer program that performs operating-system-level virtualization also known as *containerization*.
 Containerization allows the existence of multiple isolated user-space instances.

Source: https://en.wikipedia.org/wiki/docker_(software)

Distributed ML / DL and Containers

- ML / DL applications are compute hardware intensive
- They **can** benefit from the flexibility, agility, and resource sharing attributes of containerization

• But care must be taken in how this is done, especially in a large-scale distributed environment

Turnkey Container-Based Solution

One-Click Cluster Deployment

Hewlett Packard Enterprise

	Cluster Detail		
Cluster Name	TensorFlow-SandBox		
Cluster Description	Sandbox for testing video monitoring		
Select Cluster Type ②	DataScience	\checkmark	Pick from a list of pre-built and tested
Distribution \oslash	CentOS 7.x with Python 3.6 Cuda 9.0 and TensorFlow 1.7	~	Docker-based images
	Node Roles		
Controller =	Small - 4 VCPU, 8192 MB RAM ~ 1		Assign specific resource
GP	U - 4 VCPU, 16384 MB RAM, 1 GPU Devices		
Lar	ge - 8 VCPU, 20480 MB RAM, 200 GB root disk	2	(GPUS, CPUS) to the
Me	dium - 4 VCPU, 12288 MB RAM, 100 GB root disk		cluster, depending on th
√ Sm	all - 4 VCPU, 8192 MB RAM	lustor	use case

Architecture Example in Healthcare

Faster ML / DL Deployment Time

Legacy Deployment

Bringing It All Together

Building blocks for AI / ML / DL

Hewlett Packard Enterprise

Turnkey solution for distributed AI / ML / DL

Accelerate innovation and time-to-value:

Speed and agility for data science teams

Flexibility for architecture teams

Cost savings for operations

Enterprise-grade security for IT

TensorFlow and Horovod on Containers with GPUs

Distributed Tensorflow – Concepts

- Running TensorFlow training in parallel, on multiple devices, using GPUs
- Goal is to improve accuracy and speed
- Different layers may be trained on different nodes (model parallelism)
- Same model can applied on different subset of data, in different nodes (data parallelism)

Distributed Tensorflow – Schemes

- Data parallelism implementation
 - Needs to sync model parameters
 - Uses a centralized or decentralized scheme to communicate parameter update
- Centralized schemes use Parameter Server to communicate updates to parameters (gradients) between nodes
- Decentralized schedules use ring-allreduce scheme
- Horovod is an open source framework developed by Uber that supports allreduce

Hewlett Packard Enterprise

TensorFlow with Horovod on Docker

Demo – TensorFlow with Horovod

- tensorflow_wrd2vec.py from git <u>https://github.com/horovod/horovod</u> examples
- Data comes from shared NFS mounts, automatically surfaced by BlueData into containers
- Passwordless ssh setup during cluster creation
- All prerequisites installed all nodes including
 - nccl, cuda driver, cudnn app framework (NVIDIA components)
 - tensorflow, pytorch, scikit-learn, ... (compute frameworks)
 - mpi (runtime for distributed jobs)
 - tensorboard for visualization

Hewlett Packard Enterprise

Demo – TensorFlow with Horovod

```
mpirun -np 2 /
```

- --allow-run-as-root/
- -d -H localhost:1,bluedata-301.bdlocal:1/
- -bind-to none -map-by slot /
- -x NCCL_DEBUG=INFO /
- -x LD_LIBRARY_PATH /
- -x PATH /
- -mca pml ob1 /

-mca btl ^openib python tensorflow_word2vec_logs.py

Lessons Learned and Key Takeaways

Lessons Learned and Takeaways

- Enterprises are using ML / DL today to solve difficult problems (example use cases: fraud detection, disease prediction)
- Distributed ML / DL in the enterprise requires a complex stack, with multiple different tools (TensorFlow is one popular option)
- The only constant is change ... be prepared
 - Business needs, use cases, and tools will constantly evolve
- Deployments are challenging, with many potential pitfalls
 - Containerization can deliver agility and cost saving benefits

Lessons Learned and Takeaways

- Leverage a flexible, scalable, and elastic platform for success
 - BlueData provides a turnkey container-based platform for large-scale distributed AI / ML / DL in the enterprise
 - Enterprise-grade security and performance, proven in production at leading Global 2000 organizations
 - Decouple compute from storage for greater efficiency, and deploy on-premises, in a hybrid model, or multi-cloud
 - Save time, save money, and accelerate innovation

Thank You

To learn more, visit **BlueData** in the HPE booth (1129) www.bluedata.com

