Accelerated Computing Solutions for AI and HPC Workloads

Sarosh Irani
Knight Rider (1982)
The Future has Arrived

- Personal Assistants
 - Alexa, Siri, Google Assistant, Cortana, Bixby, Watson

- Self Driving Cars
Two Trends driving Computer Architecture

• Slowdown in Moore’s Law

• Growth of Cognitive Computing
 • Machine Learning and Neural Network based computing
No more Moore?

Moore’s Law:
- Trend observed by Gordon Moore in 1965
- “Number of transistors on a silicon die doubles every 2 years” – predicted to continue for a decade
- Sometimes quoted as performance doubles every 18 months (accounting for more and faster transistors)
- Basis of the Tick-Tock model that Intel has been executing on for last 2 decades, though breaking down now
- Has run longer than most experts imagined, but now running up against the laws of Physics
 - From 2,500 transistors to 25 Billion transistors (7 orders of magnitude)

Denard Scaling:
- When scaling down to a smaller node, voltage and current also scale down – chip supply voltages scaled down to under 1V
- Ended around 2005
 - Frequency race moved us quickly from 100 Mhz to 3 GHz, but we have been approximately flat since then
Neural Network based Computing

- Alternative approach to current ‘Algorithmic Computing’
 - Traditional Compute adequate for solving many problems, enabled putting a man on the moon
 - Neural Network Computing is Stochastic not Deterministic
- Sometimes also referred to as ‘Cognitive Computing’
- Very promising results achieved in areas that had proved hard for traditional compute
 - Image recognition, speech recognition, language translation etc
Deep Learning on Neural Networks – why now?

= DATA + GPU + ALGORITHMS
AI the Killer App

• When technology keeps increasing exponentially, we need to find a reason to leverage it
 • No one cares for a 1,000 mph car, cause you don’t have roads to drive it on

• Killer app – new highly desirable feature/application that is hard to run on current computational systems

• Some examples from the past few decades
 • Microsoft Office
 • Internet (driving connectivity speeds higher than 28K, 56K)
 • High Quality Video

• AI is the killer app for hardware today
Increasing role of GPU in Performance Computing

- GPUs, DSPs, ASICs, FPGAs have all been around, but presently we are seeing a strong trend to having compute intensive workloads migrate from CPU to GPU

- **Key drivers**
 - CPU frequency no longer scaling in the last 15 years (due to end of Denard Scaling)
 - More focus and emphasis on performance gains thru Parallel Processing instead of faster clock speeds – rise of multithreading, multi-core processing
 - GPU is a massively parallel computing device (5,000+ CUDA cores on Nvidia V100)

- *Many Top 500 Supercomputers today follow this paradigm and are ‘GPU Accelerated’*
X11 GPU Server Family

• This is our Fourth Generation of specialized servers for Parallel Computing
 • X11 supports Skylake/Cascade Lake and Volta, Turing GPU families

• Largest GPU server portfolio in the industry
 • Strong year over year growth; continued investment in expanding our product line

• Sell into numerous Parallel Compute, HPC Verticals
 • Oil & Gas, CAD/CAE, Computational Finance, Research & National Labs, Hyperscale Cloud

• With Deep Learning impacting numerous industries, we see a much larger TAM
X11 GPU Server Portfolio

<table>
<thead>
<tr>
<th>Ratio: GPU:CPU</th>
<th>Tower/4U</th>
<th>Rack – 1U/2U</th>
<th>Rack – 4U/10U</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:2</td>
<td>7049GP-TRT</td>
<td>1029GQ-TRT</td>
<td>4029GP-TVRT</td>
</tr>
<tr>
<td></td>
<td>4:2 (4U)</td>
<td>3:2 (1U)</td>
<td>8:2 (4U)</td>
</tr>
<tr>
<td>3:2</td>
<td>1029GP-TR</td>
<td>1019GP-TT</td>
<td>6049GP-TRT</td>
</tr>
<tr>
<td></td>
<td>3:2 (1U)</td>
<td>2:1 (1U)</td>
<td>20:2 (4U)</td>
</tr>
<tr>
<td>2:1</td>
<td>5019GP-TT</td>
<td>2029GP-TR</td>
<td>4029GP-TVRT</td>
</tr>
<tr>
<td></td>
<td>2:1 (1U)</td>
<td>6:2 (2U)</td>
<td>8:2 (4U)</td>
</tr>
<tr>
<td>1:1</td>
<td>1029GP-TVRT</td>
<td>4029GP-TRT2</td>
<td>4029GP-TRT2</td>
</tr>
<tr>
<td></td>
<td>4:2 (1U)</td>
<td>10:2 (4U)</td>
<td>10:2 (4U)</td>
</tr>
<tr>
<td>4:1</td>
<td>9029GP-TNVRT</td>
<td>6049GP-TRT</td>
<td>16:2 (10U)</td>
</tr>
<tr>
<td></td>
<td>16:2 (10U)</td>
<td>20:2 (4U)</td>
<td></td>
</tr>
</tbody>
</table>

- **4029GP-TRT**: Single Root
- **4029GP-TVRT**: Dual Root
- **4029GP-TRT2**: NVLink
X11 Parallel Computing Servers

Best-in-class technology designed for highly parallel applications to deliver ultimate performance, flexibility, and scalability

1. **1019GP-TT/5019GP-TT**
 - Cost Effective
 - UP SKYLAKE CPU
 - 6x 2.5” HS HDD bays (1019GP-TT)
 - 3x 3.5” HS HDD bays (5019GP-TT)
 - 2 Double-Width GPUs
 - 1 x16 PCIe 3.0 slot
 - 1x 1400W Platinum PWS

2. **1029GP-TR**
 - Flexibility
 - DP SKYLAKE CPU; 3UPI
 - 4x 2.5” HS HDD bays
 - 3 Double-Width GPUs
 - 1 x16 PCIe 3.0 slot, SIOM
 - 2x 1600W Platinum PWS

3. **1029GQ-T(N)RT**
 - Performance
 - DP SKYLAKE CPU; 3 UPI
 - 4x 2.5” HS HDD bays; NVMe
 - 4 Double-Width GPUs
 - 2 x16 PCIe 3.0 Slots
 - 2x 2000W Titanium PWS
Key Features:
- Entry level offering
- Single CPU, directly connected to 2 GPUs
- Support for 2.5" & 3.5" drives

Key Applications:
- Oil & Gas/Seismic
- Scientific/Data Mining

SYS-1019GP-TT/5019GP-TT

1. Processor Support
 Single Xeon Scalable Processor (Skylake)

2. Memory Capacity
 6 DIMM ECC DDR4 2666 MHz

3. Expansion Slots
 2 PCI-e x16 Gen 3.0 for double-wide GPU cards
 1 x16 Gen 3.0 LP card

4. I/O ports
 1x VGA, 2x GbaseT LAN, 2x USB 3.0, and 1x IPMI dedicated LAN port; 2x M.2 NVMe

5. System Management
 On board BMC (Baseboard Management Controllers) supports IPMI2.0, media/KVM over LAN. (Dedicated LAN port for management)

6. Drive Bays
 1019GP: 6 Hot-Swap 2.5" Drive Bays
 5019GP: 3 Hot-Swap 3.5" Drive Bays

7. System Cooling
 8 counter rotating fans w/ optimal fan speed control

8. Power Supply
 1400W Platinum Level efficiency power supply
SYS-1029GP-TR

Key Features:
- Dual CPU with 3 GPUs
- Support for 16 DIMMs
- SIOM supported
- 1600W Platinum Power Supply

Key Applications:
- VDI technology
- HPC
- Machine Learning
- Computational Finance

Processor Support
- Dual Xeon Scalable Processor; 3 UPI

Memory Capacity
- 16 DIMMs ECC DDR4 2666 MHz

Expansion Slots
- 3 PCI-e x16 Gen 3.0 for double-wide GPU cards
- 1/1 x16/x8 in LP slot

I/O ports
- 1x VGA, SIOM support, 2x USB 3.0, and 1x IPMI dedicated LAN port

Drive Bays
- 4 hot-swap 2.5" drive bays

System Cooling
- 10 counter rotating fans with optimal fan speed control

Power Supply
- 1600W Platinum-Level efficiency redundant power supply
SYS-1029GQ-T(N)RT

Key Features:
- 4 Tesla V100 GPUs in a 1U
- Support for active and passive cooling
- 2000W Titanium power supply

Key Applications:
- Oil & Gas
- Research & Scientific
- VDI technology
- Computational Finance

Processor Support
Dual Xeon Scalable Processor; 3 UPI

Memory Capacity
12 DIMMs ECC DDR4 2666MHz

Expansion Slots
- 4 PCIe3 x16 for double-wide GPU cards
 - TRT: Two x16 LP card
 - TNRT: x16/x8 LP card

I/O ports
- 1x VGA, 2x 10GbaseT LAN, 2x USB 3.0, and 1x IPMI dedicated LAN port

Drive Bays
- TRT: 2x HS 2.5” SATA drives bays; 4x total 2.5” HDD bays
- TNRT: 2x HS 2.5” NVMe drives bays; 4x total 2.5” HDD bays

System Cooling
9x counter rotating fans with optimal fan speed

Power Supply
2000W Titanium redundant power supply
X11 Parallel Computing

Best-in-class technology designed for highly parallel applications to deliver performance, flexibility, and scalability

4 7049GP-TRT
Workstation
- DP Skylake CPUs
- 8x 3.5" HS HDD bays
- 4 Double-Wide GPUs
- 6 x16 PCIe3 slots
- 2x 2000W Titanium PWS

6 2029GP-TR
Mainstream
- Dual Skylake CPUs
- 8x 2.5" HS HDD bays
- 6 Double-Wide GPUs
- 1 x16 PCIe3 slots, SIOM
- 2x 2000W Platinum PWS

8 4029GP-TRT
Parallel Optimized
- Dual Skylake CPUs
- 24x 2.5" HS HDD bays
- 8 Double-Wide GPUs
- 2 x16 PCIe3 slot
- 4x 2000W Platinum PWS
SYS-7049GP-TRT

Key Features:
- 6 PCIe3 x 16 supporting 4 DW GPUs
- Optional four NVMe drives support NVMe/SAS3 backplane
- Dual 10GbT onboard

Key Applications:
- Research & Scientific
- Simulation and Creation Design
- Computer Aided Engineering
- Machine Learning

Processor Support
- Dual Xeon Scalable Processor; 3 UPI

Memory Capacity
- 16 DIMMs ECC DDR4 2666MHz

Expansion Slots
- 4 PCIe 3.0 x16 for double-width GPU cards,
 2 PCIe 3.0 x16 for PCIe add-on card
- 1 PCIe 3.0 x4 (in x8)

I/O ports
- 1x VGA, 1x COM, 2x 10GbE LAN, 4x USB 3.0, 2x USB 3.0, and 1x IPMI dedicated LAN port, Audio 7.1

System Cooling
- 4 heavy duty fans, 4 exhaust fans, and 2 active heat sink w/ Optimal Fan Speed Control

Power Supply
- 2200W Titanium Level efficiency redundant power supplies with DC240V support
SYS-2029GP-TR

Key Applications:
- Computational Finance
- Oil and gas
- Weather and Climate Analysis

Key Features:
- 6 GPUs in a 2U
- 10 hot swap 2.5” drive bays
- SIOM support
- 2000W Platinum power supply

Processor Support
- Dual Xeon Scalable Processor; 3 UPI

Memory Capacity
- 16 DIMMs DDR4 2666 MHz

Expansion Slots
- 6 PCIe x16 Gen 3.0 for double-wide GPU cards;
 1/1 x16/x8 in LP slot

I/O ports
- 1x VGA, SIOM support, 2x USB 3.0, and 1x IPMI dedicated LAN port

Drive Bays
- 10 hot-swap 2.5” drive bays

System Cooling
- 5 counter rotating fans with optimal fan speed control; 1 air shroud

Power Supply
- 2000W Platinum Level efficiency redundant power supply
SYS-4029GP-TRT

Key Features:
- Supports 8 double wide GPUs
- Up to 24 hot swappable 2.5’ drives
- 4 x 2000W Platinum Power Supplies

1. Processor Support
 Dual Xeon Scalable Processor; 3 UPI

2. Memory Capacity
 24 DIMMs ECC DDR4 2666 MHz

3. Expansion Slots
 8 PCIe 3.0 x16 for double-wide GPU cards
 2 PCIe 3.0 x8 (2 in x16 slots)
 1 PCIe 3.0 x4 (in x16)

4. I/O ports
 1x VGA, 2x 10GbaseT LAN, 4x USB 3.0, and 1x IPMI dedicated LAN port, 1x M.2 NVMe

5. System management
 On board BMC (Baseboard Management Controllers) supports IPMI2.0, media/KVM over LAN with dedicated LAN for system management

6. Drive Bays
 24 hot-swap 2.5” drives bay

7. System Cooling
 8 heavy duty fans optimize to support 8 GPU cards

8. Power Supply
 4 x 2000W (2+2) Platinum Level efficiency redundant power supply
PCIe Topologies

SYS-4029GP-TRT
Dual-Root Topology

SYS-4029GP-TRT2
Single-Root Topology

<table>
<thead>
<tr>
<th>FROM</th>
<th>TO</th>
<th>SYS-4029GP-TRT (uSEC)</th>
<th>SYS-4029GP-TRT2 (uSEC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU1</td>
<td>GPU2</td>
<td>6.6</td>
<td>6.6</td>
</tr>
<tr>
<td>GPU1</td>
<td>GPU4</td>
<td>6.7</td>
<td>6.6</td>
</tr>
<tr>
<td>GPU1</td>
<td>GPU8</td>
<td>21.2</td>
<td>6.7</td>
</tr>
</tbody>
</table>
X11 for DEEP LEARNING/AI

Best-in-class technology designed for augmented for fast Deep Learning Training

4029GP-TRT2
- DP SKYLAKE CPU; 3UPI
- 24 DDR4 DIMMs
- 24 HS NVMe HDD bays
- 10 Double-Wide devices
- 12 x16 PCIe 3.0 slot
- 4 (2+2) 2000W Titanium PWS

1029GQ-TVRT
- DP SKYLAKE CPU; 3UPI
- 12 DDR4 DIMMs
- 2 HS HDD bays
- 4 SXM w/ NVLink
- 4 x16 PCIe 3.0 slot
- 2 2000W Titanium PWS

4029GP-TVRT
- DP SKYLAKE CPU; 3UPI
- 24 DDR4 DIMMs
- 16 HS HDD bays (w/ NVMe)
- 8 Pascal w/ NVLink
- 6 x16 PCIe 3.0 slot
- 4 (2+2) 2000W Titanium PWS

Support Volta-SXM2 Form Factor GPUs with Next Gen NVLink
SYS-4029GP-TRT2

Key Features:
- 10 x16 PCIe3 GPUs under a single PCIe Root Complex
- Supports GPUDirect RDMA
- Supports up to 205W CPUs

1. Processor Support
 Dual Xeon Scalable Processor; 3 UPI

2. Memory Capacity
 24 DIMMs ECC DDR4 2666 MHz

3. Expansion Slots
 11 PCI-e 3.0 x16 (10 double-wide slots for GPU)
 1 PCI-e3.0 x8

4. I/O ports
 1x VGA, 2x 10GbaseT LAN, 4x USB 2.0, and 1x IPMI dedicated LAN port, 1x M.2 NVMe

5. System management
 On board BMC (Baseboard Management Controllers) supports IPMI2.0, media/KVM over LAN with dedicated LAN for system management

6. Drive Bays
 24 hot-swap 2.5” NVMe drives bay

7. System Cooling
 8 heavy duty fans optimize to support 8 GPU cards

8. Power Supply
 4 x 2000W (2+2) Titanium Level efficiency redundant power supply
SYS-1029GQ-TVRT

Key Features:
- NVIDIA Tesla V100 Enabled
- Optimized for GPUDirect RDMA

1. Processor Support
 Dual Xeon Scalable Processor; 3 UPI
 Quad Tesla V100 SXM2 GPUs

2. Memory Capacity
 12 DIMMs ECC DDR4 2666 MHz

3. Expansion Slots
 2 x16 (FHFL/LP) from PLX;
 2 x16 (FHFL/LP) from CPU

4. I/O ports
 1x VGA, 2x 10GbaseT LAN, 2x USB 3.0,
 and 1x IPMI dedicated LAN port

5. Drive Bays
 2x HS 2.5” NVMe drives bays; 4x total 2.5”
 HDD bays

6. System Cooling
 7 counter rotating fans with optimal fan speed

7. Power Supply
 2000W Titanium redundant power supply
SYS-4029GP-TVRT

Processor Support
- Dual Xeon Scalable Processor; 3 UPI
- 8 Tesla SXM2 V100 GPUs

Memory Capacity
- 24 DIMMs ECC DDR4 2666 MHz

Expansion Slots
- 4 PCI-e 3.0 x16 LP (via RDMA for IB EDR)
- 2 PCI-e 3.0 x16 LP

I/O ports
- 1x VGA, 2x 10G-BaseT LAN, 3x USB 3.0, and 1x IPMI dedicated LAN port, 1x M.2 NVMe

Drive Bays
- 16 hot-swap 2.5” drives bay (Support up to 8x NVMe)

System Cooling
- 8 heavy duty fans optimize to support 8 GPU cards

Power Supply
- 4 x 2200W (2+2) Titanium Level efficiency redundant power supply
New X11 Products

New Systems developed for best in class Deep Learning Inference and Training

6049GP-TRT

- DP SKYLAKE CPU; 3UPI
- 20 Single-Wide GPUs
- 24 DDR4 DIMMs
- 24 3.5" HDD bays
- 4 (2+2) 2000W Titanium PWS

9029GP-TNVRT

- DP SKYLAKE CPU; 3UPI
- 16 SXM3GPU
- NVSwitch & NVLink
- 24 DDR4 DIMMs
- 16 NVMe U.2 drive bays
- 16 PCIe x16 for RDMA
- 6 3000W Titanium PWS
20 GPU System: SYS-6049GP-TRT

Key Features:

- 20 single width GPUs
- Dual Xeon Scalable Processor; 205W
- 24 hot swappable 3.5" drives

Processor Support
- Dual Xeon Scalable Processor; 3 UPI

Memory Capacity
- 24 DIMMs ECC DDR4 2666 MHz

Expansion Slots
- 20 PCIe 3.0 x16 for single-wide GPU cards
- 1 PCIe 3.0 x8 (FHFL x16 slots)

I/O ports
- 1x VGA, 2x 10GbE LAN, 4x USB 3.0, and 1x IPMI dedicated LAN port, 1x M.2 NVMe

System management
- On board BMC (Baseboard Management Controllers) supports IPMI2.0

Drive Bays
- 24 hot-swap 3.5" drive bays

System Cooling
- 8 heavy duty fans optimize to support 8 GPU cards

Power Supply
- 4 x 2000W (2+2) Titanium Level efficiency redundant power supply
20 GPU System: SYS-6049GP-TRT

Key Features:
- 20 single width GPUs
- Dual Xeon Scalable Processor; 205W
- 24 hot swappable 3.5” drives

Processor Support
Dual Xeon Scalable Processor; 3 UPI

Memory Capacity
24 DIMMs ECC DDR4 2666 MHz

Expansion Slots
20 PCIe 3.0 x16 for single-wide GPU cards
1 PCIe 3.0 x8 (FHFL x16 slots)

I/O ports
1x VGA, 2x 10GbE LAN, 4x USB 3.0, and 1x IPMI dedicated LAN port, 1x M.2 NVMe

System management
On board BMC (Baseboard Management Controllers) supports IPMI2.0

Drive Bays
24 hot-swap 3.5” drive bays

System Cooling
8 heavy duty fans optimize to support 8 GPU cards

Power Supply
4 x 2000W (2+2) Titanium Level efficiency redundant power supply

328 Lanes of PCIe
Dawn of a New Age of AI

- Dawn of a new age of AI driven by Deep Learning
 - Natural speech, Autonomous Mobility, Medical Image based diagnosis many others
- AI models continue to increase in size, requiring weeks to train
 - Google ‘Mixture of Experts’ has 8 Billion parameters (up from 100M, 2 years ago)
- Supermicro HGX-2 system is a powerful Deep Learning System
 - 16 V100 32G GPUs powered by NVLink & NVSwitch
 - High throughput, low latency interconnect between GPUs
 - Up to 2.7X faster training
 - 2 petaFLOPs of AI performance
- Versatile System for Cloud Service Providers
 - Hypervisor based option to virtualize number of GPUs (1, 2, 4, 8, 16) for target workload
10U System
Includes CPU head node

- NVLink + NVSwitch based high performance GPU Interconnect

Processor Support
- Dual Xeon Scalable Processor; 3 UPI
- 16 Tesla V100 32GB SXM3 GPUs

Memory Capacity
- 24 DIMMs ECC DDR4 2666 MHz

Expansion Slots
- 16 PCI-e 3.0 x16 LP (via RDMA for IB EDR)
- 2 PCI-e 3.0 x16 LP

I/O ports
- 1x VGA, 2x 10G-BaseT LAN, 3x USB 3.0, and 1x IPMI dedicated LAN port

Drives
- 16 NVMe U.2 2.5” drives bays & 6 SATA 2.5” drives bays
- 2 M.2 NVMe

System Cooling
- 14 heavy duty fans

Power Supply
- 6 x 3000WTitanium Level efficiency power supplies
9029GP - PCIe Switch Module Block Diagram

The diagram illustrates the connectivity between CPU0 and CPU1 through the PCIe switch modules. Each module is connected to various NICs and NVMe drives, forming a network that supports PCIe and NVLink connections. The diagram shows the flow of data through these connections, emphasizing the scalability and flexibility of the system architecture.

Key components include:
- **CPU0** and **CPU1** at the top, indicating the processors controlling the system.
- **PEX 9749** and **PEX 9797** modules, which are central to the PCIe switch functionality.
- **x8** and **x4** connections, denoting the PCIe bandwidth.
- **NVLink** connections for high-speed data transfer between the two CPU modules.

The diagram is designed to provide a clear visual representation of how data flows through the system, highlighting the integration of various hardware components to achieve optimal performance.
Top to Bottom V100 NVLink Systems

<table>
<thead>
<tr>
<th></th>
<th>SYS-1029GP-TVRT</th>
<th>SYS-4029GP-TVRT</th>
<th>SYS-9029GP-TNVRT</th>
</tr>
</thead>
<tbody>
<tr>
<td>GPU</td>
<td>4 NVIDIA Tesla V100 (SXM2)</td>
<td>8 NVIDIA Tesla V100 (SXM2)</td>
<td>16 NVIDIA Tesla V100 (SXM3)</td>
</tr>
<tr>
<td>Performance</td>
<td>0.5 PetaFLOPS</td>
<td>1 PetaFLOPS</td>
<td>2 PetaFLOPS</td>
</tr>
<tr>
<td>CUDA Cores</td>
<td>20,480</td>
<td>40,960</td>
<td>81,920</td>
</tr>
<tr>
<td>Tensor Cores</td>
<td>2,560</td>
<td>5,120</td>
<td>10,240</td>
</tr>
<tr>
<td>CPU : GPU</td>
<td>2 : 4</td>
<td>2 : 8</td>
<td>2 : 16</td>
</tr>
</tbody>
</table>
Retrofitting existing Compute Infrastructure

- Happens in all industry when faced with **paradigm shifts** or **pushing the limits** of existing technology
 - Electric Cars (Paradigm shift – moving from Internal Combustion Engine to Electric Motor)
 - Cannot leverage existing worldwide infrastructure of gas stations
 - Need a full new ecosystem – charging stations; cannot happen over night
 - Airbus A380 (Pushing the limits – complete double decker aircraft)
 - Requires updated airport infrastructure
 - Wider taxiways, update Jet bridges, Reinforced runways
- Compute Industry also needs to update to support higher power processors
 - **Power Delivery**
 - Rack Power levels need to increase, traditional CPU budgets were 75 to 130W, but now over 200W and going higher
 - GPUs are at 300 to 350W, single 1U node can have 2 CPUs and 4 GPUs
 - Need higher levels of power distribution in the rack and the data center
 - **Power Dissipation**
 - In some systems fans are at the limit of noise safety limits
 - Liquid Cooling starting to become more common in some datacenters
Conclusion

- Moore’s Law has been one heck of a ride, but the sun is setting on it
- AI is the killer app today
 - Disruptive in many industries, will impact multiple walks of life
- Both the above points are driving significant change and innovation in the computer industry
- GPU is the parallel compute engine of today
 - We see an ever increasing number of applications getting ‘GPU Accelerated’ (eg databases); its much more than graphics
- Supermicro offers one of the widest range of GPU systems in the industry
Thank You