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GRADUATE FELLOWSHIP PROGRAM
Funding for Ph.D. students revolutionizing disciplines with the GPU

Engage:

• Build mindshare

• Facilitate recruiting

Learn:

• Keep a finger on the pulse of leading academic research

• Keep up with all the applications that are powered by GPUs

Leverage:

• Track relevant research

• Help to guide researchers working on relevant problems
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GRADUATE FELLOWSHIP PROGRAM

Eligibility/Application Process:

• Ph.D. candidates in at least their 2nd year

• Nomination(s) by Professor(s)/Advisor

• 1-2 page research proposal

Selection Process:

• Committee of NVIDIA scientists and engineers review applications

• Applications evaluated for originality, potential, and relevance

165 Graduate Fellowships awarded -- $4.9M since program inception in 2002
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CURRENT 2018-2019 GRAD FELLOWS

Adam Stooke, UCB

Ana Serrano, Universidad de 
Zaragoza

Aishwarya Agrawal, 
Georgia Tech

Andy Zeng, Princeton Daniel George, UIUC

Abhishek Badki, UCSB
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CURRENT 2018-2019 GRAD FELLOWS

Philippe Tillet, Harvard

Zhilin Yang, CMU

Xun Huang, Cornell

William Yuan, Harvard
NVIDIA Foundation Fellow

Huizi Mao, Stanford
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CURRENT 2018-2019 GRAD FELLOW FINALISTS

• Chenxi Liu, Johns Hopkins University

• Jake Zhao, New York University

• Mario Drummond, EPFL

• Mark Buckler, Cornell University

• Steve Bako, UC Santa Barbara
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AGENDA

• Grad Fellow Fast Forward Talks, 3 mins each: 

• Aishwarya Agrawal, Georgia Tech

• Abhishek Badki, UC Santa Barbara

• Daniel George, Univ of Illinois Urbana-Champaign

• Xun Huang, Cornell

• Huizi Mao, Stanford

• Ana Serrano, Univ de Zaragoza

• Philippe Tillet, Harvard

• Zhilin Yang, CMU

• William Yuan, Harvard
• Certificates/Photographs
• NVIDIA Foundation Overview
• Announcement of the 2019-2020 Fellows & Finalists
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AISHWARYA AGRAWAL, GEORGIA TECH



Aishwarya Agrawal, Georgia Tech

GENERATING DIVERSE PROGRAMS WITH 
INSTRUCTION CONDITIONED REINFORCED 
ADVERSARIAL LEARNING

March 21, 2019 
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TASK

There is a yellow cube.
add object, cube, 

yellow, small, at (8,14)

Renderer

Agent



1111

add object, cube, 

yellow, large, at (12,17)

add object, cube, 

yellow, small, at (22,12)

There is a yellow cube.
add object, cube, 

yellow, small, at (8,14)Agent

TASK
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Reward 
Learning

Rich 
Action 
Space

Diverse 
Outputs

TECHNICAL CHALLENGES
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Draw 9.

Paint five.

DOMAIN 1: MNIST DIGIT PAINTING
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There is a green cylinder.

There is a large sphere.

DOMAIN 2: 3D SCENE CONSTRUCTION
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Policy Network

(Generator)

Environment

(Renderer)
Instruction

Program

Final

Image

Instruction

Example 

Goal Image

Reward

DiscriminatorIntermediate Image

Extending Ganin et al., ICML18

APPROACH
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Policy Network

(Generator)

Environment

(Renderer)
Instruction

Program

Final

Image

Instruction

Example 

Goal Image

Reward

DiscriminatorIntermediate Image

Extending Ganin et al., ICML18

APPROACH

All of the model training uses GPUs!
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DOMAIN 1: MNIST DIGIT PAINTING
Create zero

Put 1

Paint two

Draw 3

Add four

Draw 5

Paint six

Put 7

Create eight

Add 9
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DOMAIN 2: 3D SCENE CONSTRUCTION

There is a small sphere.

There is a large cylinder.

There is a yellow cube.
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THANKS!

COME TO OUR POSTER!
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ABHISHEK BADKI, UC SANTA BARBARA



Abhishek Badki, University of California, Santa Barbara

COMPUTATIONAL ZOOM: A FRAMEWORK 
FOR POST-CAPTURE IMAGE COMPOSITION

March 21, 2019 



2316 mm, close 35 mm, far 105 mm, farthest

IMAGE COMPOSITION
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IMAGE COMPOSITION
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OUR GOAL
Post-Capture Image Composition

Input image stack/video
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OUR GOAL
Post-Capture Image Composition

Computational zoom results



27

OUR GOAL
Post-Capture Image Composition

Computational zoom results
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OUR GOAL
Post-Capture Image Composition

Computational zoom results
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OUR GOAL
Post-Capture Image Composition

Computational zoom results
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MULTI-PERSPECTIVE CAMERA MODELS
Allow novel image compositions of the scene
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MULTI-PERSPECTIVE IMAGE SYNTHESIS
Multi-

perspective 

rendering

Structure from 

motion

3D 

reconstruction
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MULTI-PERSPECTIVE IMAGE SYNTHESIS
Multi-

perspective 

rendering

Structure from 

motion

3D 

reconstruction
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MULTI-PERSPECTIVE IMAGE SYNTHESIS
Multi-

perspective 

rendering

Structure from 

motion

3D 

reconstruction

Depth map Normal map
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MULTI-PERSPECTIVE IMAGE SYNTHESIS
Multi-

perspective 

rendering

Structure from 

motion

3D 

reconstruction

Multi-perspective results

Multi-perspective 
camera model

Images

Depth-maps
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our result with different image compositions
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DANIEL GEORGE, UIUC



Daniel George, Google X / University of Illinois at Urbana-Champaign

Deep Learning for Gravitational Wave 

and Multimessenger Astrophysics

March 21, 2019 

Link to full slides: tiny.cc/phd-defense

http://tiny.cc/phd-defense
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GRAVITATIONAL WAVES

SXS

Source: ligo.org
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Link to full slides: tiny.cc/phd-defense

http://tiny.cc/phd-defense
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XUN HUANG, CORNELL



Xun Huang, Cornell University

MULTIMODAL UNSUPERVISED 
IMAGE-TO-IMAGE TRANSLATION

March 21, 2019 
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UNSUPERVISED IMAGE-TO-IMAGE TRANSLATION
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UNIMODAL OR MULTIMODAL

Unimodal

Multimodal

……
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TOWARDS MULTIMODALITY

We assume the image representation space can be disentangled into:

The content space that are shared by both domains.

The style space that are specific for each domain.

To sample a diverse set of outputs, we keep the content code of the input and randomly 
sample style codes from the target style space. 

Unsupervised Learning of Disentangled Latent Space



54

METHODS

We use auto-encoders to encode an image into its latent code and reconstruct the image 
from the latent code.

We employ Generative Adversarial Networks (GANs) to ensure the translated images are 
realistic.

Each model is trained on a NVIDIA Tesla V100 GPU with 16GB memory.
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RESULTS (SKETCHES <-> PHOTO)
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RESULTS (ANIMALS)
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RESULTS (SUMMER <-> WINTER)
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HUIZI MAO, STANFORD



Huizi Mao, Stanford University

CATDET: AN EFFICIENT VIDEO 
OBJECT DETECTION SYSTEM

March 21, 2019 To appear on SysML 2019
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OBJECT DETECTION FROM VIDEO
Goal: to locate and classify objects in a video stream

Difficulty: frame-by-frame detection is compute-intensive 
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CATDET: CASCADED TRACKED DETECTOR
CaTDet is a system to save computations of CNN-based detectors

Goal: run large CNN models only on selected regions

Output

Input

Detector 

Network

Output

Input

Refinement

Network

Proposal 

Network

Tracker

Single-image detector CaTDet

Same parameters
Smaller workload

Little overhead
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EXAMPLE
Come back to the previous example:

We only run the refinement network (the expensive one) on selected regions

Frame N Frame N+1
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RESULTS
Maintain the same mAP on KITTI dataset

Reduce the number of arithmetic operations by 5.2x

Reduce GPU time by 3.8x (Maxwell TITAN X)

Method mAP Ops(G) GPU time(s)

Faster R-CNN

Frame-by-frame

0.740 254.3 0.159

CaTDet 0.740 49.3 

(5.2x)

0.042 

(3.8x)

More results on the SysML 2019 paper: http://www.sysml.cc/doc/2019/111.pdf

http://www.sysml.cc/doc/2019/111.pdf
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ANA SERRANO, UNIV DE ZARAGOZA



Ana Serrano, Universidad de Zaragoza

MOTION PARALLAX FOR VR VIDEOS

March 21, 2019 
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EXPERIENCES IN VIRTUAL REALITY

SuperHOT VR
SUPERHOT Team

Miyubi
Felix & Paul Studios

Real-world recorded content vs. CG content
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RECORDING CONTENT FOR VR
Commercially available VR cameras

Kandao Obsidian Yi Halo Facebook Surround360 Nokia Ozo
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VIDEO RECORDED FROM A FIXED CAMERA
How to render the scene from different head positions?

Scene recorded from a fixed camera position New camera view to show to the user
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Close-up VR view (stereo)

Enabling motion parallax for VR video

OUR APPROACH: LAYERED VIDEO
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[Serrano et al. 2019] Motion parallax for 360 RGBD video

Optimized for real-time GPU rendering of novel camera views 

Layered video representation for storing additional scene information

Independent of a specific hardware, or camera setup

User studies confirm a more compelling viewing experience

OUR APPROACH: LAYERED VIDEO
Enabling motion parallax for VR video
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PHILIPPE TILLET, HARVARD



Philippe Tillet, Harvard University

Triton: An Imperative Array Language and 
Compiler for Efficient Tiled Computations in 
Machine Learning Workloads

March 21, 2019 
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MOTIVATIONS
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EXISTING SOLUTIONS
TensorFlow, PlaidML, Tensor Comprehensions, TVM ...
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EXISTING SOLUTIONS
GPU Performance
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MY SOLUTION

• Existing functional languages lack flexibility

Cannot specify how tensors are decomposed into tiles

• Existing imperative languages lack abstractive power

Cannot specify what the meaning of scalar variables is

I developed Triton: a language & compiler which adds the concept of tile
to a CUDA-like imperative programs. Best of both worlds.

Triton



80

MY SOLUTION
Example
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MY SOLUTION
GPU Performance
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WE CAN DO MORE!
Dense convolution via implicit matrix multiplication
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WE CAN DO MORE!
Performance
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ZHILIN YANG, CMU



Zhilin Yang, CMU

LEARNING BY
GENERATIVE MODELING

March 21, 2019 
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GENERATIVE MODELING

Given data x, model the probability p(x).

Generate data by sampling from p(x).

Goals:

1. Accurate, realistic generation
➢ match p(x) and true data p*(x).

2. Generation as a scaffold
➢ use p(x) to improve p(y|x).
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OUR NEW MODEL: TRANSFORMER-XL
The State-of-the-art Architecture for Language Modeling

Vanilla Transformer Transformer-XL

Recurrence + relative encodings

Going beyond fixed-length contexts
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BENEFITS OF TRANSFORMER-XL

Learns longer-range dependency (80% longer than RNNs and 450% 
longer than Transformers)

Up to 1,800x faster than Transformers during LM evaluation

More accurate at prediction on both long and short sequences

Able to generate reasonably coherent, novel text articles with 
thousands of tokens
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STATE-OF-THE-ART LANGUAGE MODELING

Perplexity/bpc (the lower the better) measures how well a model predicts a sample.
Part of training runs on GPUs.
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TEXT GENERATED BY TRANSFORMER-XL

In July 1805, the French 1st Army entered southern Italy. The army, under the 
command of Marshal Marmont, were reinforced by a few battalions of infantry under 
Claude General Auguste de Marmont at the town of Philippsburg and another 
battalion at Belluno. On 17 September 1805, the army marched from Belluno
towards Krems. By 29 September, they had reached…

… On 9 October the French Army … on 10 October, he launched his attack … On 25 
October, Merveldt left Styria for Tyrol … and defeated the Austrians at the Battle of 
Hohenlinden on 28 October … The Battle of Warsaw was fought on 23 November 
1805 …

…

Trained on a small 100M-token dataset.

Long-range dependency:
➢ Able to keep track of time.
➢ Reasonable coherence over thousands of tokens.
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BETTER THAN BERT
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BERT Transformer-XL

Preliminary results. We will release more results and details soon.
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WILLIAM YUAN, HARVARD



William Yuan, Harvard University

EARLY DETECTION OF NEURODEGENERATION 
WITH DEEP LEARNING

March 21, 2019 
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NEURODEGENERATION

Oxford FMRIB Neurodegeneration Group
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DATA

Unidentifiable Health Insurance Claims Data

Tens of millions of individuals → Tens of 
billions of individual observations

Diagnoses/Procedures/Prescriptions

Case/Control Study: 1 Year Prediction

D
ia
g

Pr
oc

M
ed

Pr
oc

Observation	window Prediction	window

A
D



98

METHODS

Word2Vec Style Medical Concept Embedding

Temporal Convolutional Nets for Sequence 
Classification with GPU computing

Novel Sequence Representation

Counterfactual Event Modeling

Beam, et al, 2018
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PREDICTION RESULTS (AUC)

Alzheimer’s Disease Parkinson’s Disease

Baseline 0.724 0.754

Event Sequence-only Prediction 0.706 0.721

Randomly Permuted Events 0.693 0.713

Temporal-only Prediction 0.583 0.599
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COUNTERFACTUAL MODELING

Phenotype
Relative Effect 

Size

Memory Loss 1.000

Other Persistent Mental 

Disorders
0.8495

Mild Cognitive 

Impairment
0.8222

Alzheimer’s Disease* 0.8000

Parkinson’s Disease* 0.7621

Abnormal Involuntary 

Movements
0.6975

*unobserved by model
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Certificates and Photos
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NVIDIA Foundation

Compute the Cure



104

NVIDIA FOUNDATION
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Announcing:

The New 2019-2020 

Grad Fellows And Finalists
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NEW 2019-2020 GRAD FELLOWS

Chen-Hsuan Lin, CMU

Daniel Gordon, Univ. 
Washington

Ching-An Cheng, Georgia Tech

De-An Huang, Stanford Huaizu Jiang, U. Mass. Amherst

Bastian Hagedorn, Univ. Münster
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NEW 2019-2020 GRAD FELLOWS

Lifan Wu, UC San Diego

Mariya Popova, UNC 
Chapel Hill

Siddharth Reddy, UC Berkeley

Jeremy Bernstein, CalTech
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NEW 2019-2020 GRAD FELLOW FINALISTS

• Chao-Yuan Wu, UT Austin

• Kelvin Xu, UC Berkeley

• Nathan Otterness, UNC Chapel Hill

• Wengong Jin, MIT

• Yunzhu Li, MIT



THANK YOU


