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Simulation
(low throughput)

[ 1st Gen. ]

Virtual screening
(low hit-rate)

[ 2nd Gen.] [ 3rd Gen. ]

Targeted design
(high hit-rate)

Conventional

Trial-and-Error
(high cost)

Iterative experiments Pre-validation High throughput
Right solutions 

with minimum effort

 For accelerated materials discovery

Machine Learning
First-principles 

Quantum Chemistry
High-performance 

Computing

IntelligenceEfficiencyRationalization
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 Prediction of materials property based on machine learning

– Build-up of Materials vs. Property DB → Materials Informatics
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QSAR*

(’62, Hansch&Fujita)

ANN**

in Chemistry (’71)

Graph Kernels
(‘05 @ UC Irvine)

Bayesian Modeling
(‘09 @ MIT)

(‘18 @ Harvard)

SMILES ***

(‘87 Weininger)

Kernel methods Bayesian approaches Deep Learning

(‘16 @ Stanford)

Cheminformatics
Introduction stage of 

machine learning
Development stage

TrainingDescriptor

SMILES: CC(C)NCC(O)COC1=CC(CC2=CC=CC=C2)=C(CC(N)=O)C=C1

Fingerprint: 
011100011111101010010100100000101010001001010…

Descriptor
Vector

graphs images

Analysis

Process of Machine Learning @ Materials Research

* QSAR: Quantitative Structure-Activity Relationship
** ANN: Artificial Neural Network
*** SMILES: Simplified Molecular-input-line Systems
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 Materials design based on machine learning

– Inverse QSAR → Inverse Design

SMILES Autoencoder
(‘16 @ Harvard)

Genetic Algorithms
(’92 @ Purdue)

Inverse Design
(’16 @ SAIT)

GAN* for molecules
(‘17 @ Harvard)

Exhaustive Generation
(’12 @ Tokyo)

Deep Learning / Generative Models

Inverse QSAR
(Late 80’s~)

*GAN: Generative Adversarial Network

Combinatorial Evolutionary Autoencoder

Focus on autonomous molecular generation
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Target molecules

 In-silico technologies for materials discovery
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“Landscape of phosphorescent light-emitting energies of homoleptic Ir(III)-
complexes predicted by a graph-based enumeration and deep learning”, 
GI01.02.02, 2018 MRS fall meeting
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 Property prediction with high-performance computing for large-
scale exploration of materials candidates

Seed Fragments Candidate 

Pool

Target Materials

large amounts
of candidates

Combination

Database

Verification

Simulation
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 ML (Machine Learning)-assisted HTCS for higher efficiency

Database

Verification

(1) Simulation + ML

(2) Prioritizing calculation
based on active learning

Seed Fragments Candidate 

Pool

Target Materials

large amounts
of candidates

Combination
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 Exhaustive enumeration based on graph-theory

– “Graphs”

• Mathematical structures used to model pairwise relations between 
objects.

• Made up of nodes and edges.

• In chemistry, graph is used to model molecules, where nodes 
represent atoms and edges represent bonds.

※ Exhaustive enumeration:
Systematical enumeration of all possible 
molecules for optimal solution search
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 Complete list of non-isomorphic graphs

http://www.cadaeic.net/graphpics.htm

ID No. of 
edges

No. of edges at each node
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 Landscape of phosphorescent light-emitting energies of 
homoleptic Ir(III)-complex core structures

– Ir(III)-complexes

• Widely used as phosphorescent OLED dopants.

• Figuring out the full landscape of emission color is important for 
discovering high-performing molecules in target color regions. 

New J. Chem., 39, 246 (2015)

ACS Appl. Mater. Interfaces, 10, 1888–1896 (2018)
Organic Electronics, 63, 244–249 (2018)
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 Approach

– Consider the nodes in graph as rings and edges as ring-connections.

– Limited the total number rings between 3 and 5. 

– Exclude non-planar type (5-21) and invalid structures as dopant.

→ Only 11 graphs are valid among the total 29 graphs.
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1. Graphs 2. Skeletons 3. Set Iridium positions

4. Substitute some carbon atoms with nitrogen atoms

 Enumeration

– For 5- and 6-membered rings.

– Substitute some carbons of each molecule with nitrogen atoms (max. five).

→ Total 9,919,469 (~10M) core structures

total 405 EA
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 Property prediction

– Trained a deep-neural-network model with simulated T1 data

• Input: ECFP(Extended Connectivity FingerPrints) of molecular structures

• Outputs: T1 energy (phosphorescent light-emitting wavelength)
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Size of the training dataset

With 80k training data,
the average prediction 
error was less than 0.1 eV

80k

10M
= 0.8%

By simulating the properties of only 0.8% molecules, we can fully scan the chemical space of 10M!
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 Results

– Distribution of T1 values

– Blue-color emitting materials are rare compared with red and green
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 In materials discovery, deep-learning-based HTCS is a good 

alternative to conventional trial-and-error type approach.

 Moreover, exhaustive enumeration makes it possible to 

systematically explore the whole chemical space.

 With the proposed exhaustive enumeration method based on 

graph theory and deep learning, the whole landscape of 10M 

phosphorescent Ir-dopants could be scanned with just 0.8% 

computational cost compared with the pure simulation-based 

approach.
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“Evolutionary design of organic molecules based on deep learning and 
genetic algorithm”, COMP, ACS fall 2018 National Meeting
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 A generic population-based metaheuristic optimization technique

 Uses bio-inspired operators to reach near-optimal solutions

; mutation, crossover, and selection in case of genetic algorithm

F
it
n
e
ss

https://en.wikipedia.org/wiki/Fitness_landscape
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Generation

+

Initial population 

Calculate fitness

Selection

Mutation Crossover

New population 

Satisfy constraints?Done
Yes

No
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 Proposed approach

Molecular Descriptor

Molecular Evolution

Fitness Evaluation

Graph or ASCII string 

Heuristic

Simple assessment 

Bit string (ECFP)

Random 

DNN

RNN 
•Prevent heuristic bias  
•Secure chemical validity

*ECFP (Extended Connectivity FingerPrint)
DNN (Deep Neural Network), RNN (Recurrent Neural Network)
SMILES (Simplified Molecular-Input Line-Entry System)

•Versatile evaluation is possible

Mutation (n=50)

Inspection of 
chemical validity

Decoding to
SMILES (RNN)

Fitness evaluation 
(DNN) Selection

Evolution
Crossover → Mutation)

Inspection of 
chemical validity

Fitness evaluation 
(DNN)

Seed molecule
(ECFP)

Best-fit molecule

DB

1 1 01

1 1 00
0 1 01

1 0 01

0 0 0 11 0 01

1 0 0 0 0 0

1 0 1

1

1

Parents

Crossover

1

Mutation0 0 11

Iteration

Conventional Proposed Expectations

Decoding to
SMILES (RNN)
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t=1
Input

(ECFP*)

y = (‘CCC’,‘CCC’,‘CC(’,…, ‘)=O’) → ‘CCCC(N)=O’

t=2 t=3 t=T+1

y1=‘CCC’ y2=‘CCC’ yT=‘)=O’

y1=‘CCC’ y2=‘CCC’ y3=‘CC(’ <end>

<start>

…

*ECFP (dimension=5,000, neighbor size=6)

 Deep learning models

• [DNN] 3 hidden layers, 500 hidden units in each layer 

• [RNN] 3 hidden layers, 500 long short-term memory units 

Output (SMILES)

Input
(ECFP*)

Output (Properties)

DNN Model RNN Model

https://www.google.co.kr/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=2ahUKEwjA6fGFh9DcAhXTaN4KHaAMDV4QjRx6BAgBEAU&url=https://wp.wwu.edu/machinelearning/2017/02/12/deep-neural-networks/&psig=AOvVaw0AsBWLqQGPX9BQFukK5JCT&ust=1533357236007221
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 Validation test

• Design target: change the S1 (light-absorbing wavelength) of seed molecules

• Training data: M.W. 200~600 g/mol from PubChem (10,000~50,000 molecules)

※1. No. of test data=No. of training data/10
※2. Chemical validity is evaluated with RDKit, 

No. of test data=5,000
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No. of 
training data

Prediction accuracy of DNN※1 (R, MAE) Success rate of 
decoding※2 (RNN)S1 HOMO LUMO

① 50,000 0.973, 0.198 0.945, 0.172 0.955, 0.209 86.7%

② 30,000 0.930, 0.228 0.934, 0.191 0.945, 0.224 85.3%

③ 10,000 0.913, 0.278 0.885, 0.244 0.917, 0.287 83.2%
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 Evolution toward the increase and decrease of S1 (eV) 

• Seed: randomly selected 50 molecules (3.8<S1<4.2)

• Number of training data = 10k, 30k, 50k
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 Evolution under the constraint of HOMO and LUMO (eV)

• Seed: randomly selected 50 molecules (3.8<S1<4.2)

• Number of training data = 50k

• Constraint: -7.0<HOMO<-5.0, 

LUMO<0.0 
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 Examples of evolved molecules (No. of training data = 50k)

 Constraint (eV)

• -7.0<HOMO<-5.0 

• LUMO<0.0 
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 A fully data-driven evolutionary molecular design based on 

deep-learning models (DNN & RNN) was proposed and 

automatically evolved seed molecules toward target without any 

pre-defined chemical rules.

 Unlike HTCS, the closed-loop evolutionary workflow guided by 

deep-learning automatically derived target molecules and found 

rational design paths by elucidating the relationship between 

structural features and their effect on the molecular properties.
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npj Comput. Mater., 4, 67, 2018
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 Paradigm shift of ML in computer-aided materials discovery

Artificial 
Intelligence for 

Materials Design

Propose target 
materials

Target Properties

Screening

Predict 
materials 
properties

Passive Role Active Role

• Efficient screening based on property prediction

• Highly depends on explicit knowledge of 

chemists

• Propose candidates via automated design

• Provides implicit knowledge from data

Database

Candidate pool

http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
http://itunes.apple.com/app/molecules/id444014972?mt=12
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 Implementation of inverse-design model

Deep learning

Molecular

database

Extraction of

design knowledge

Generation of

new molecules

Molecular design

Molecular
structures

Properties [target properties]

z=e(x)

DNN

Molecular property (t)

Molecular descriptor (x; ECFP format)

f(z) 

RNN

d(z) Molecular structure identifier

(y; SMILES format)

e(·) : encoding function

f(·) : property prediction function

d(·) : decoding function

z: encoded vector of molecular descriptor 

a

b

Input outputencoder decoder

Hidden Factor
(fixed-length vector)
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 Inverse design of light-absorbing organic molecules (1/2) 

• Training DB

‒ 50k molecules sampled from PubChem (M.W. 200~600)
‒ DFT calculations for S1
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Distribution of  λmax of the inverse-designed molecules

λmax=200–300 nm λmax=300–400 nm λmax=400–500 nm

82.6% 

Target

Hit rate 64.8% 45.6%

*Simulation values for the 500 molecules in each target 

※ About 10% of the designed molecules were found in PubChem even though those 
were not included in the randomly selected training library.
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 Inverse design of light-absorbing organic molecules (2/2) 

Examples of inverse-designed molecules which share the 

moieties with well-known dye materials

b. Azobenzene derivative

(λmax=527.5 nm) 

c. Isoidoline derivative

(λmax=434.4 nm)

a. Antraquinone derivative
(λmax=433.4 nm)

d. Squaraine derivative

(λmax=503.5 nm)
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 Inverse design of hosts for blue phosphorescent OLED (1/3) 

• Target: T1 ≥ 3.00 eV

• Training DB

‒ In-house library of 6,000 molecules by combinatorial enumeration (with nine 
linker (L) and fifty-seven terminal fragments (R) which are frequently 
employed in OLED hosts; symmetric R-L-R & R-R type enumeration).

‒ Property labeling with DFT calculations.
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Training librarya
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c

The distribution of simulated T1 (eV) energy levels for 
the generated 3,205 molecules 
a. mean=2.94, std=0.15

b. mean=3.02, std=0.10

c. mean=2.92, std=0.13

The fractions of the hosts that satisfied the target (T1≥3.00 eV)                 

36.2% for a

58.7% for b

26.9% for c (3,497 molecules)
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 Inverse design of hosts for blue phosphorescent OLED (2/3) 

a b c

T1

ML 3.13 eV

DFT 3.16 eV

T1

ML 3.11 eV

DFT 3.12 eV

T1

ML 3.12 eV

DFT 3.12 eV

T1

ML 3.05 eV

DFT 3.06 eV

T1

ML 3.18 eV

DFT 3.20 eV

T1

ML 3.08 eV

DFT 3.12 eV

T1

ML 3.03 eV

DFT 3.12 eV

a1

a2

a3

b1

b2

b3

c1

c2

c3

T1

ML 3.13 eV

DFT 3.22 eV

T1

ML 3.08 eV

DFT 3.12 eV

Examples of inverse-designed host materials

Asymmetric molecules with 

the given fragments in the 

training library

Symmetric molecules where 

the new fragments were 

introduced

Asymmetric molecules 

where the new fragments 

were introduced

Experiment (eV)

HOMO (eV) LUMO (eV) S1 (eV) T1 (eV) ΔEST (eV)

a1 -5.98 -2.43 3.56 3.06 0.55

b1 -5.96 -2.14 3.64 2.93 1.01

c1 -6.07 -2.65 3.38 2.97 0.46
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 Inverse design of hosts for blue phosphorescent OLED (3/3) 

Total host molecules

(3,205)

L-(R1,R2,R3) 
★

(4)

R-L-R

(3,010)

R-R

(190)

R1-R1

(16)

R1-R2

(174)

 L: Linker fragment

 R: Terminal fragment

 Lsym: Symmetric linker

 Lasym: Asymmetric linkerR

(1)

R-Lsym -R

(1,931)

R-Lasym -R

(1,079)

R1-Lsym -R1

(403)

R1-Lsym -R2

(1,528)

R1-Lasym -R1

(636)

R1-Lasym -R2

(443)

★

Linker

Terminal1

Terminal2

Terminal3

The connection rules of the inverse-designed molecules
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 A fully data-driven inverse design method successfully extracted 

the latent materials design rules and proposed target molecular 

structures without any external intervention. 

 The inverse design model successfully proposed new candidates 

by modifying the assemble rules and creating new fragments.
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Simulation-based Screening

Full search

Total TAT takes 1 month

1st trial: 1M Candidates
QC simulations take 1.5 years 
Fail to find the target structure

2nd trial: 1M Candidates
QC simulations take 1.5 years 
Fail to find the target structure

3rd trial: 1M Candidates
QC simulations take 1.5 years 
Succeed to find the right structure

Total TAT took 4.5 years

[Step1] Building the training dataset
Needs only QC sim. for 50k molecules
(27 days)

50K 5M

Inverse Design

Inverse Design

HTCS for pre-defined chemical space

more than 50X speed up (4.5 years vs. 1 month)

[Step3]
QC simulations for the 
proposed molecules (1 
day)

* QC simulation tool : turbomole
Total computational resources=10,000 CPU
In case of 10 CPU computing per molecule, the simulation requires about 13 hrs.

“The inverse design learns by itself the molecular design 
rules inherent in the libraries and can reduce the effort of 
researchers and total time to reach the goal”

[Step2]
Deep learning model 
training with GPU (3 
days)
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Design

Analytical Chemistry

Simulation

Synthesis

Neural Network
(MD potential)

Energy

DFT simulation
(<100 atoms)

Meso-scale simulation
(~104 atoms)

Electronic Properties

Design

SynthesisAnalysis

Training

ChemOS 

Robot Characterization ML algorithm 

DB 

Queuing'system' Queuing'system'

Artificial 
Intelligence for 

Materials Design

Propose target 
materials

Target Properties

Database
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