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Deep Learning Animation:
PFNN

• Breakthrough 2017 paper on using motion capture + DL to drive locomotion 
animation

• http://theorangeduck.com/page/phase-functioned-neural-networks-character-control
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Applications
Games
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Applications
VFX Crowd Simulation
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Applications
Human/Robot interaction safety

Mimus, Madeline Gannon / ATONATON (2016)
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Applications
Holodeck - Before
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Applications
Holodeck - after
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Applications
Auto Simulation

Image from the SYNTHIA dataset
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PFNN: How does it work?

• Gather Motion Capture data

• Lots of free data available from CMU: http://mocap.cs.cmu.edu/

• Many thanks to Fox VFX Lab for our capture above

Motion Capture
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How does it work?

• Additional data needed:

• Gait (running, walking, crouching, etc)

• Phase – what point of the walk cycle are we in

• Footstep positions

Metadata labeling
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How does it work?

• Generate many different 
height fields that can fit 
a given set of character 
positions

• More robust than just 
capturing the actual 
height field, since it gives 
the network more 
potential data to fit with

Terrain Fitting
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How does it work?

• Weights in the network 
are different depending 
on the phase parameter

• Four sets of weights 
trained

• Mid-cycle weights 
calculated by spline 
interpolation or 
precomputed (requires 
custom inferencing 
code or lots of memory)

Phase Functioned Neural Network
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How does it work?
Runtime Inferencing



16



17

PFNN On GPU
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LIVE DEMO: SpaceShip Down
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Applications in Robotics
PFNN + Navigation
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Mode Adaptive Neural Network
Quadruped Motion Control
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MANN for Bipeds - Visualization
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MANN for Bipeds - Hard
No phase information
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NVIDIA Improved Biped MANN
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What’s Wrong With This Picture?
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What’s Wrong With This Picture?
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Inverse Kinematics
Traditional Gaming Approach

• Quick and dirty solution 
when encountering obstacles
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Inverse Kinematics
Traditional Gaming Approach
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• Just adjust skeleton 
backwards from intersections

• First the lower leg
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Inverse Kinematics
Traditional Gaming Approach

• Quick and dirty solution 
when encountering obstacles

• Just adjust skeleton 
backwards from intersections

• First the lower leg

• Then the thigh

• Many limitations however
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Physics!
The Real Solution
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DeepLoco: Physics + RL

• Another major recent work adds physics and high level control:

DeepLoco: Dynamic Locomotion Skills Using Hierarchical Deep Reinforcement Learning

Xue Bin Peng (1) Glen Berseth (1) KangKang Yin (2) Michiel van de Panne (1)
(1)University of British Columbia 

(2)National University of Singapore 

• http://www.cs.ubc.ca/~van/papers/2017-TOG-deepLoco/
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Reinforcement Learning

• Take a set of states from an environment

• Define a ‘Reward’ that the agent receives for 
performing well at a task. For example:

• Not falling down +

• Following a motion capture example

• We must learn a policy of how the agent 
should act to maximize this reward over time

• A difficult problem – especially when acting 
over long time horizons!

A very very short introduction
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DeepLoco RL System

• Simulation engine + RL

• Bullet Physics Engine, rewards

• Low level controller network

• Uses phase, like PFNN, but simpler

• Activates PD controller

• High Level controller network

• Generates ‘footstep plan’ based on goals gH

• Customizable for different tasks

High level overview



39



40

Early RL Results
DeepLoco-style Reward Function
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Physics + Mocap + RL
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Physics + RL + Uneven Terrain
No Mocap

Ministry of Silly Walks



45



46

Physics + RL + Uneven Terrain
+ Mocap

Ministry of Getting Closer
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DeepMimic
Advanced Physics Animation

DeepMimic: Example-Guided Deep Reinforcement Learning of Physics-Based Character Skills
Transactions on Graphics (Proc. ACM SIGGRAPH 2018)

Xue Bin Peng(1) Pieter Abbeel(1) Sergey Levine(1) Michiel van de Panne(2)
(1)University of California, Berkeley (2)University of British Columbia
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DeepMimic Enhancements

• Don’t always start at the beginning!

• Reference state initialization from random 
points in the motion capture clip

• Simplifies learning hard motions

• Early termination

• If an agent falls down, start over 
immediately

• Don’t bother learning how to get up without 
reference motion

Just a few key tricks!
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GPU Accelerated Simulation

GPU-Accelerated Robotic Simulation for Distributed Reinforcement Learning
Conference on Robot Learning (CoRL) 2018

Jacky Liang, Viktor Makoviychuk, Ankur Handa, Nuttapong Chentanez, Miles Macklin, Dieter Fox
NVIDIA

Apply GPUs to BOTH Sim and RL
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Arbitrary Motion Imitation with Physics

Physics-based Motion Capture Imitation with Deep Reinforcement Learning
Motion, Interaction, and Games (MIG) 2018

Nuttapong Chentanez, Matthias Müller, Miles Macklin, Viktor Makoviychuk, Stefan Jeschke
NVIDIA

Single Network, Thousands of Clips
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IsaacGym
Advanced Physics RL Training Environment
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High Level Behavior
Exciting times ahead!
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QUESTIONS?


