<ANVIDIA. *

TENSOR CORE .
DL PERFORMANCE GUIDE - 7

Michael Andersch, Valerie Sarge, Paulius Micikevicius
NVIDIA »

TENSOR CORES: BUILT TO ACCELERATE Al

Available on NVIDIA Volta and Turing Tensor Core GPUs

B Inference TOPS [FP16 or INT8] Training TOPS [FP16]

300
(7}
S
© 250
=
3 200
<
(eT0]
>
2 150
=
Q
3]
& 100
=
S 50
4
o
(a

0]

Tesla P100 (Pascal, no TC) Tesla V100 (Volta, TC) Titan RTX (Turing, TC)

This talk: Learn basic guidelines to best harness the power of Tensor Core GPUs!

- 1. Tensor Core refresher - what, how, why?

OUTLINE _

2. Reasoning about Deep Learning performance

3. Guidelines for ideal Tensor Core performance

. 4, Case studies

TENSOR CORES: A REFRESHER

Introduced on NVIDIA Volta V100 GPU

Tensor Cores are ...

... special hardware execution units

... built to accelerate deep learning

... executing matrix multiply operations
Volta Tensor Cores

FP16/FP16 and FP16/FP32 modes
Turing Tensor Cores

+ INT8/INT32, INT4/INT32, INT1/INT32

L0 Instruction Cache
‘Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File 384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 HREH

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD LD/ LD LDV
ST ST ST ST ST

L0 Instruction Cache
‘Warp Scheduler (32 threadiclk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

FP32 FP32

DI LD/ LD LD/
ST ST sT ST ST

TENSOR
CORE

TENSOR
CORE

LO Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 thread/clk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 HRAH

INT FP32 FP32
INT FP32 FP32

INT FP32 FP32

LD/ LD/ LD/ LD/ LD LD/
ST ST ST ST ST ST

L0 Instruction Cache
Warp Scheduler (32 thread/clk)
Dispatch Unit (32 threadlclk)

Register File (16,384 x 32-bit)

INT FP32 FP32
INT FP32 FP32
INT FP32 FP32

INT FP32 FP32 TENSOR

INT FP32 FP32 CORE

INT FP32 FP32
INT FP32 FP32

FP32 FP32

LD/ LD/ LD/ LDi
ST ST 8T ST

128KB L1 Data Cache / Shared Memory

Tex

Tex

TENSOR
CORE

TENSOR
CORE

4

“ANVIDIA.

HOW TO USE TENSOR CORES FOR TRAINING

Enable mixed precision training

S9143 - Mixed Precision Training of Deep Neural Networks

Easiest way: AMP

Automatic Mixed Precision

S9998 - Automatic Mixed Precision in PyTorch

NVIDIA cuDNN, cuBLAS, TensorRT 591003 - MxNet Models Accelerated with Tensor Cores

Tensor Core Optimized S91029 - Automated Mixed-Precision Tools for TensorFlow Training
Frameworks and Libraries

This talk: How to maximize perf once MP is enabled

5 <A NVIDIA.

https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=263102&tclass=popup
https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=290414
https://gputechconf2019.smarteventscloud.com/connect/sessionDetail.ww?SESSION_ID=293830&tclass=popup
TensorFlow: S91029 - Automated Mixed-Precision Tools for TensorFlow Training

DEEP LEARNING
PERFORMANCE
BASICS

DOES <X> USE TENSOR CORES?

IIIIIII

GPU PERFORMANCE BASICS

The GPU: a highly parallel, scalable processor

GPUs have processing elements (SMs), on-chip

memories (e.g. L2 cache), and off-chip DRAM
Tesla V100: 125 TFLOPS, 900 GB/s DRAM

What limits the performance of a computation?

tlmemath operations > tlmedata movement

FLOPS bytes
>

math throughput memory bandwidth

FLOPS math throughput
bytes memory bandwidth

8 <ANVIDIA.

LIMITER ANALYSIS

Lesson 1: Understand your performance limiters

Math limited if: math throughput

memory bandwidth

Left metric is algorithmic mix of math and memory ops called
Right metric is the processor’s ops/byte ratio - e.g. V100 can execute 125/0.9=139 FLOPS/B

Comparing arithmetic intensity to ops/byte ratio indicates what algorithm is limited by!

Arithmetic Intensity

Residual addition 0.166 Memory
ReLU activation 0.25 Memory
Batch normalization 0O(10) Memory
Convolution 1-10000+ Memory/Math

9 <A NVIDIA.

(assumes FP16 data)

HOW TO CHECK IF TENSOR CORES ARE USED

Run nvprof and look for [i|s|h][some numbers] in function names
volta_h884gemm_...
turing_fp16_s1688cudnn_fp16_...

But: not comprehensive
some kernels use TCs but don’t follow this naming scheme
no trivial mapping back to neural network operations

Useful as a first check: Am | using Tensor Cores, and are they close to being the top function?

10 NVIDIA.

END-TO-END PERFORMANCE

Lesson 2: Total Tensor Core speedup depends on memory limited time

The end-to-end network speedup depends on layer mix

Amdahl’s law: if you speed up X% of your runtime, then the (1-X)% limit your overall speedup

BATCH

FP16, without Tensor Cores

NORM

‘6x/

FP16, with Tensor Cores -

< 2x overall

v

execution time

11 <ANVIDIA.

GPU PERF BASICS: SUMMARY

Tensor Cores accelerate processing (not memory) by providing higher matrix math throughput
Rules of thumb to remember
Check arithmetic intensity against GPU ops/byte ratio to see if math or memory limited
End-to-end speedup from Tensor Cores depends on operation mix in the neural network

Use nvprof as a quick check to see if you are using Tensor Cores at all

12 NVIDIA.

TENSOR CORE PERF
GUIDELINES

TENSOR CORE ACCELERATION

Which operations do benefit?

Dot product operations

GEMMs (Dense/Linear/FullyConnected/...)

Convolutions
RNN/LSTM/GRUY/ ...
Can be thought of as matrix-matrix multiplications M

Arithmetic intensity = MNK/(MK+KN+MN)

E.g. MXNxK = 4096x4096x4096: Arith. Intensity = 1365

(GEMM)

But: becomes BW bound if any dimension is small

14 <A NVIDIA.

DNN OPERATION MAPPING TO GEMM

Forward pass mappings

N = batch

input
features vation

= input features

output

M= teatures

weights

Fully Connected / Dense / Linear
(PyTorch nn.Linear, TensorFlow swaps A and B)

N = output channels

_ input channels x filter

height x filter width | LLLi=s

_ input channels x filter
height x filter width

batch
= image helght activation
image w1dth

Convolution
(implicit GEMM algorithm,
matrices are never actually created)

15

“ANVIDIA.

BACKGROUND: TC-ACCELERATED GEMM

GPUs execute work by mapping computation to threads B matrix
Threads are grouped into thread blocks to cooperate) } keite
Ntile
Thread blocks are scheduled onto GPU SMs
GEMM algorithm: blocks produce output matrix tiles K
A matrix C matrix
Tiles require alignment for efficient access
M
If problem cannot be tiled cleanly, perf is lost Plockn,
Mtile Mtile

Smaller tiles are less efficient — —

Ktile Ntile

16 NVIDIA.

FUNCTIONAL REQUIREMENTS

Performance of NT GEMM with
N = 2048, K= 2048

Choose layer sizes as multiple of 8 (FP16) or 16 (INT8) Lo | | | | |
Linear: inputs, outputs, batch size Lol
Convolution: input/output channels g 1.0
RNNs: hidden, embedding, batch, vocabulary é 0.8
G
= 0.6
Tensor Core speeds require efficient alighed data A
accesses to keep the cores fed 0.4
Hardware uses CUDA cores as fallback o2 5 5 5 5 |
003548206 2080 2006 2112

4-8x slower than Tensor Cores M
(Tesla V100-DGXS-16GB, cuBLAS 10.1)

17 NVIDIA.

PARALLELIZATION: TILE QUANTIZATION

When the problem size does not cleanly divide into tiles, performance is lost

128 R J 129
A A
64 64
64 64
128 -- 129
best case not-so-great case
4/4 tiles used ~4/6 tiles used

100% utilization 67% utilization

IIIIIII

GFLOPS

PARALLELIZATION: TILE QUANTIZATION

When the problem size does not cleanly divide into tiles, performance is lost

Performance of NT GEMM with
M = 20480, K = 4096

100000+

80000 -

60000 -

40000L..- . mm}

20000+

0

128 256 384 512
N

Duration (ms)

1.0

o
0
:

O
o
:

o
IS

o
(8]

0.0

Performance of NT GEMM with
M = 20480, K = 4096

128 256 384 512
N

Number of Tiles

320 bt

2A0 b

1601 ..

80 |-

Number of Tiles for NT GEMM with
M = 20480, K = 4096

128 256 382 512
N

Choosing dimensions to be multiples of 64 minimizes tile quantization (cuBLAS 10.1)

19 NVIDIA.

PARALLELIZATION: WAVE QUANTIZATION

Number of tiles quantizes to the GPU size

Tiles are assigned to SMs, so performance is ideal when number of tiles is a multiple of SM count

time
" -
-
-
-
-

SM D
D
D
I
k. ~ Ao v J

wave 0 wave 1 (tail)

Example with 12 tiles on an 8-SM GPU, assuming 1 tile/SM
Second wave runs at 50% utilization
Overall computation runs at 75% utilization

GFLOPS

PARALLELIZATION: WAVE QUANTIZATION

Tiles are assigned to SMs, so performance is ideal when number of tiles is a multiple of SM count

Performance of NT GEMM with
M = 1280, K = 4096

100000 kL i

80000 -

60000% o d

40000 F i

20000+

0

2048 4096 6144 8192
N

Duration (ms)

o
o

S
>

Q
[N}

0.0

Performance of NT GEMM with
M = 1280, K = 4096

2048 2096 6144 8192
N

320+

80

Number of Tiles for NT GEMM with

M = 1280, K = 4096

2048 4096 6144 8192
N

It is useful to check the number of thread blocks created (by calculation or nvprof/nsight)

21

NVIDIA.

PARALLELIZATION: TILE EFFICIENCY

Tiles are just smaller GEMMs - same data reuse principles

100000]

When tile’s M and N are smaller ...

80000| S

... less data reuse is captured in the tile

... more external bandwidth is required

GFLOPS

Also, when tile’s K is small ...

20000}

... setup and teardown overheads dominate

0

In general, larger operations perform better 25

Performance of TN GEMM with K = 4096

S000D kbbb S

40000F

M=N
(Tesla V100-DGXS-16GB, cuBLAS 10.1)

22 NVIDIA.

TENSOR CORE PERFORMANCE GUIDELINES

Satisfy requirements to enable Tensor Cores
For linear layers: input size, output size, batch size need to be multiples of 8 (FP16) / 16 (INT8)
For convolutions: input and output channel counts need to be multiples of 8 (FP16) /16 (INT8)
Ensure good Tensor Core GEMM efficiency
Choose the above dimensions as multiples of 64/128/256
(if the total number of tiles is small) Ensure that the tile count is a multiple of the SM count
Be aware of bandwidth limited regimes

If any GEMM dimension is 128 or smaller, the operation is likely bandwidth limited

23 NVIDIA.

CASE STUDY:
TRANSFORMER

CASE STUDY: TRANSFORMER

Qutput

Probabilities

Transformers perform neural machine translation without
suffering from RNN dependencies

(e o) |
orm
il / Multi-Head Attention Scaled Dot-Product Attention
r —L) / Linear 1
i ’—_Orm Multi-Head 1 MatMul
Feed Attention M
Forward g N Concat 1
SRR T SoftMax
N /)
x f—>| Add & Norm | 7 L
asked Mask (opt.)
Multi-Head Multi-Head Scaled Dot-Product h —
Attention Attention Attention ~ 4
A) A y) T 1l 1 Scale
_ y, _ _)J s [e f
Positional Positional Linear Linear Linear U M
. D N tMul
Encoding 13 S Encoding , - =
Input Output 1 T
Embedding Embedding Q K V
f I v K Q
Inputs Outputs

(shifted right)

NVIDIA.

CASE STUDY: TRANSFORMER

Qutput
Probabilities

Linear

(
Add & Norm I
Feed
Forward
e N Add & Norm D
_ .
ele [EAlb Multi-Head
Feed Attention
Forward g S} Nx
SRR
Nix Add & Norm
f—>| Add & Norm | T
Multi-Head Multi-Head
Attention Attention
t TINIE NITIEF . VTN NI
_ J \ ‘_J)
Positional D & Positional
Encoding y Encoding
Input Qutput
Embedding Embedding
Inputs Outputs

(shifted right)

t

Linear

A

Concat

A

Multi-Head Attention

From “Attention is all you need”

Transformers perform neural machine translation without
suffering from RNN dependencies

)

Scaled Dot-Product Attention

MatMul

1
SoftMax

t

Scaled Dot-Product

Mask (opt.)

Attention ~
41 41| Al
o = = ¥ e
Linear P Linear L] Linear L]

V

K

Q

1

Scale

Q K

.

V

26

<A NVIDIA.

CASE STUDY: TRANSFORMER

From “Attention is all you need”

Step 1: Pad vocabulary to multiple of 8 to ensure TC usage in projection layer

Vocabulary size maps to M dimension in projection layer

Transformer: Projection Linear layer, batch 5120

100
90

80
70
60
50
40
30
20
— _ _
0

forward activation grad weight grad

Throughput [TFLOPS]

mV=33708 m\V=33712 27 <ANVIDIA.

CASE STUDY: TRANSFORMER

From “Attention is all you need”

Step 2: Pad input sequence data to multiple of 8 to ensure TC usage in all other layers
Sequence length maps to M/N dimensions in attention layers

Sequence length * number of sentences maps to N dimension in most layers

Transformer: Feed-Forward Network, first layer

forward activation grad weight grad

100

80

60

40

20

Throughput [TFLOPS]

B tokens=4095 m tokens=4096

28 <A NVIDIA.

CASE STUDY: TRANSFORMER

From “Attention is all you need”

Step 3: Choose token count per batch such that tile count is multiple of SM count (80 here)

E.g. 5120 instead of 4096, 2560 instead of 2048, ...

Transformer: Feed-Forward Network, first layer

forward activation grad weight grad

100

8

o

6

o

4

o

Throughput [TFLOPS]

2

o

o

M batch=2048 ™ batch=2560 ™ batch=4096 m batch=5120
29 A NVIDIA.

SUMMARY

SUMMARY: TENSOR CORE GUIDELINES

Tensor Core GPUs provide considerable deep learning performance

Following a few simple guidelines can maximize delivered performance
Ensure key dimensions are multiples of 8 (FP16) or 16 (INT8)
Choose dimensions to avoid tile and wave quantization where possible
Up to a point, larger dimensions lead to higher efficiency

Visit the permanent online version of this guide (ETA early April)

31

NVIDIA.

https://docs.nvidia.com/deeplearning/sdk/dl-performance-guide/index.html

RESOURCES

TENSOR CORES

For more information

Volta V100 whitepaper

Turing whitepaper

Mixed-precision training guide

Tensor Core technology webpage

Programming Tensor Cores blog post

33 <A NVIDIA.

https://images.nvidia.com/content/volta-architecture/pdf/volta-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html
https://www.nvidia.com/en-us/data-center/tensorcore/
https://devblogs.nvidia.com/programming-tensor-cores-cuda-9/

DNN OPERATION MAPPING TO GEMM

All pass mappings

FC/Linear Forward Output features Batch size Input features
Data grad Input features Batch size Output features
Weight grad Input features Output features Batch size
Conv Forward Batch x iHeight x Output channels Input channels x
iWidth fHeight x fWidth
Data grad Batch x iHeight x Input channels Output channels x
iWidth fHeight x fWidth
Weight grad Input channels x Output channels Batch x iHeight x

fHeight x fWidth iWidth

34 <A NVIDIA.

TENSOR CORE THROUGHPUTS

On Volta and Turing GPUs (except TU11x), MACs/SM/CLK

L CUDA Cores

Volta 128 256 512
Turing 2 64 128 256 512 1024 2048 8192

CONVOLUTION DATA LAYOUTS

: Performance of Convolution Weight Gradient
4D tensor data can be laid out two ways With R 1 Co 1024 K =108 B W7

“channel-first” or NCHW 100000 ko]

“channel-last” or NHWC 80000

TC convolutions natively process NHWC tensors 60000t]

— NCHW
— NHWC

GFLOPS

PyTorch support in development 05 256 257 258 259 S0
N
Enable NHWC layout when possible (Tesla V100-DGXS-16GB, cuBLAS 10.1)

36 NVIDIA.

R J

<SANVIDIA

N

\

&
i

|
:
! l |
4 / : A - | . i
/ N
A4 S X
\‘\ 4 7
h -
>
// '
4./ ““\(
’ ,
/
‘ ,
,
7,
| A/‘r-n —
»

