- T\ N / 3

<ANVIDIA. *

BEST PRACTICES WHEN . .~
BENCHMARKING CUDA APPLICATIONS

Bill Fiser - Senior System Software Engineer
Sebastian Jodtowski - Senior System Software Engineer

Peak performance
AGENDA < VS.

K Stable performance

Peak performance
AGENDA < VS.

AGENDA _

System stability
CPU Frequency Scaling
NUMA
GPU clocks

Measuring the right thing
JIT cache
CUDA events

APl contention

SYSTEM STABILITY

CPU FREQUENCY SCALING

Achieving Stable CPU Benchmarks: launch latency

#include <chrono> // Warmup phase

#include <iostream> for (int 1 = 0; i < 10; ++i) {
empty<<<1,1>>>();

using namespace std; }

using namespace std::chrono;
// Benchmark phase

__global__ void empty() {} auto start = steady_clock::now();
for (int i = 0; i < iters; ++i) {
int main() { empty<<<1,1>>>();
const int iters = 1000; }
auto end = steady clock::now();
cudaFree(0);
empty<<<1,1>>>(); auto usecs = duration_cast<duration<float,
cudaDeviceSynchronize(); microseconds: :period> >(end - start);

cout << usecs.count() / iters << endl;

o & =
w o W

Launch latency [us]
w
=

2.5@

2.0

CPU FREQUENCY SCALING

Achieving Stable CPU Benchmarks: launch latency

Runs

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

10

Average Launch Latency - 2.70 us

Relative Standard Deviation - 16%

4.5

w w =
o o o

Launch latency [us]

N
o

2.0

CPU FREQUENCY SCALING

4 5 6
Runs

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

10

CPU clocks can fluctuate significantly
This can be a result of CPU idling

This can be a result of thermal or power
throttling

Can potentially cause unstable benchmark
results

Average Launch Latency - 2.70 us

Relative Standard Deviation - 16%

CPU FREQUENCY SCALING

Using cpupower to monitor clocks while the test is running can reveal what is happening

user@dgx-1v:~$ cpupower monitor -m Mperf user@dgx-1v:~$ cpupower frequency-info
analyzing CPU 0O:
|Mperf driver: intel pstate
PKG |CORE|CPU | C@ | Cx | Freq CPUs which run at the same hardware frequency: ©
o| o] o] 99.13| 0.87| 3575 CPUs which need to have their frequency coordinated by software: ©
0| o| 40| 0.07| 99.93| 3360 maximum transition latency: Cannot determine or is not supported.
o| 1| 1| 9.64| 90.36| 3568 hardware limits: 1.20 GHz - 3.60 GHz
o| 1| 41| 41.55| 58.45| 3576 available cpufreq governors: performance powersave
o] 2| 2] .05| 99.95| 2778 current policy: frequency should be within 1.20 GHz and 3.60 GHz.
o| 2| 42| .14| 99.86| 3249 The governor "powersave" may decide which speed to use
o| 3| 3] .06| 99.94| 2789 within this range.
0| 3| 43] .07| 99.93| 2835 current CPU frequency: Unable to call hardware
o| 4 .07| 99.93| 2867 current CPU frequency: 1.31 GHz (asserted by call to kernel)
.06| 99.94| 2912 boost state support:
.05| 99.95| 2793 Supported: yes
.07| 99.93| 2905 Active: yes

OO OO0

CPU FREQUENCY SCALING

CPU frequency scaling enables the operating system to scale the CPU frequency up or down in
order to increase performance or save power

user@dgx-1v:~$ cpupower frequency-info
analyzing CPU 0O:

Scaling Governor set to “powersave” driver: intel pstate

. . CPUs which run at the same hardware frequency: ©
can result in CPU bemg underclocked CPUs which need to have their frequency coordinated by software: ©

longer than expected maximum transition latency: Cannot determine or is not supported.
hardware limits: 1.20 GHz - 3.60 GHz
available cpufreq governors: performance powersave
current policy: frequency should be within 1.20 GHz and 3.60 GHz.
The governor "powersave” may decide which speed to use
Turbo Boost set to enabled can With'ci;n this raﬁge, Y P
result in CPU being overclocked and current CPU frequency: Unable to call hardware
eventua[[y throttle current CPU frequency: 1.31 GHz (asserted by call to kernel)
boost state support:
Supported: yes
Active: yes

CPU FREQUENCY SCALING

With intel_pstate driver user cannot directly control CPU clocks

Use “performance” scaling governor and disable Turbo Boost for more benchmarking

user@dgx-1v:~$% # Set the Frequency Scaling Governor to Performance
user@dgx-1v:~$ sudo cpupower frequency-set -g performance
Setting cpu: ©

Setting cpu: 79

user@dgx-1v:~$ # Disable Turbo Boost
user@dgx-1v:~$ echo "1" | sudo tee
/sys/devices/system/cpu/intel _pstate/no_turbo
1

CPU FREQUENCY SCALING

This helps keeping CPU clocks in more stable state

user@dgx-1v:~$ cpupower monitor -m Mperf user@dgx-1v:~$ cpupower frequency-info
analyzing CPU ©:
|Mperf driver: intel pstate
PKG |CORE|CPU | C@ | Cx | Freq CPUs which run at the same hardware frequency: ©
0| o] 93.43| 6.57| 2192 CPUs which need to have their frequency coordinated by software: @
0| 4e| o.45| 99.55| 2191 maximum transition latency: Cannot determine or is not supported.
1| 1 .75| 99.25| 2185 hardware limits: 1.20 GHz - 3.60 GHz
1| 41| .60| 99.40| 2193 available cpufreq governors: performance powersave
2] 2] .71| 97.29| 2192 current policy: frequency should be within 1.20 GHz and 2.20 GHz.
2| 42| .56| 99.44| 2193 The governor "performance” may decide which speed to use
3] 3] .52| 99.48| 2193 within this range.
3] 43| .53| 99.47| 2193 current CPU frequency: Unable to call hardware
4| .46| 99.54| 2193 current CPU frequency: 2.19 GHz (asserted by call to kernel)
4| .56| 99.44| 2186 boost state support:
8| .48| 99.52| 2193 Supported: yes
8| .54| 99.46| 2193 Active: yes

OO O0OO0OOOONOO®

b > >
w o W

w
o

Launch latency [us]

2.5¢

2.0

CPU FREQUENCY SCALING

Achieving Stable CPU Benchmarks: launch latency

Runs
® powersave @ performance

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

Better stability with
“‘performance” scaling governor

Average Launch Latency - 2.61 us

10" Relative Standard Deviation - 3%

Bandwidth [GS/s]

12.0

11.0

10.0

g
o

S & N
©o o o o

.
(<)

- —®

NUMA

Achieving Stable Memory Benchmarks: pageable copies

Host-to-device pageable memcopy:

B @ % @ 'Y
Average Bandwidth - 4.5 GB/s
Relative Standard Deviation - 1%
¢] ¢ ¢ ® ¢ % ¢ ® Device-to-host pageable memcopy:
: : 4) R 6 ! 8 ’ Average Bandwidth - 6.1 GB/s
uns Relative Standard Deviation - 15%
e H2D eD2H

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

NUMA

Achieving Stable Memory Benchmarks: pageable copies

12.0
Low or unstable bandwidth might be caused by
11.0 CPU migrations or accesses to non-local
00 memory.
10.

g
o

Host-to-device pageable memcopy:

Bandwidth [GS/s]
(@]
o

7.0 2 @ H S ©
6.0 Average Bandwidth - 4.5 GB/s
® o Relative Standard Deviation - 1%
5.0 ®
0 ®] ¢ ® ® # \ ¢ ® Device-to-host pageable memcopy:
I : : 4) 6 ! 5 ’ Average Bandwidth - 6.1 GB/s
Runs

Relative Standard Deviation - 15%
@ H2D e D2H

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

NUMA

DGX-1V Topology
| }

Non-Uniform Memory Access (NUMA)
I allows system memory to be divided into
PCle Switches PCle Switches Zones (nOdeS)

CPUs or sockets

I | } 1 NUMA nodes are allocated to particular

Memory bandwidth and latencies
between NUMA nodes might not be the

same

NUMA

DGX-1V Topology

node0 | 1

vl Non-Uniform Memory Access (NUMA)
—— : — allows system memory to be divided into
PCle Switches PCle Switches Zones (nOdeS)
I L . 1 NUMA nodes are allocated to particular

I X I I X I Memory bandwidth and latencies

.................................... between NUMA nodes might not be the
—] — i " lEE -] same

NUMA

DGX-1V Topology

| | node1

NIC CPUO NIC NIC CPU1 NIC
AN LA Non-Uniform Memory Access (NUMA)
I : | — allows system memory to be divided into
PCle Switches PCle Switches Zones (nOdeS)
I . I . 1 NUMA nodes are allocated to particular
S band [127:| PE N (] Damd | PO CPUs or sockets

I X I I X I Memory bandwidth and latencies

.................................... between NUMA nodes might not be the
— [l ey fnE) | ReRE)) e —— same

NUMA

DGX-1V Topology

node0 | | node1
j 5 5 l_> ‘_‘ '3 ,_’ Non-Uniform Memory Access (NUMA)
— PR — — allows system memory to be divided into
PCle Switches PCle Switches Zones (nOdeS)
I | ' 1 NUMA nodes are allocated to particular
I X I I X I Memory bandwidth and latencies
between NUMA nodes might not be the

HHH HH :::::::EE Same

NUMA

Use numactl to check NUMA nodes configuration

user@dgx-1v:~$ numactl --hardware

available: 2 nodes (©0-1)

node © cpus: © 1 2 34567 89 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59

node © size: 257844 MB

node © free: 255674 MB

node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73

74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1

0: 10 21

1: 21 10

NUMA

Use numactl to check NUMA nodes configuration

user@dgx-1v:~$ numactl --hardware

available: 2 nodes (0-1)

node © cpus: © 1 2 34567 89 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59

node © size: 257844 MB

node © free: 255674 MB

node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73

74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1

0: 10 21

1: 21 10

NUMA

Use numactl to check NUMA nodes configuration

user@dgx-1v:~$ numactl --hardware

available: 2 nodes (©0-1)

hode © cpus: ©1 234567 89 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59

node O size: 257844 MB

node O free: 255674 MB

node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73

74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1

0: 10 21

1: 21 10

NUMA

Use numactl to check NUMA nodes configuration

user@dgx-1v:~$ numactl --hardware

available: 2 nodes (©0-1)

node © cpus: ©1 2 3456789 10 11 12 13 14 15 16 17 18 19 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
58 59

node @ size: 257844 MB

node © free: 255674 MB

node 1 cpus: 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 60 61 62 63 64 65 66 67 68 69 70 71 72 73

74 75 76 77 78 79
node 1 size: 258039 MB
node 1 free: 256220 MB
node distances:
node 0 1

0: 10 21

1: 21 10

NUMA

Use nvidia-smi to check which CPU is the closest to the given GPU

user@dgx-1v:~$ nvidia-smi topo -mp

GPUO GPU1 GPU2 GPU3 mlx5 1 mlx5_2 mlx5_3 mlx5 0 CPU Affinity
GPU@ X PIX PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79

GPU5 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS SYS X PHB SYS
mlx5_3 SYS SYS SYS)) PHB X SYS
mlx5_0 PIX PIX PHB PHB PHB SYS SYS X

NUMA

Use nvidia-smi to check which CPU is the closest to the given GPU

user@dgx-1v:~$ nvidia-smi topo -mp

GPUO GPU1 GPU2 GPU3 mlx5 1 mlx5_2 mlx5_3 mlx5 0 CPU Affinity
GPUO X PIX PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79

GPU5 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS SYS X PHB SYS
mlx5_3 SYS SYS SYS)) PHB X SYS
mlx5_0 PIX PIX PHB PHB PHB SYS SYS X

NUMA

Use nvidia-smi to check which peer-GPUs belong to a different NUMA node

user@dgx-1v:~$ nvidia-smi topo -mp

GPUO GPU1 GPU2 GPU3 mlx5 1 mlx5_2 mlx5_3 mlx5 0 CPU Affinity
GPU@ X PIX PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79

GPU5 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS SYS X PHB SYS
mlx5_3 SYS SYS SYS)) PHB X SYS
mlx5_0 PIX PIX PHB PHB PHB SYS SYS X

NUMA

Use nvidia-smi to check which peer-GPUs belong to a different NUMA node

user@dgx-1v:~$ nvidia-smi topo -mp

GPUO GPU1 GPU2 GPU3 mlx5 1 mlx5_2 mlx5_3 mlx5 0 CPU Affinity
GPUO X PIX PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU1 PIX X PHB PHB PHB SYS SYS PIX 0-19,40-59
GPU2 PHB PHB X PIX PIX SYS SYS PHB 0-19,40-59
GPU3 PHB PHB PIX X PIX SYS SYS PHB 0-19,40-59
GPU4 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79

GPU5 SYS SYS SYS SYS SYS PIX PHB SYS 20-39,60-79
GPU6 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
GPU7 SYS SYS SYS SYS SYS PHB PIX SYS 20-39,60-79
mlx5_1 PHB PHB PIX PIX X SYS SYS PHB
mlx5_2 SYS SYS SYS SYS SYS X PHB SYS
mlx5_3 SYS SYS SYS)) PHB X SYS
mlx5_0 PIX PIX PHB PHB PHB SYS SYS X

NUMA

Use closest NUMA node for best (...and highest performance)

With numactl, you can set both:
« which NUMA node the application is executed on

« which NUMA node the application allocates memory from

user@dgx-1v:~$ numactl --cpunodebind=0 --membind=0 ./bandwidthTest --device=0

Bandwidth [GS/s]

12.0

11.0

10.0

©
=)

oe
o

N
o

-
o

o
o

B
=)

NUMA

Achieving Stable Memory Benchmarks: pageable copies

& @ ® @ -] @ [

& @ @ o

@ > ® & ® & S

2 3 4 5 6 7 8
Runs

@H2D eD2H @H2D + numactl @ D2H + numactl

DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

10

Better stability (...and performance)
with correct NUMA setting

Host-to-device pageable memcopy:

Average Bandwidth - 8.3 GB/s
Relative Standard Deviation - 1%

Device-to-host pageable memcopy:

Average Bandwidth - 11.3 GB/s
Relative Standard Deviation - 0%

Launch latency [us]

4.5

=
o

w
wn

w
o

2.59

2.0

NUMA

Achieving Stable CPU Benchmarks: launch latency

? Better stability (...and performance) with
“performance” scaling governor
and

correct NUMA settings

L 4 4

Average Launch Latency - 2.47 us

: ’ Relative Standard Deviation - 1%

2 3 4 5 6 7 8 9 10
Runs

® powersave @ performance X performance + numactl
DGX-1V, Intel Xeon E5-2698 @ 2.20GHz

Kernel Count

82
c0 ©0
Mm ™M

GPU CLOCK SETTINGS

Achieving Stable GPU Benchmarks

Histogram of Kernel Runtimes with Clocks Unlocked

compute_gemm() kernel runtimes - RTX 4000

-...lll.-“l-il“Il.I'“ I||lu| I 1... ...
PN ONRBPUNOSNPRANSRNRUNORN BN S
OO A MY TN ORNN®OOO = &M
SR R R D R R R R R T T T T T

Mean Kernel Runtime - 4.27 ms

Relative Standard Deviation - 3.67%

Kernel Runtime in ms

EcudaTensorCoreGemm Sample

Kernel Count

900

700
600
500

300
200
1 00

3.800
3.875
3.950

4.025

Histogram of Kernel Runtimes with Clocks Unlocked

GPU CLOCK SETTINGS

Achieving Stable GPU Benchmarks

-.......||l.d.lllllhulll..."...l H ..

N

8

-

-

Ln 8l.n
I\IDN ~
- aNM Y
T I T T <

4.550

4.625

4.700

4.775

Kernel Runtime in ms

4.850

EcudaTensorCoreGemm Sample

4.925

5.000
5.075
5.150
5.225

5.300

Unrestricted, the GPU’s clock settings can
fluctuate significantly

This can be a result of thermal or power
throttling

Can potentially cause unstable benchmark
results

Mean Kernel Runtime - 4.27 ms

Relative Standard Deviation - 3.67%

GPU CLOCK SETTINGS

Using nvidia-smi to monitor clocks while the test is running can reveal what is happening
‘nvidia-smi -q -d PERFORMANCE’ will show current Performance State and throttling

‘nvidia-smi dmon’ will scroll the current clock of the GPU

1]
>
(]
Q
(1]
(g}

pwr gtemp mtemp
W [«
22 59
57 61
131 66
130 68
130 69
129 70
131 70
128 70
130 71
130 72
128 72
130 72
130 73
130 74
128 74
129 74
130 75
128 75
128 76
128 76
62 73

Timestamp : Fri Feb 22 11:24:42 2019
Driver Version . 418.39
CUDA Version : 10.1

Attached GPUs : 1
GPU 00000000:01:00.0
Performance State : PO
Clocks Throttle Reasons
Idle : Not Active
Applications Clocks Setting : Not Active
SW Power Cap ¢ Active
HW Slowdown : Not Active
HW Thermal Slowdown : Not Active
HW Power Brake Slowdown : Not Active
Sync Boost : Not Active
SW Thermal Slowdown : Not Active
Display Clock Setting : Not Active

OO O®O® X C
[ORORORROREOROR RO OROR ORI R
[ORORORR ORI OROR ORI

GPU CLOCK SETTINGS

Monitoring Clocks and Throttling

Using nvidia-smi to monitor clocks while the test is running can reveal what is happening

Clocks Unlocked
300

2000
250
1500 e S —

150

[
o
o

1000

Clock (MHz)

Power (W) and Temp (C)

500

& 2
o

o

weClock ==pwr ==Temp --PowerCap

GPU CLOCK SETTINGS

To achieve results, best practice is to lock the
GPU’s clock to default
Timestamp] : Fri Feb 22 11:27:21 2019
Clocks higher than default can be chosen, but monitor | L l0n
throttling with nvidia-smi Attached GPUs 1
GPU 00000000:01:00.0
Clocks
o qe . N . raphics : z
‘nvidia-smi -q -d SUPPORTED_CLOCKS’ lists available 300
ClOCk Sett]ngs Appl\i/igigons Clocks e iz
Graphics : 1215 MHz
P R . , Memory)) : 6501 MHz
nvidia-smi -q -d CLOCK’ shows current GPU clocks Pefault Applications Clocks = @

Memory : 6501 MHz
Max Clocks
Graphics : 2100 MHz

SM : 2100 MHz
Memory : 6501 MHz
Video : 1950 MHz

GPU CLOCK SETTINGS

Use the values from “Default Application Clocks” for more stable benchmarking

‘nvidia-smi -ac <Default Memory Clock>,<Default Graphics Clock> to lock the clocks while
an application is running on the GPU

For Volta+

‘nvidia-smi -lgc <Default Graphics Clock>’ to lock the GPU clocks regardless of if an
application is running

Note that persistence mode must be enabled for the setting to stick

GPU CLOCK SETTINGS

Achieving Stable GPU Benchmarks

Histogram of Kernel Runtimes

3500
3000
2500
2000
1500

Kernel Count

1000
500

S hEB NS RNBAS
VXV Owm mNNMmY
MM M <t Y+
BcudaTensorCoreGemm Sample Default
BcudaTensorCoreGemm Sample Unlocked

4.475

4.550

4.625

0--.--_..a..ul.l.l."huhulll_,".-.lII..ll._.....-----

4.700

4.775 |
4.850 |

4.925

5.000 |

5.075

5.225

Note that absolute performance may be lower
at default clocks, but we’re after stable rather
than peak performance

Mean Kernel Runtime - 5.05 ms

2 Relative Standard Deviation - 0.39%

o

Te}

1500

GPU CLOCK SETTINGS

Monitoring Clocks and Throttling

Clocks Locked to Default

- —————————————————— - — . — ———— . ———— - —_ . —— T — . — - — o ——_— o —_—_—_—_——_————————————-"

== Clock - Locked

Clock - Unlocked

== Pwr - Locked

Pwr - Unlocked ==Temp - Locked

Temp - Unlodked = =Power Cap

8

8
Power (W) and Temp (C)

GPU CLOCK SETTINGS

‘nvidia-smi dmon’ output for both runs

Unlocked: Locked to Default:

o
>
n
Q
(1]
@]
o
>
@]
Q
(1]
(@]

()

%
0
[
0
[
0
[
0
[
0
[
0
[
0
[
0
[
0
[
0
[
0

000D
000D R
P00
000D R
00000 O®O®O® X

MEASURING
THE RIGHT THING

CUDA JIT COMPILATION

When a CUDA fat binary doesn’t include code for the architecture to be executed, the PTX (if

available) is just-in-time compiled by the driver

In order to reduce CUDA module load time, JIT results are cached on the filesystem

Default locations for JIT cache:

Linux - ~/.nv/ComputeCache

Windows - %APPDATA\%NVIDIA\ComputeCache

real sm architecture

virtual compute architecture

X.ptx
ge
(Cubin Generation)
x.cubin
Execute

CUDA JIT COMPILATION

For certain environments these default locations can be problematic

If the location is a network filesystem, access can be slow

If the location is shared across nodes, concurrent access can result in drops in performance
JIT cache location and usage is configurable

Environment variable CUDA_CACHE_PATH can be used to set the location

Environment variable CUDA_CACHE_DISABLE can be used to skip the cache entirely

CUDA JIT COMPILATION

JITing can be time consuming, especially on a cache miss

Can be invoked during module load and runtime initialization

Avoid timing JITing when benchmarking code unless specifically required
Use appropriate architecture flags to create fat binaries to avoid JITing and the JIT cache
For Example:

See nvcc documentation for details

CUDA EVENTS

Timing Event Issues

Using events to time kernels in complex multi-stream cases can result in unexpected results

Example: Start and end events recorded for each kernel launch across 4 streams

for (int i = @, j = ©; i < NUM_RUNS / NUM_STREAMS; i++) {
for (int iStream = 9; iStream < NUM_STREAMS; iStream++, j++) {
cudaEventRecord(startEvents[j], streams[iStream]);
compute_gemm<<<gridDim, blockDim, SHMEM_SZ, streams[iStream]>>>(..);
cudakEventRecord(stopEvents[j], streams[iStream]);

v Stream 14
» Kernels
v Stream 15
» Kernels
v Stream 16
» Kernels

v Stream 17

» Kernels

CUDA EVENTS

Timing Event Issues

The expectation might be that each event pair reports ~5ms (the kernel runtime)
Events have no affinity to the preceding or subsequent GPU work
Only ordering within the stream is guaranteed

Expected recorded event times:

Record Record Record Record
l ~5ms l l ~5ms l
—— —

v Stream 14 A

> Kemels Record Record

v Stream 15 l 5ms l

> Kernels ‘_A_\

v Stream 16
» Kernels
v Stream 17

» Kernels

| compute_gemm |
] ~5ms]

Record Record

CUDA EVENTS

Timing Event Issues

Start and end events have additional work from other streams interleaved
Per kernel events report 1-4x actual kernel execution time (with 4 streams)

Default stream events timing the entire run are accurate

Actual recorded event times:

Record Record

l ~1§ms l

v Stream 14

» Kernels Record Record
v Stream 15 l

> Kernels

v Stream 16

» Kernels

v Stream 17

» Kernels

Record Record

CUDA EVENTS

Even for single stream, other GPU operations can be executed between the start and end
event

Events will record the time the GPU executes the event on the given stream
Useful for measuring stream work with respect to the CPU
Useful for coarser measurements, but not short running kernels

and are better suited for measuring specific GPU kernels
when using multiple streams

Both have access driver internals that allow for accurate measurement of GPU operations

CUDA EVENTS

Events have timing enabled by default
Recording a time may result in synchronization, potentially reducing concurrency
To use events for explicit synchronization or querying, disable timing when creating the event

Use cudaEventDisableTiming or CU_EVENT_DISABLE_TIMING flags to disable timing on
creation

APl OVERHEAD

Latency spikes

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

[2428]
OS runtime libraries pthread_mutex_lock] @ [pthread_mutex_lock]
CUDA API computegemm)| 1111 e e (- cudabventRecors 11T LI

[2426] cudaTensorCoreG

[2429]
0S runtime libraries | pthread_mutex_lock |[pthr..] pthread mutex_fock |[pthread_mutex_lock | .../ pt...|[pthread_mute...
CUDA AP! G cudabvenecord Jeuda T computegemm] cudsbventRecord J..fcou) cudabventRec.
[2431]
OS runtime libraries F@ [pthread_mutex_lock] OU [pthread_mutex_lock O O O @
CUDA AP! cudabventRecord | compute.germm J.J(J) [T (L cudabventRecord (o[- cudabventk.
[2430]
OS runtime libraries a [pthread_mutex_lock] [pt][pthread_mutex_lock] [pthread_mutex_lock]OO [;] @

CUDA API

APl OVERHEAD

Latency spikes

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

[2428]
OS runtime libraries pthread_mutex_lock] Q[pthread_mutex_lock]
[2426] cudaTensorCoreG L Y J L X)
[2429] <10 us / call <10 us / call
OS runtime libraries [pthread_mutex_lock] [pthr...I pthread_mutex_lock] [pthread_mutex_lock] Gpt...] [pthread_mute...
CUDA API ;
[2431] <10 us / call

OS runtime libraries pthread_m... [pthread_mutex_lock]OD [! \ [pthread_mutex_lock] O U O |pthread_mu...

[2430] <10 us / call

OS runtime libraries a [pthread_mutex_lock] [pt][pthread_mutex_lock] [pthread_mutex_lock]OO E] @ [\

CUDA API

APl OVERHEAD

Latency spikes

4 threads, 1 stream per thread, loop event record + GEMM + event record in each stream

[2428]
OS runtime libraries pthread_mutex_lock] Q[pthread_mutex_lock]

[2426] cudaTensorCoreG I L Y J I L X)

[2429] 622 us <10 us / call 537 us <10 us / call
OS runtime libraries [pthread_mutex_lock] [pthr...I pthread_mutex_lock] [pthread_mutex_lock] Gpt...] [pthread_mute...
CUDA API

[2431] 1 <10 us / call

OS runtime libraries pthread_m... 795 us[pthread_mutex_lock]OD [! \ [pthread_mutex_lock] O U O |pthread_mu...

[2430] 1 <10 us / call
OS runtime libraries p-.. 665 us [pthread_mutex_lock] [pt][pthread_mutex_lock] [pthread_mutex_lock]OO E] @ [\

CUDA AP! udatvent®.[compute gemm Jeu.) (L computegemm) cudabventRecord e JLJ [

APl OVERHEAD

Lock contention

pthread_mutex is not fair and depends on OS scheduler to select the next thread

[2428]
OS runtime libraries pthread_mutex_lock] Q[pthread_mutex_lock]

[2426] cudaTensorCoreG I L Y J I L X)

[2429] 622 us <10 us / call 537 us <10 us / call
OS runtime libraries [pthread_mutex_lock] [pthr...I pthread_mutex_lock] [pthread_mutex_lock] Gpt...] [pthread_mute...
CUDA API

[2431] 1 <10 us / call

OS runtime libraries pthread_m... 795 us[pthread_mutex_lock]OD [! \ [pthread_mutex_lock] O U O |pthread_mu...

[2430] 1 <10 us / call
OS runtime libraries p-.. 665 us [pthread_mutex_lock] [pt][pthread_mutex_lock] [pthread_mutex_lock]OO E] @ [\

CUDA AP! udatvent®.[compute gemm Jeu.) (L computegemm) cudabventRecord e JLJ [

APl OVERHEAD

How to avoid it?

Submit work from a single CPU
worker thread

Batch work submission when
using many CPU threads

Try CUDA Graphs to minimize
overall API overheads

Combine kernels together to
avoid API calls

Go multi-process with Volta+ MPS

Eliminates inter-thread lock
contention

Eliminates some of inter-thread
lock contention

Reduces overheads by >2x

Single kernel eliminates launch
and inter-kernel overheads

Separates launching threads and
avoids locks

This presentation

GTC 2019 - CE9147
Connect with the Experts: CUDA
Platform

GTC 2019 - S9240
CUDA: New Features and Beyond

Cooperative Groups: Flexible
CUDA Thread Programming
Devblog

GTC 2017 - S7798
Inside Volta

SUMMARY

System stability
CPU Frequency Scaling - Use performance governor and disable Turbo Boost
NUMA - Use ‘numactl’ to control NUMA behavior
GPU clocks - Lock GPU clocks for stable benchmarking
Measuring the right thing
JIT cache - Check the location or avoid JITing entirely
CUDA events - Use Nsight tools for better measurements

API contention - Take steps to avoid lock contention

- \ /
v N,
\ 5% 7
4 \ ‘
—— Y : |
) |
> i sl
| = |
— [7 YAl ~
- = \\- -

,\ \
N ‘
‘\

<SINVIDIA.

