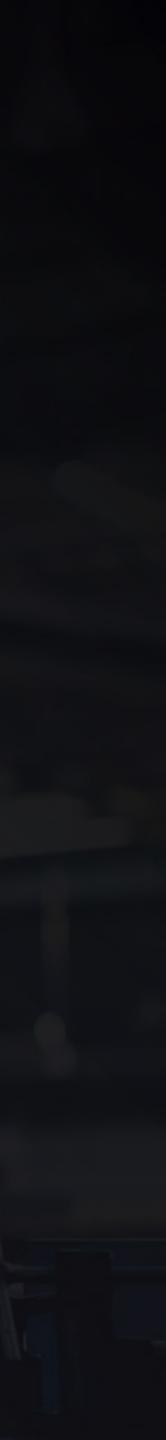
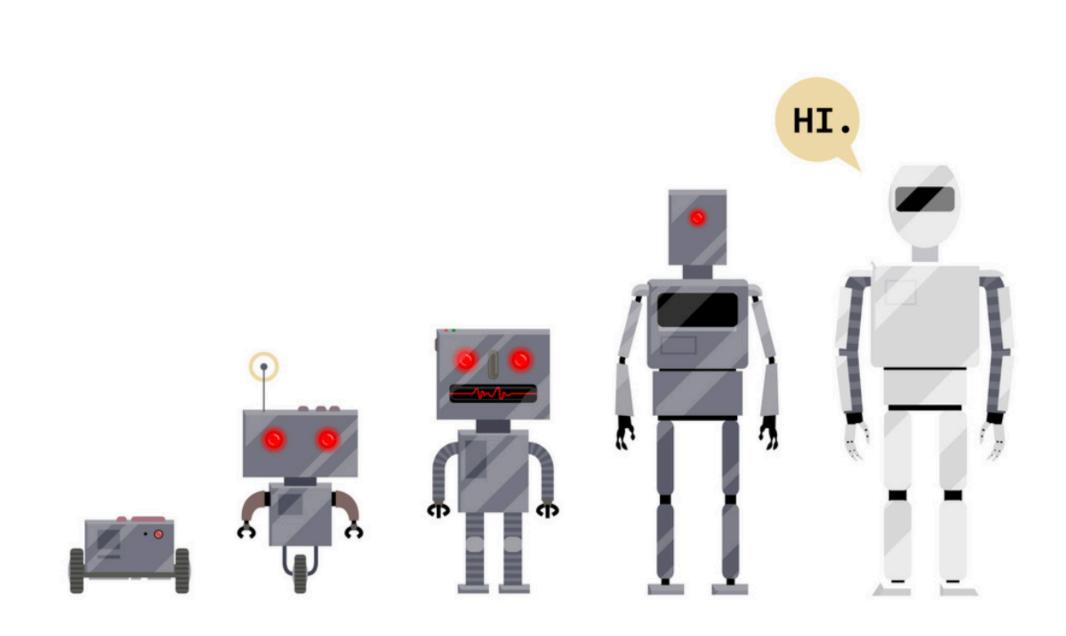
OSARO I AI FOR INDUSTRIAL ROBOTS

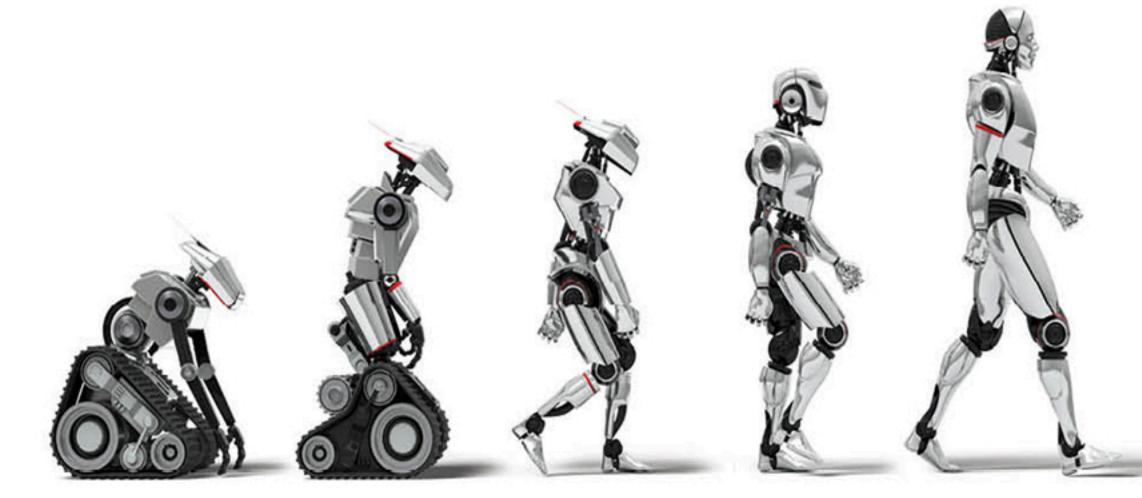
NEXT GENERATION AI-ENABLED ROBOTICS NVIDIA GTC

Bastiane Huang_Product @ Osaro



ROBOT EVOLUTION: Anthropomorphic? **HOW ARE AI-ENABLED ROBOTS DIFFERENT?**





ROBOT 2.0: **NEXT GENERATION AI-ENABLED ROBOTICS**

- Osaro Introduction
- Al-enabled Robotics
 - What, How, Why is it important, Why now?
 - Machine learning research areas
 - DL, motion planning, simulation
 - RL, IL/Behavioral cloning, Meta learning,
 - Other challenges
- Challenges and Opportunities
- Osaro's Approach \bullet
- Thoughts on the future

Build machine learning software that enables robots to learn

advanced manufacturing

ecommerce fulfillment

OSARO 4

food assembly

OSARO OVERVIEW

- Osaro builds brains for robots
- Based in San Francisco, founded in 2015 \bullet
- 24 engineers, 6 business people
- Focus: Vision and control software for large scale robotic deployments (manufacturing, ASRS, food prep...)

Derik Pridmore CEO

Led DeepMind Series A Investor - Founders Fund Founder - Arda Capital Physics & CS - MIT

Michael Kahane CTO

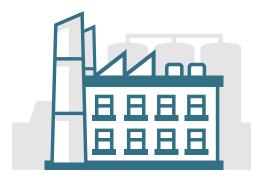
Serial Entrepreneur

Senior Engineer - Samsung

Elite R&D Unit - IDF

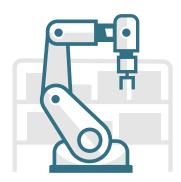
CS, EE - Ben Gurion

OSARO OVERVIEW



Product Edge-deployed perception and control <u>software</u>.

First use case is automating piece picking in warehouses at scale.



Business Model

We sell software and have a SaaS model. We have per robot recurring revenue.

OSARO 6

Distribution Strategy

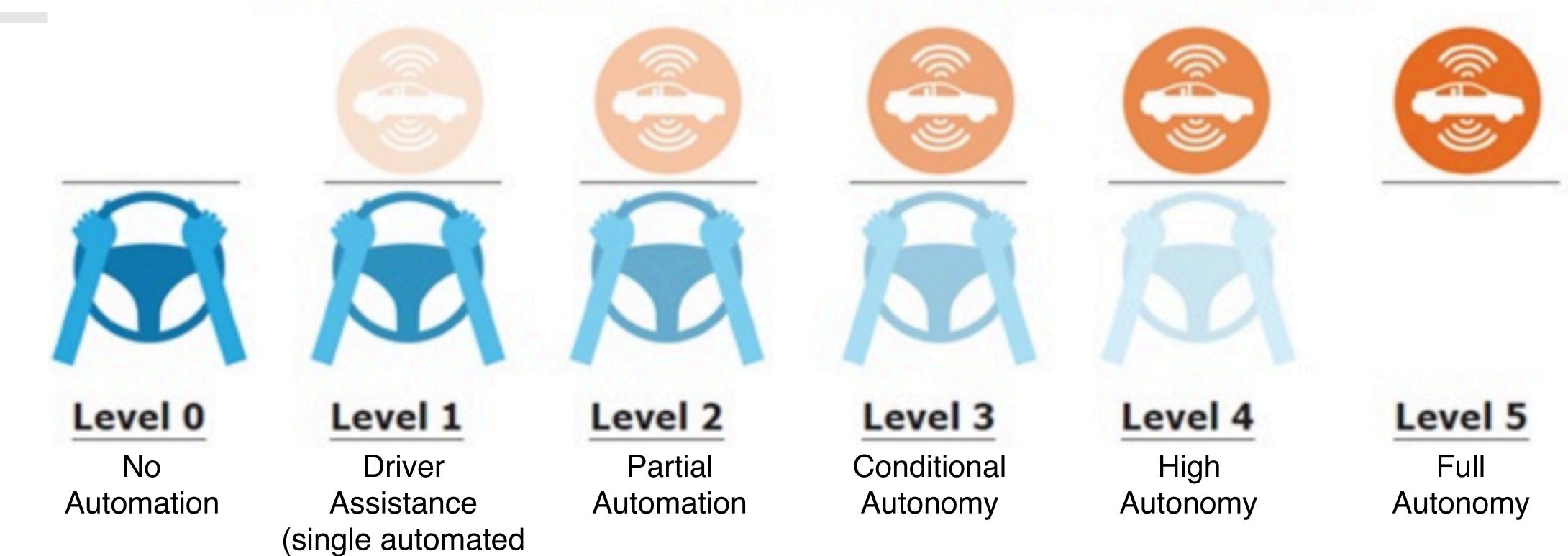
We distribute our software via system integrators.

Traction

We are working with 45% of our target market (materials handling integrators) and 6 top robotics companies.

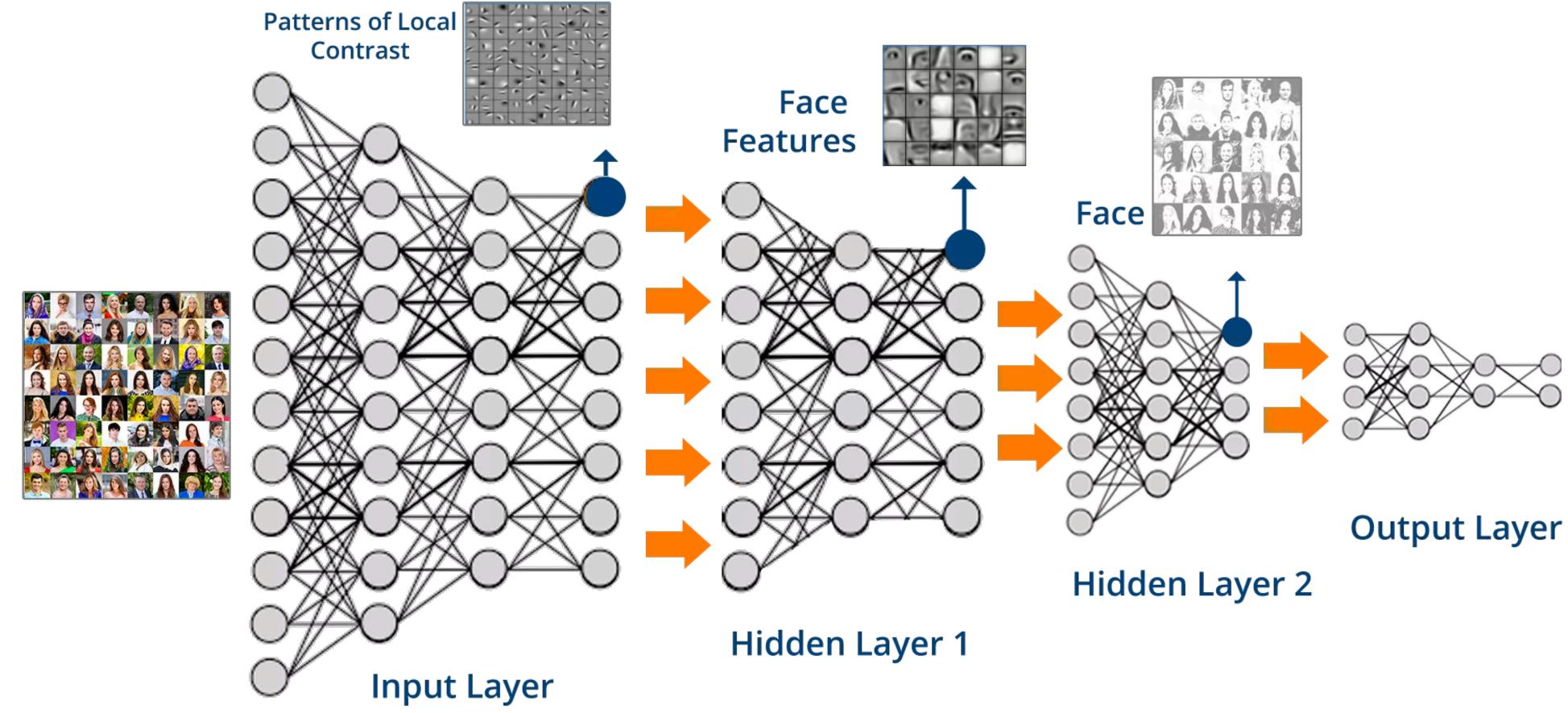
ROBOT EVOLUTION: from automation (hard-programmed) to true autonomy (self-directed) **FROM AUTOMATION TO AUTONOMY**

operation)



OSARO | 7

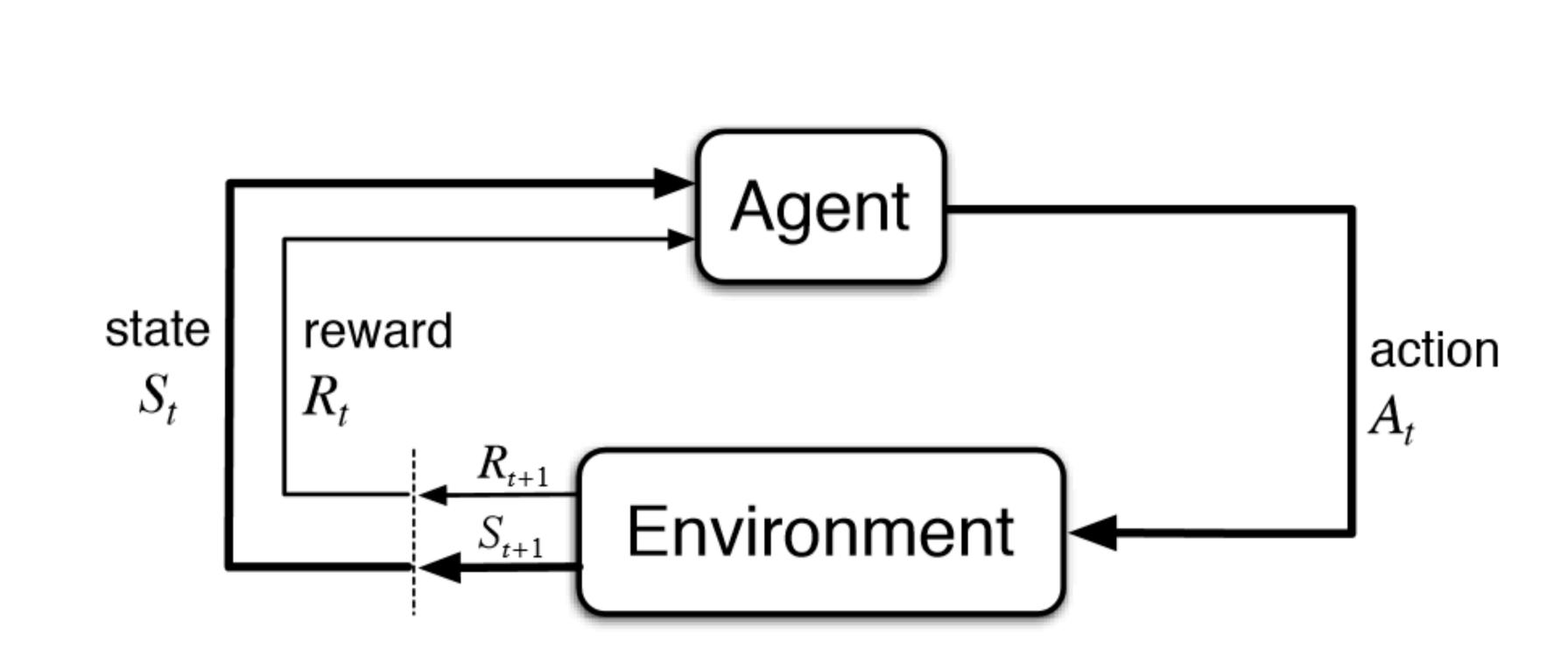
DEEP NETWORKS LEARN REPRESENTATIONS



(Image from: https://cdn.edureka.co/blog/wp-content/uploads/2017/05/Deep-Neural-Network-What-is-Deep-Learning-Edureka.png)

OSARO | 8

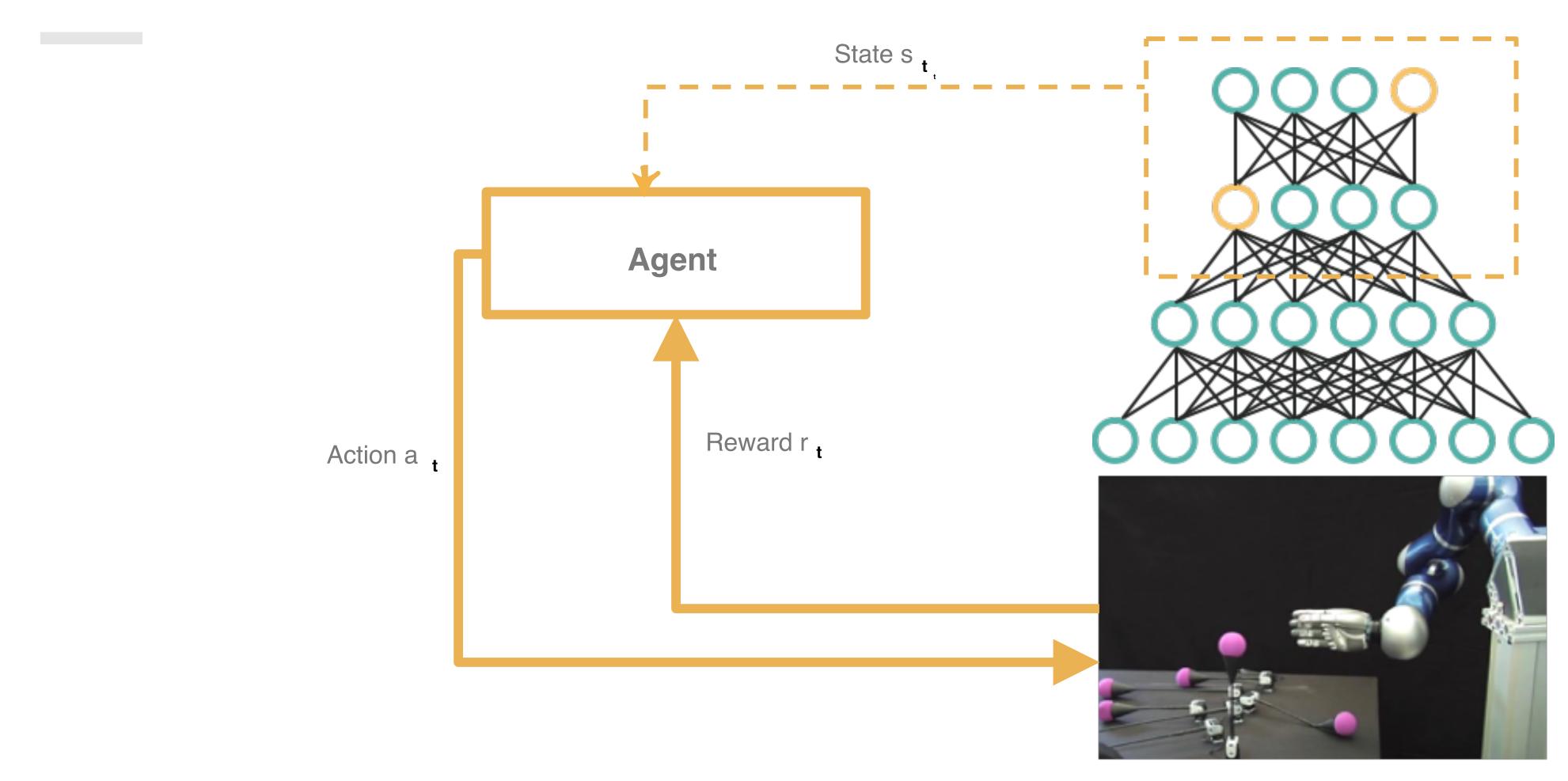
REINFORCEMENT LEARNING: maximizing the long term return **LEARNS CONTROL POLICIES**



OSARO | 9

(Image from: Towards Data Science)

DEEP REINFORCEMENT LEARNING **COMBINES THESE TWO APPROACHES**



OSARO 10

WHY IS IT IMPORTANT?

- Moving away from programming robots
- Addressing questions that are "hard to describe to computers"
- Handling variabilities and react to changes (dexterity, flexibility)
- Learning at scale (connected robots/cloud)

AI FOR INDUSTRIAL ROBOTS | WWW.OSARO.COM | CONFIDENTIAL

PICKING -**IN THE REAL WORLD**

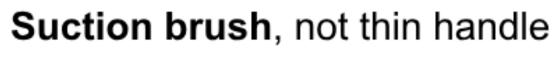
Why is it necessary?

Today's problems have too much variability Millions of products (Clear, Reflective, Flexible, Varying Surfaces) **Examples from e-commerce:**

OSARO | 12

MACHINE LEARNING -**HELPS RECOGNIZE AND HANDLE CHALLENGING ITEMS**

Why is it necessary?



Avoid pump, **aim for body**

OSARO | 13

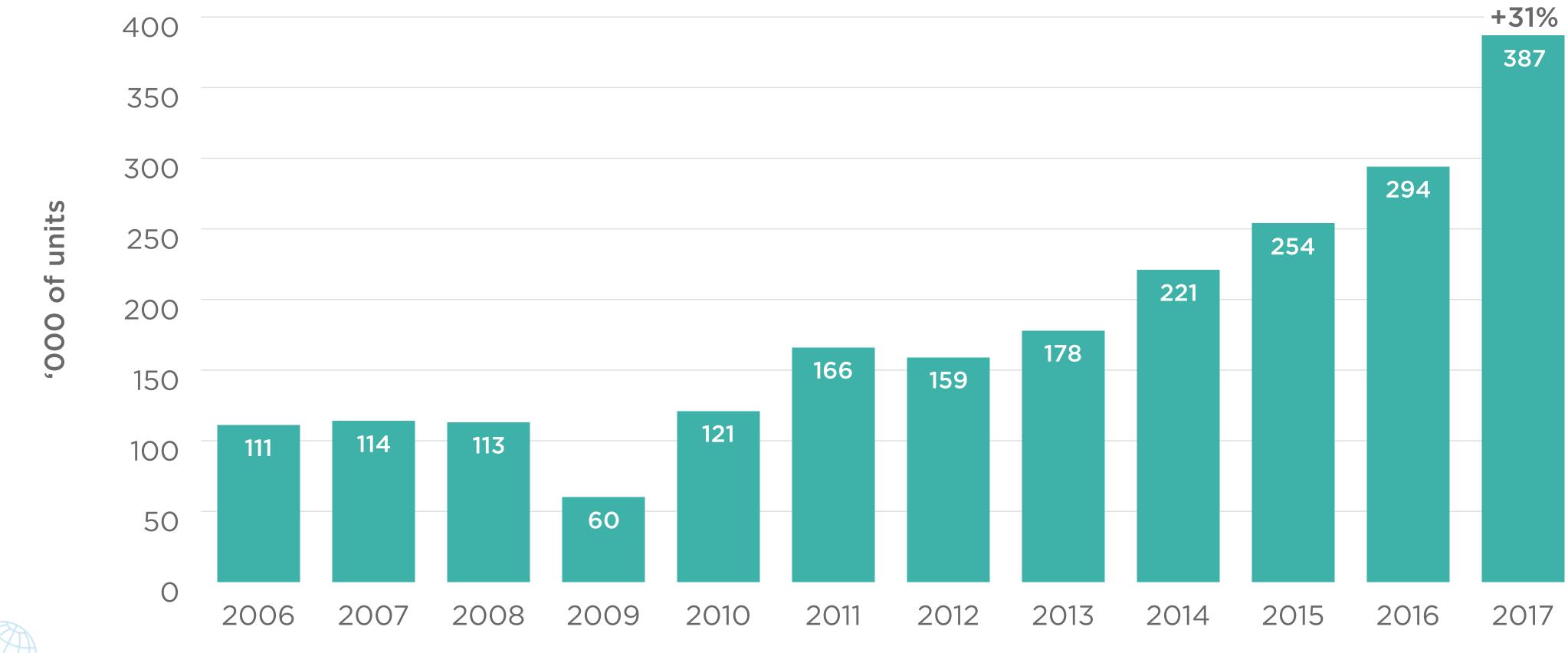
Don't get fooled by **reflections**

Pick **clear box**, not what's inside

Target label, not gloves

Avoid contour, pick flat parts

WHY NOW? **ROBOT SALES SKYROCKETING**



Billions of robots in the future means 30% growth for 80 years

IFR International Federation of Ropotics

OSARO | 14

2017: robot sales increase 30%, record growth of industrial robots

WHY NOW? **FALLING ROBOT** PRICES

Robot production increased; costs go down

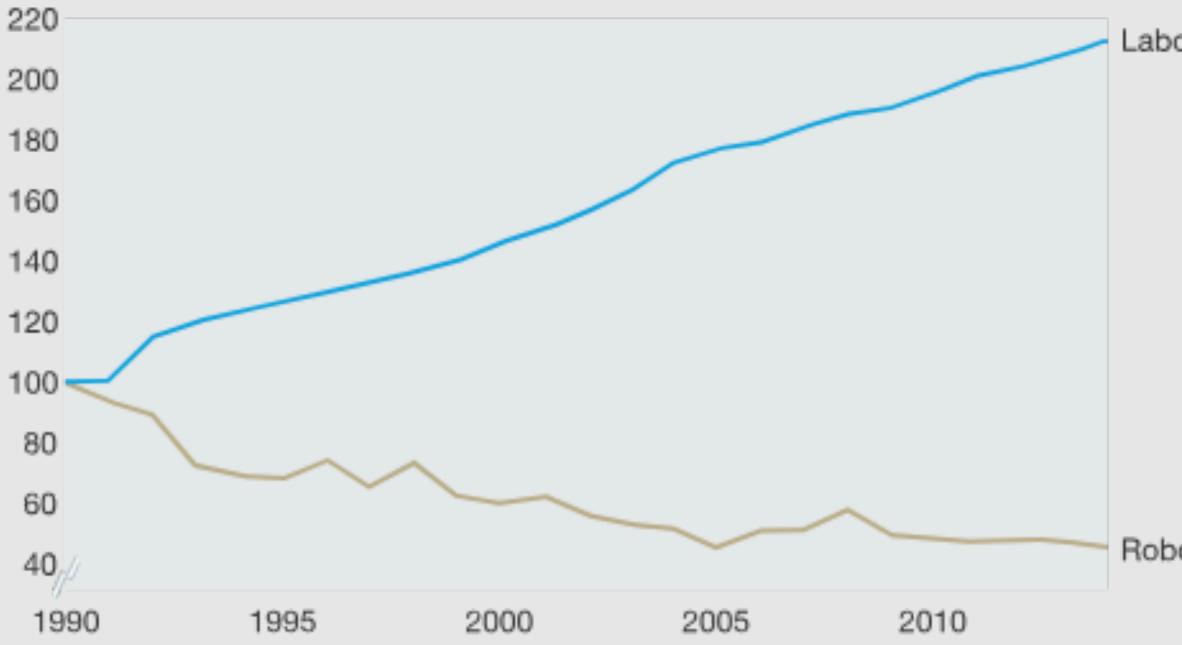
Robot price fell by half over the past 30 years

Demand from emerging economies

Robot prices have fallen in comparison with labor costs.

Cost of automation

Index of average robot prices and labor compensation in manufacturing in United States, 1990 = 100%



Source: Economist Intelligence Unit; IMB; Institut für Arbeitsmarkt- und Berufsforschung; International Robot Federation; US Social Security data; McKinsey analysis

McKinsey&Company

Labor costs

Robot prices

WHY NOW? GLOBAL PROBLEM: SHRINKING LABOR FORCES **NEED AUTOMATION**

Global labor shortages

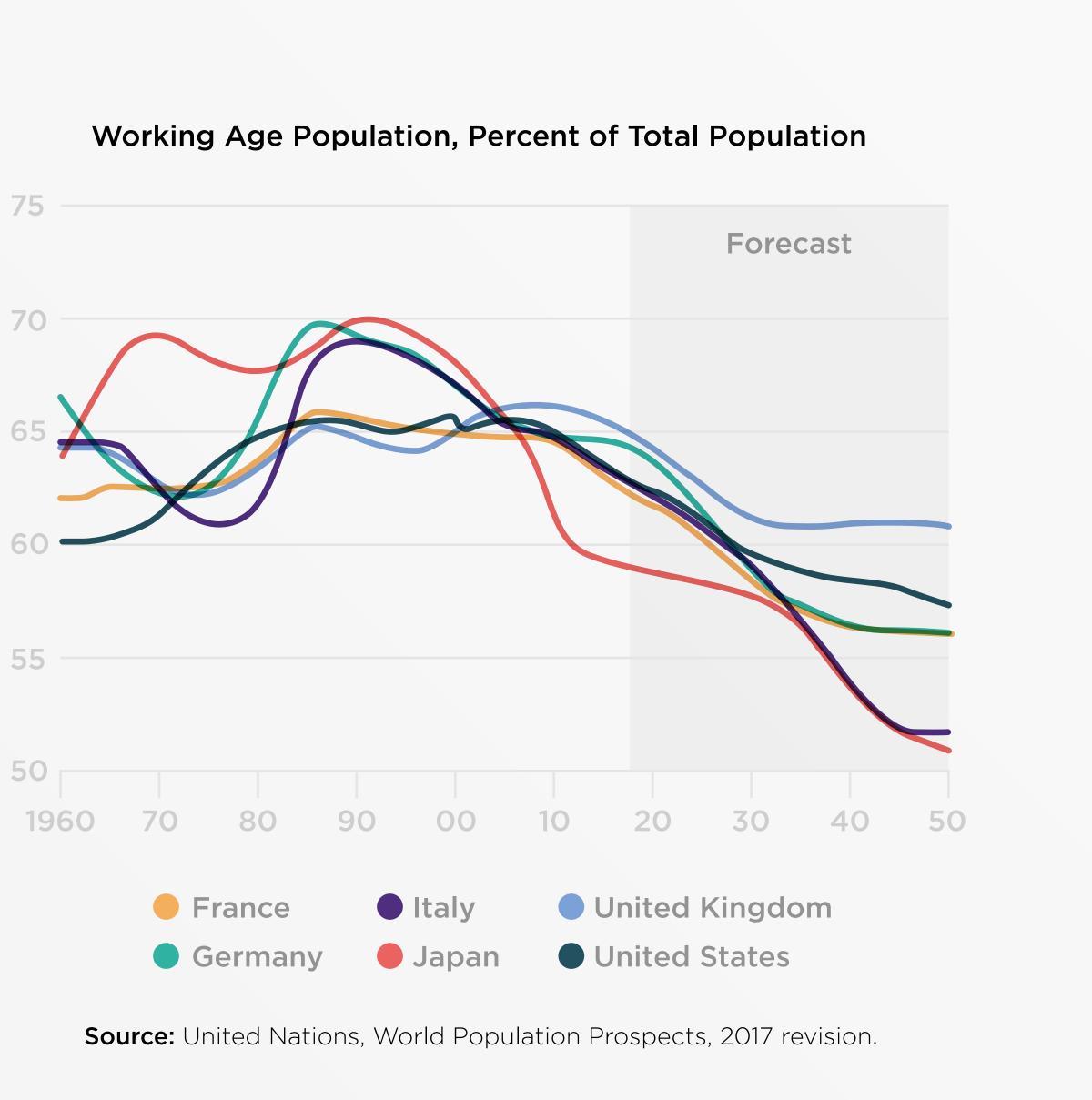
Acute in extremely monotonous jobs

Variability in tasks, difficulty of items

Osaro targets countries with:

- → Declining Labor Force
- → High Labor Costs
- \rightarrow Ex: Japan, Germany, Australia, etc.

Japan's working-age population is set to decline at an even faster pace than the overall population and more swiftly than that of other advanced economies.

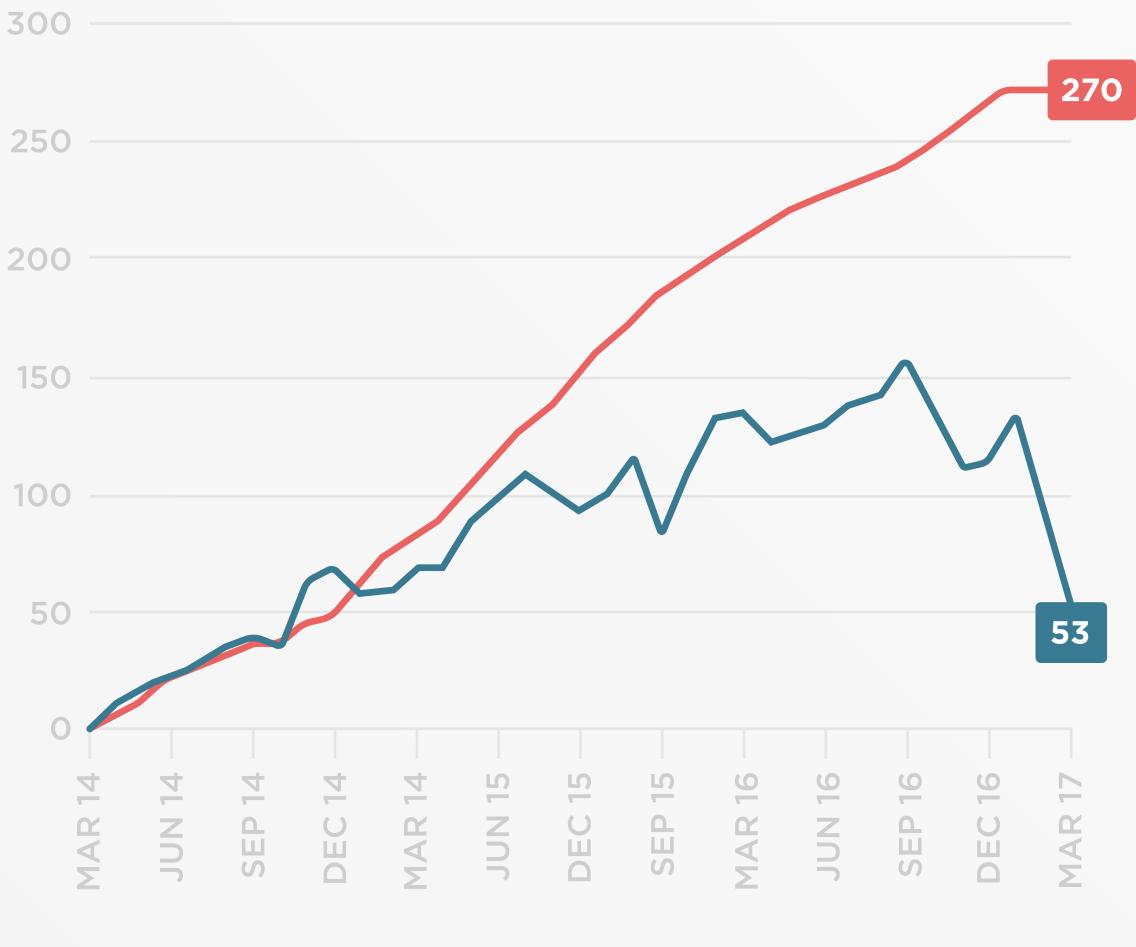


WHY NOW? FOCUSED PROBLEM: **E-COMMERCE FULFILLMENT**

Shortages are Acute in E-commerce

Warehouse picking jobs:

- \rightarrow Costly
- \rightarrow Hard to Fill and Retain
- → Highly Repetitive



Change of Jobs Since March 2014 (thousands)

Data: BLS, Center for Emerging Employment (PPI)

E-Commerce (Including Fulfillment Centers)

General Retail

CASE STUDY WAREHOUSE PIECE PICKING

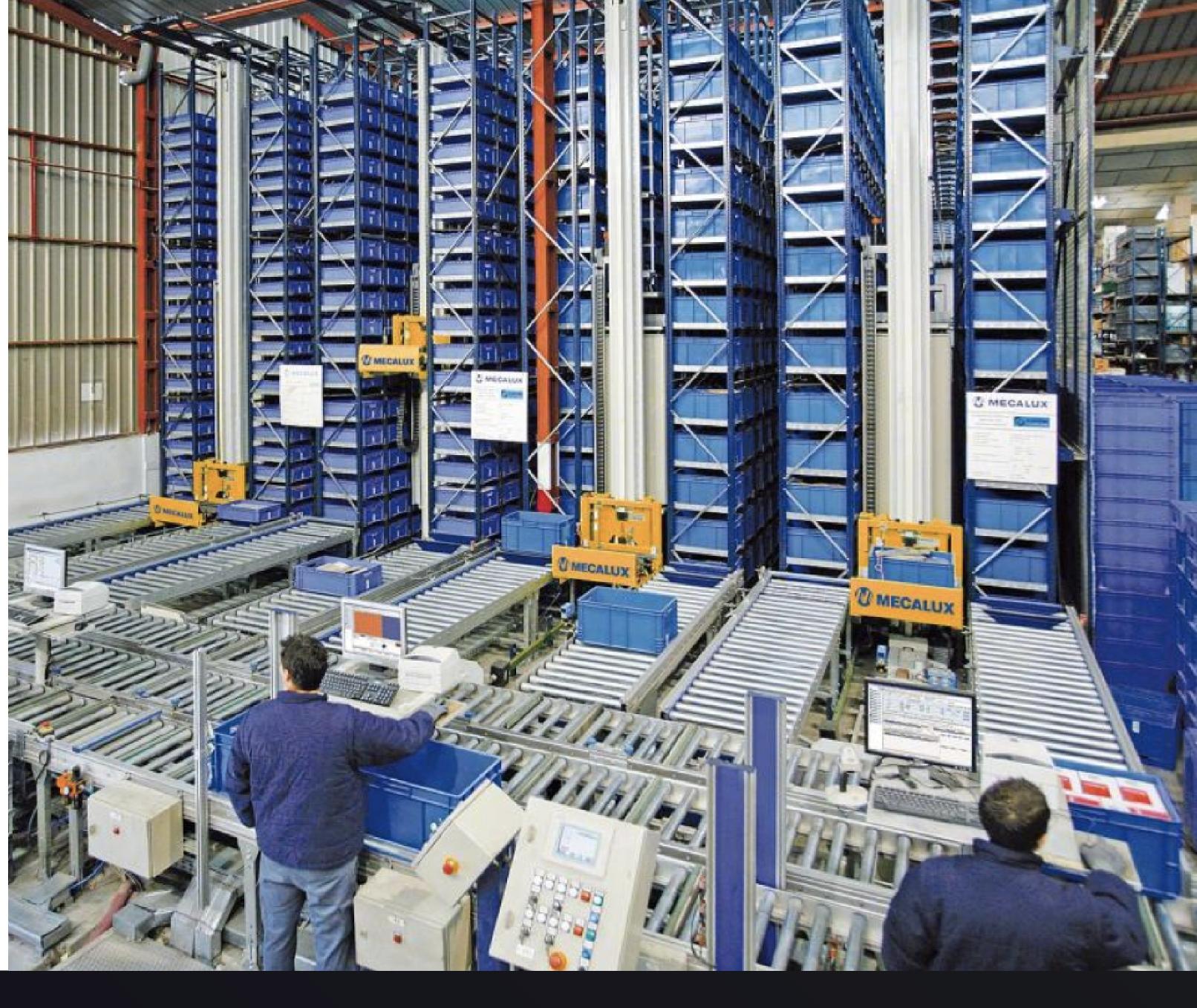
Picking: a mind is a terrible thing to waste

"Employee turnover rates currently stand at 13.7% for distribution, warehouse and manufacturing functions."

"U.S. businesses lose \$11 billion annually due to employee turnover."

"As many as half of all hourly workers leave new jobs within the first 120 days."

"Direct costs to replace an employee can reach as high as 50% to 60% of an employee's annual salary.



OSARO | 18

WAREHOUSE PIECE PICKING (LEVEL 4 AUTONOMY)

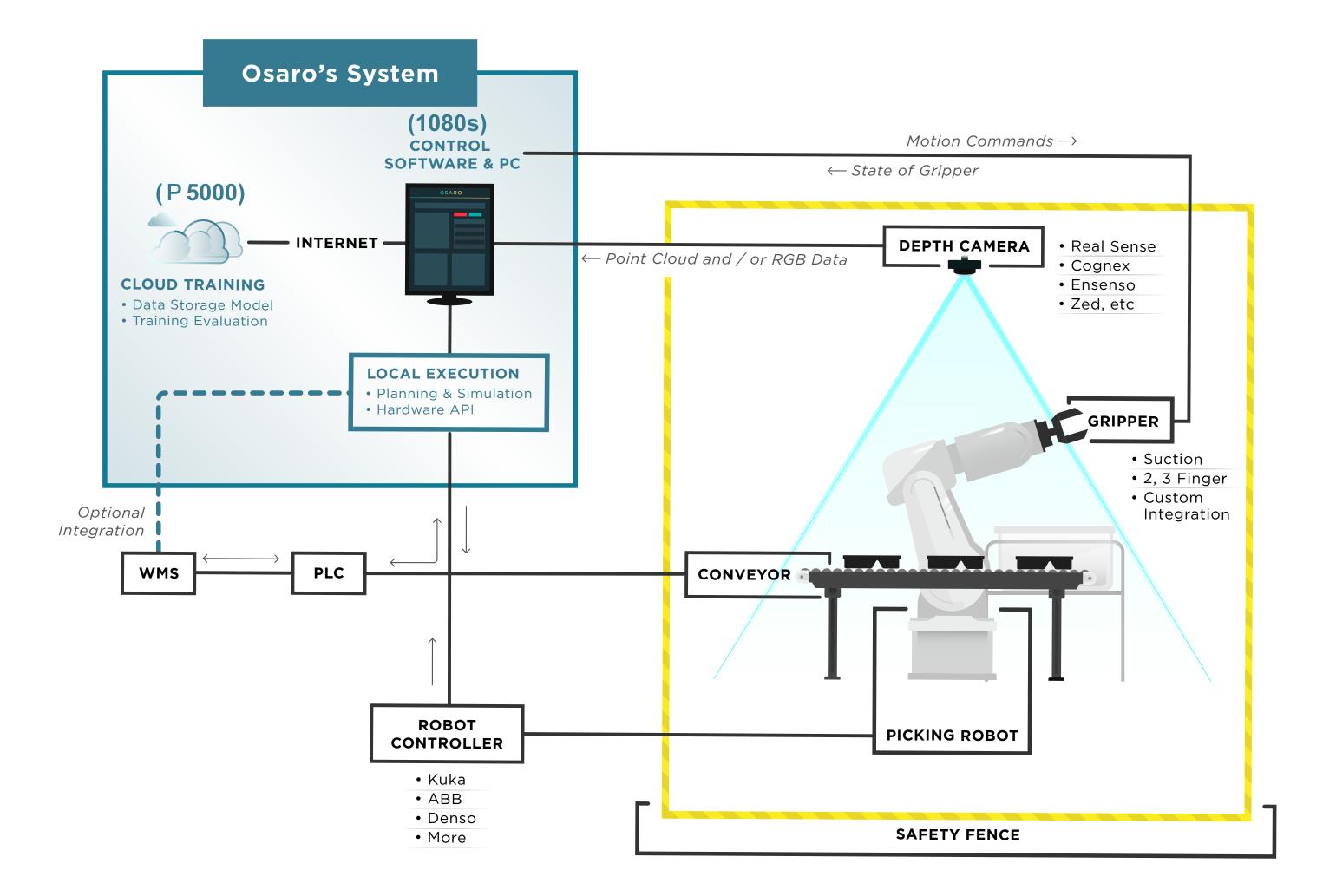
OSARO | 19

OSARO AUTOMATES PICKING AND PLACING TASKS (ASRS)

OsaroPick automates stationary picking stations in "goods to person" distribution centers.

This is done by integrating with automated storage and retrieval systems (ASRS) for Level-4 automation (no human in the loop).

OSARO: **SCALABLE SOFTWARE-BASED PICKING SOLUTION**



OSARO | 21

MACHINE LEARNING WHAT, WHY, AND HOW

How is it applied? Idealized process:

- Collect Data
- "Train a model"
- Test its accuracy, generalization
- Repeat

PICKING EVALUTION

OSARO

ROBOT	UR		ACCURACY HEATMAP
ITEM TYPE	Misc Items	Product	SUCCESSFUL PICKS ERRORS
# OF ITEMS	7		
START TIME	2018-08-17	00:44:46	
CCURACY			
BINS CLEARED		42.7%	
PICK ATTEMPT	s, 8 Success	es 42.7%	
	ESSFUL ATTEM	PTS 94 69.6%	
	D ATTEMPTS	34 25.2%	
	RS (ESTIMATED		
TOTAL PICK A		135	
	REAKDOWN -		
SUCCESSFUL	. 1 st PICKS	75 69.6%	PICK TIME BREAKDOWN
SUCCESSFUL	N TH PICKS	19 18.1%	
TOTAL SUCCE	ESSFUL PICKS	94 89.5%	BIN LOCALIZATION -
TOTAL OBJEC	CTS LEFT BEHI	ND 30 28.6%	OBJECT LOCALIZATION -
TOTAL ERRO	RS ESTIMATED	7 89.5%	TRACJECTORY PLANNING -
TOTAL PICKA	BLE PRODUCT	IS 105 89.5%	MOVE TO GRASP
			GRASP-
FFICIENCY		13.1s	MOVE TO PLACE
AVERAGE TA		4.6 items/min (274.7 items/hr)	0 1 2 3 4
TOTAL EVALU		21.1 min	
	SPEE	D DISTRUBITION	
40			
20 HCKS			
HO #			
	5	10 15 20 25	
		PICK TIME (SEC.)	
			ENTIAL © 2018 OSARO INC

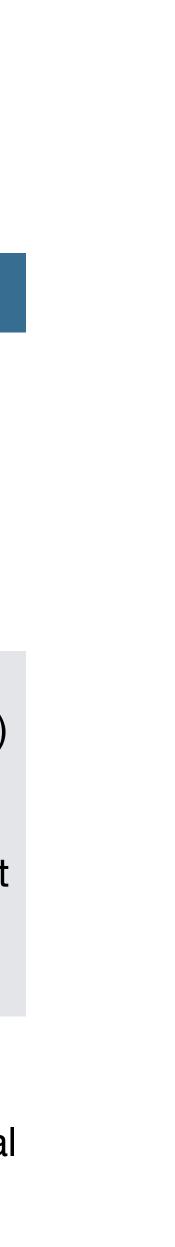
 \blacksquare

MACHINE LEARNING RESEARCH AREAS **DEEP LEARNING, MOTION PLANNING, SIMULATION**

	What is it?	Why use it?	Issues
Deep Learning	Deep learning methods exploit the unknown structure in the data distribution to discover rich representations using deep neural networks.	 Powerful in supervised learning problems Success across a wide range of problems without domain understanding for feature introspection 	 Large amount of labled data Current success mostly in supervised learning problems Interpretability High end infrastructure
Motion Planning	A technique to determine a path between two given points, provided the kinematic and dynamic limits of the robot and the kinematic constraints of the environment. Sampling, Gradient/Optimization based; Learning from experience; imitation learning - motion planner learn initial policy	 Powerful in supervised learning problems Success across a wide range of problems without domain understanding for feature introspection Operate the robot optimally in terms of speed, accuracy and smoothness while avoiding obstacles in the environment. Safe/collision free robot path tial policy planning Data efficient Less expensive/dangerous 	 Optimization can be time consuming (tradeoff pick time) Optimal planning is NP-hard Curse of dimensionality Sensitive to fast environment changes
Simulation	Sim to Real. Data augmentation, Synthetic Data - Use realistic simulated data Domain Randomization (learn tasks and model arbitrary changes)	 Less expensive/dangerous Faster/more scalable 	 Requires an accurate model of the problem Simulation to real is not trivial

		What is it?	Why use it?	Issues
	Deep Learning	Deep learning methods exploit the unknown structure in the data distribution to discover rich representations using deep neural networks.	 Powerful in supervised learning problems Success across a wide range of problems without domain understanding for feature introspection 	 Large amount of labled data Current success mostly in supervised learning problems Interpretability High end infrastructure
	Motion Planning	A technique to determine a path between two given points, provided the kinematic and dynamic limits of the robot and the kinematic constraints of the environment. Sampling, Gradient/Optimization based; Learning from experience; imitation learning - motion planner learn initial policy	 Operate the robot optimally in terms of speed, accuracy and smoothness while avoiding obstacles in the environment. Safe/collision free robot path planning 	 Optimization can be time consuming (tradeoff pick time) Optimal planning is NP-hard Curse of dimensionality Sensitive to fast environment changes
	Simulation	Sim to Real. Data augmentation, Synthetic Data - Use realistic simulated data Domain Randomization (learn tasks and model arbitrary changes)	 Data efficient Less expensive/dangerous Faster/more scalable Easier to label 	 Requires an accurate model of the problem Simulation to real is not trivial

OSARO 23



MACHINE LEARNING **REINFORCEMENT LEARNING**

What is it?

Why use it?

Class of algorithms that aim to solve the sequential decision making problems.

- Minimal supervision - Autonomously learns by interacting with the environment

OSARO | 24

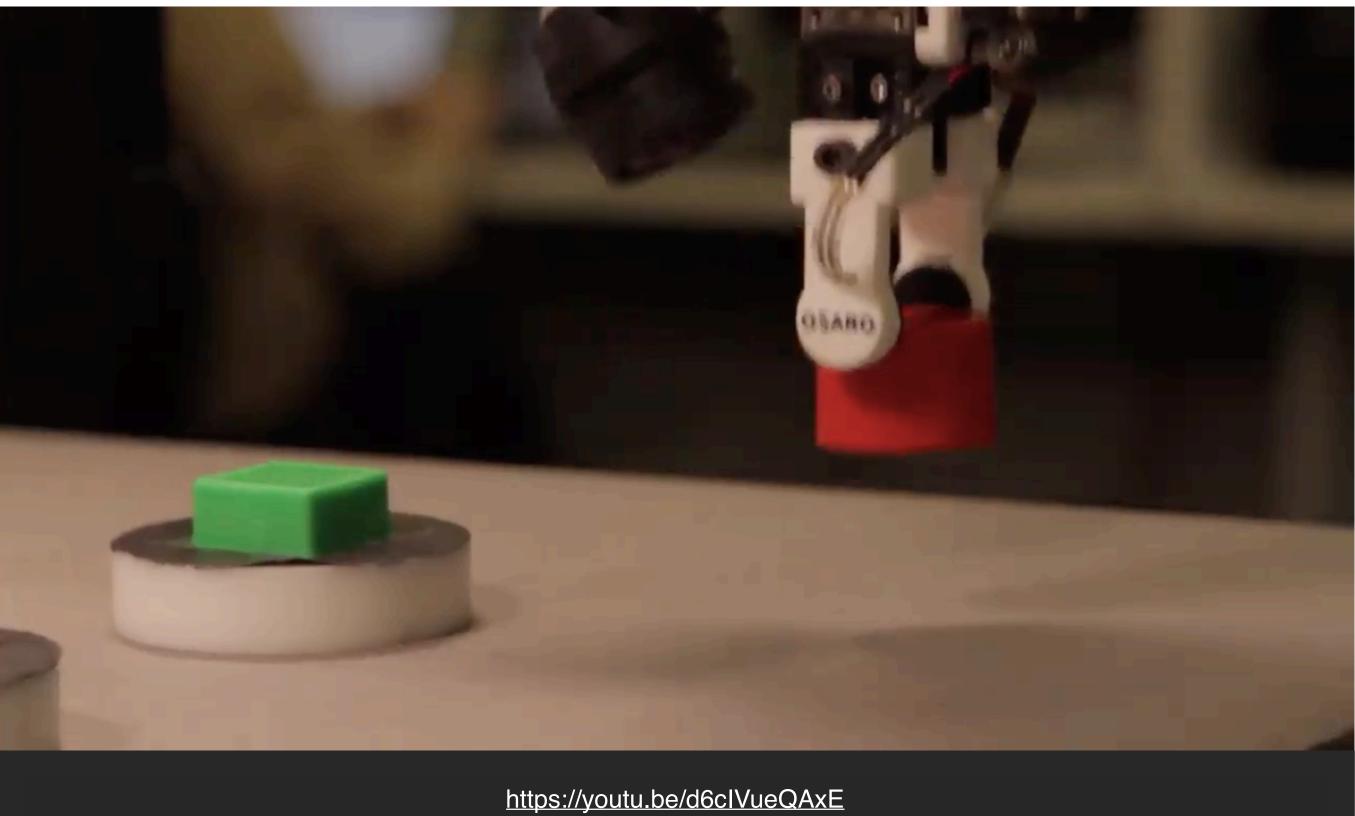
Issues

- Very large sample complexity (expensive and not feasible in real world domains)

- Current success limited mostly to simulated environments such as games

- Stability issues when used simultaneously with representation learning.

OSARO EARLY WORK - MARCH 2016 **IMITATION LEARNING**



OSARO | 25

MACHINE LEARNING **IMITATION LEARNING**

What is it?

Why use it?

Aims at learning control using expert demonstrations, focusing on imitating expert demonstrations.

- Address sample inefficiency and - Compounding error problem an agent prior information about the world through mimicking human behavior. - When reward function is sparse, difficult to specify, or optimize directly

OSARO | 26

Issues

- computational feasibility by giving Requires expert demonstrations (expensive and difficult to collect)
 - Copies the behavior, does not learn the problem objective necessarily
 - Trained policy only as good as demonstration

MACHINE LEARNING **META LEARNING / TRANSFER LEARNING?**

What is it?

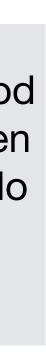
Meta Learning	 Models that can learn new skills or adapt to new environments rapidly with a few training examples. Early approaches: Automatically fine tune hyper parameters (learning algorithm) Now: Learning to learn Meta learner (agent) and Learner (model): common feature representations of tasks 	 The ability to quickly adapt to new unseen tasks Scalability Sample efficiency 	- Complex algorithms - Training time - Careful design of training procedure
Transfer Learning	Broadly defined as using experiences and knowledge from solving one task to another related problem Examples: Pre-trained models, sim-to-real	Many tasks share a similar underlying structure/ representation	 Theoretically less understood Negative transfer issue when source and target domains do not overlap much Measure transferability

Meta Learning	 Models that can learn new skills or adapt to new environments rapidly with a few training examples. Early approaches: Automatically fine tune hyper parameters (learning algorithm) Now: Learning to learn Meta learner (agent) and Learner (model): common feature representations of tasks 	 The ability to quickly adapt to new unseen tasks Scalability Sample efficiency 	 Complex algorithms Training time Careful design of training procedure
Transfer Learning	Broadly defined as using experiences and knowledge from solving one task to another related problem Examples: Pre-trained models, sim-to-real	Many tasks share a similar underlying structure/ representation	 Theoretically less understood Negative transfer issue when source and target domains do not overlap much Measure transferability

OSARO | 27

Why use it?

Issues



MACHINE LEARNING AT SCALE REAL WORLD SENSORS ARE NOISY

- Sensor Considerations
 - Sensors are noisy and fail
 - Real world products confound sensors
 - Training deep neural architectures
 - Semantic segmentation; background

Suction brush, not thin handle

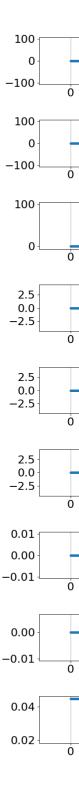
Avoid pump, aim for body

Don't get fooled by reflections

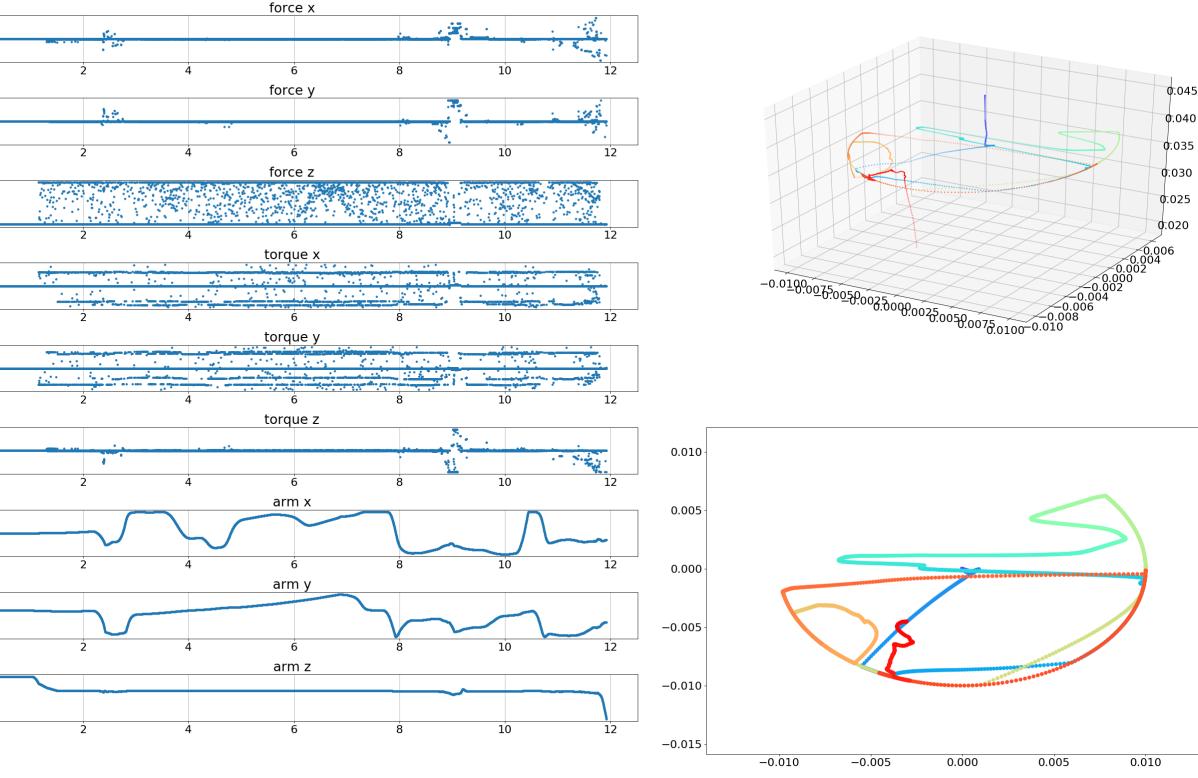
Target label, not gloves

Pick clear box, not what's inside

Avoid contour, pick flat parts



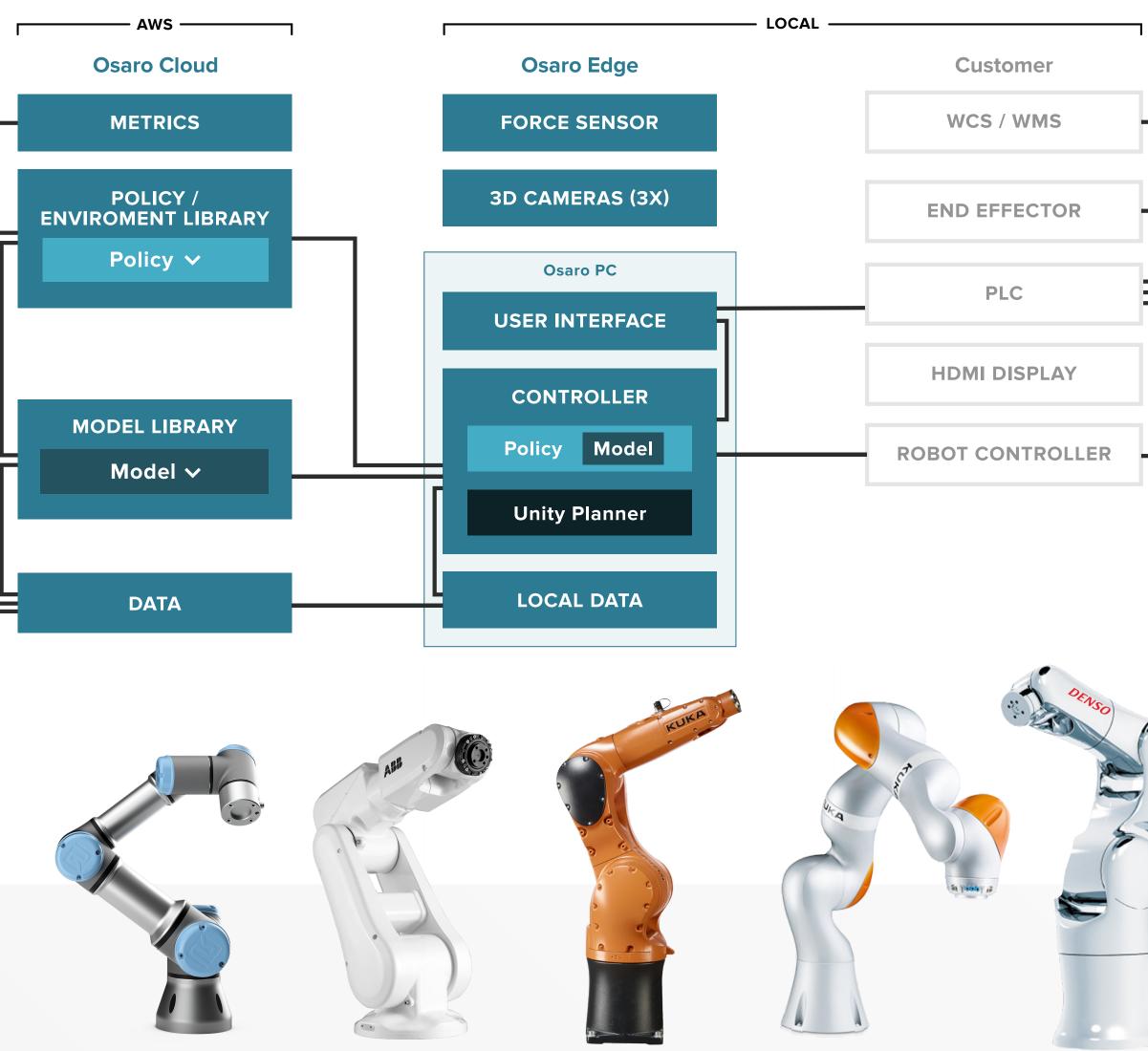
Case2(hard contact)/Person_A/Success



Time

MACHINE LEARNING AT SCALE INTEGRATION AND CONNECTIVITY

- Integrations and connectivity
 - Bandwidth constraints => data sparsity
 - Connectivity constraints => asynchronous
 - Must integrate with surrounding systems
 - Must integrate with commodity hardware



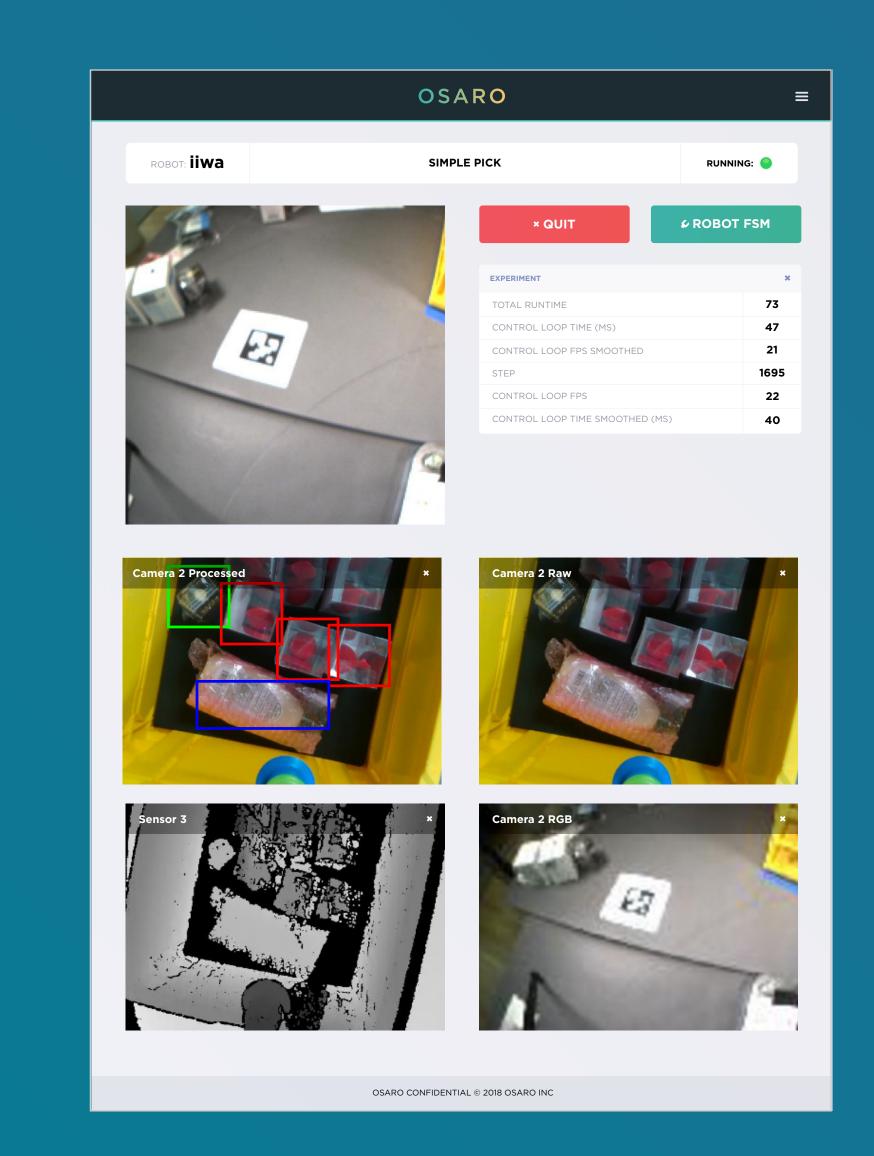
CUSTOMERS WANT FLEXIBILITY

Robots: Kuka, ABB, FANUC, Denso, UR, etc

End effectors: Schmaltz, Schunk, Nitta, etc.

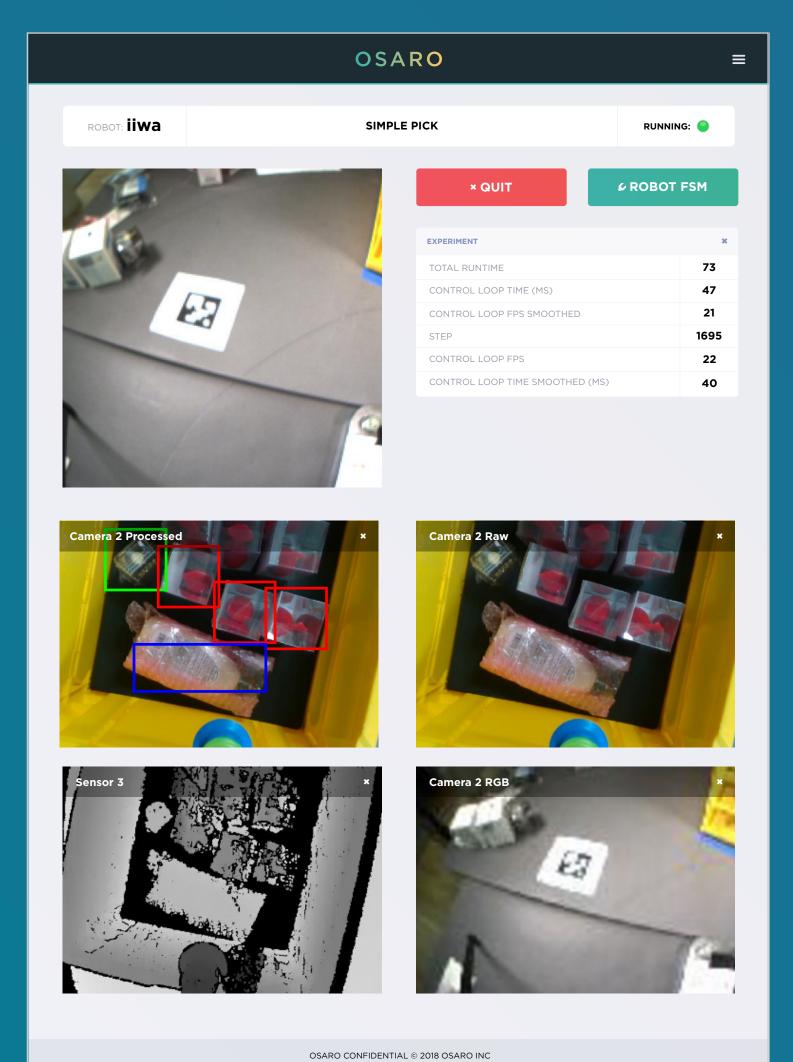
Sensors: Realsense, Pointgrey, etc.

WMS Integrations



MACHINE LEARNING AT SCALE MODEL TRAINING AND EVALUATION

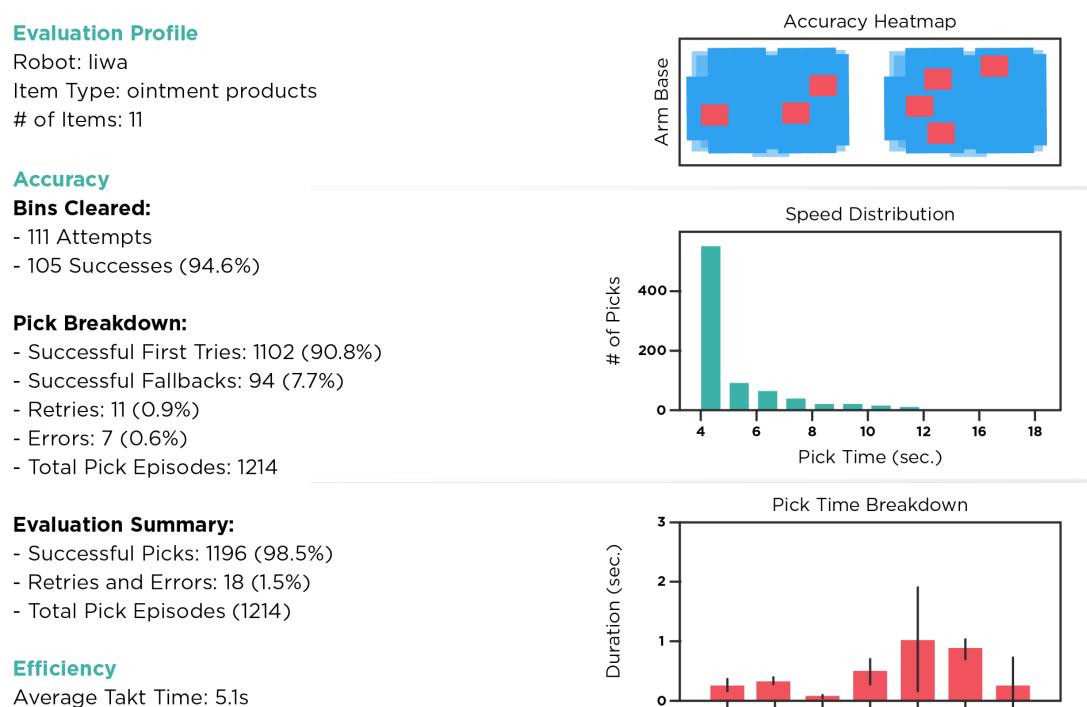
- Model training and evaluation
 - Models must "just work"
 - Training must be quick, continuous
 - Inference must be measurable, interpretable
 - Must be robust to changes



MACHINE LEARNING AT SCALE

METRICS: pick time, accuracy, error, system performance

OSARO PICKING EVALUATION



Average Success Rate: 11.8 items/min (706.1 items/hr) Total Evaluation Time: 103.2mm

OSARO 32

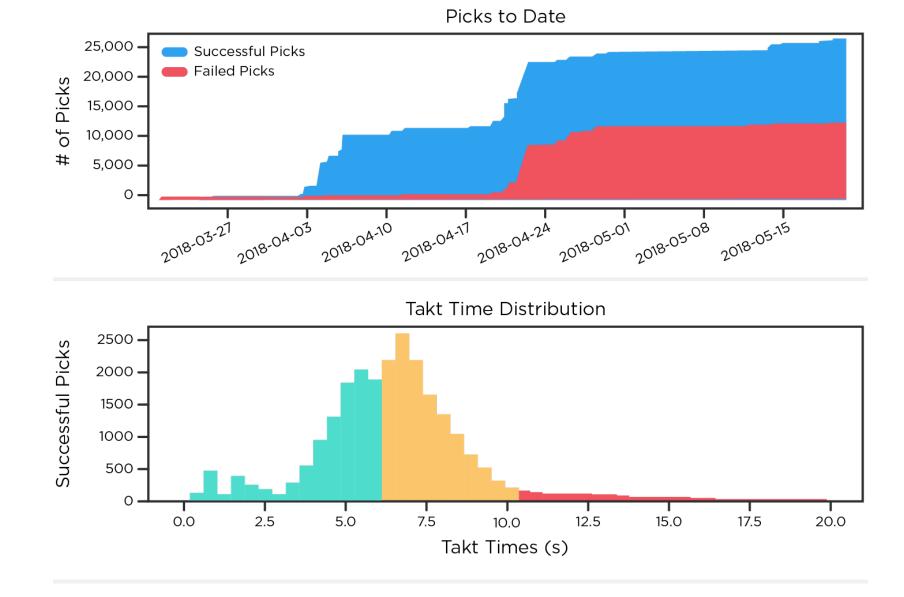
We to Grasp

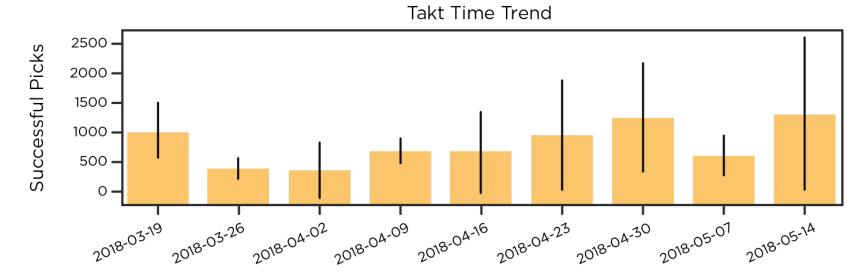
tory plannit.

ectlocalizatic

Grasp

we to Place

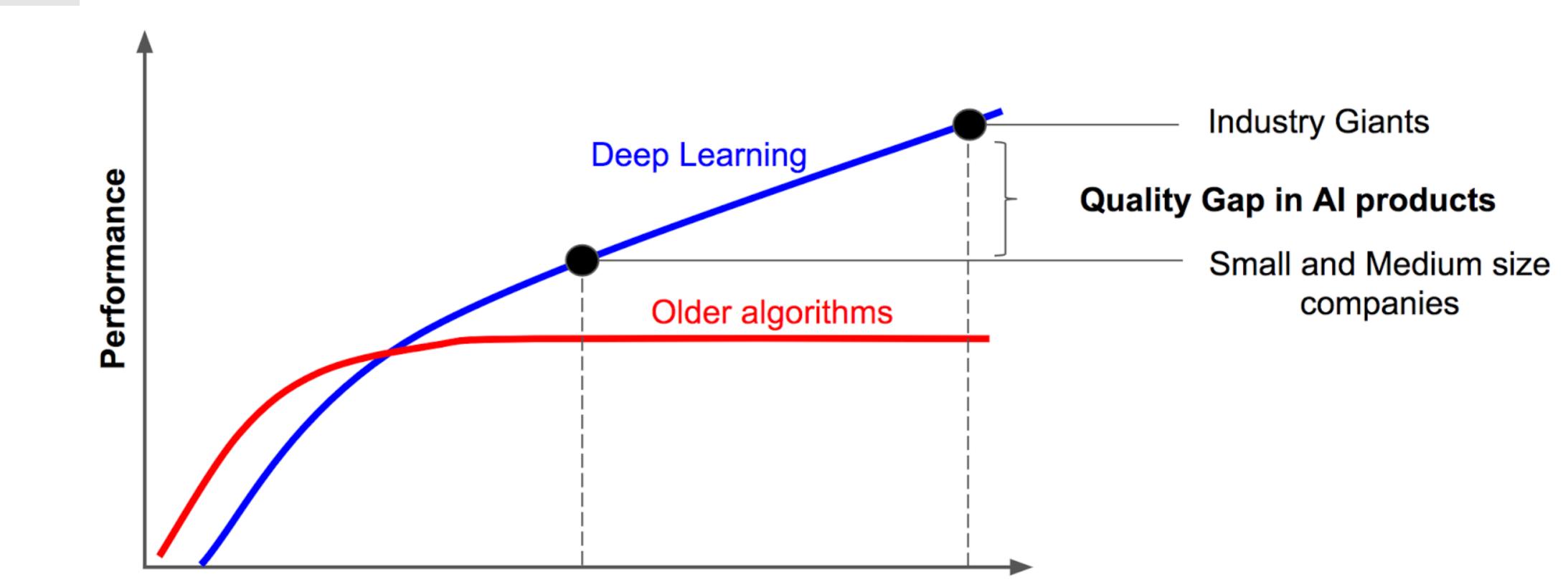




MACHINE LEARNING AT SCALE **UI MATTERS**: simple, intuitive vs. functionality, flexibility

OSARO 33

MACHINE LEARNING AT SCALE **TRAINING DATA**

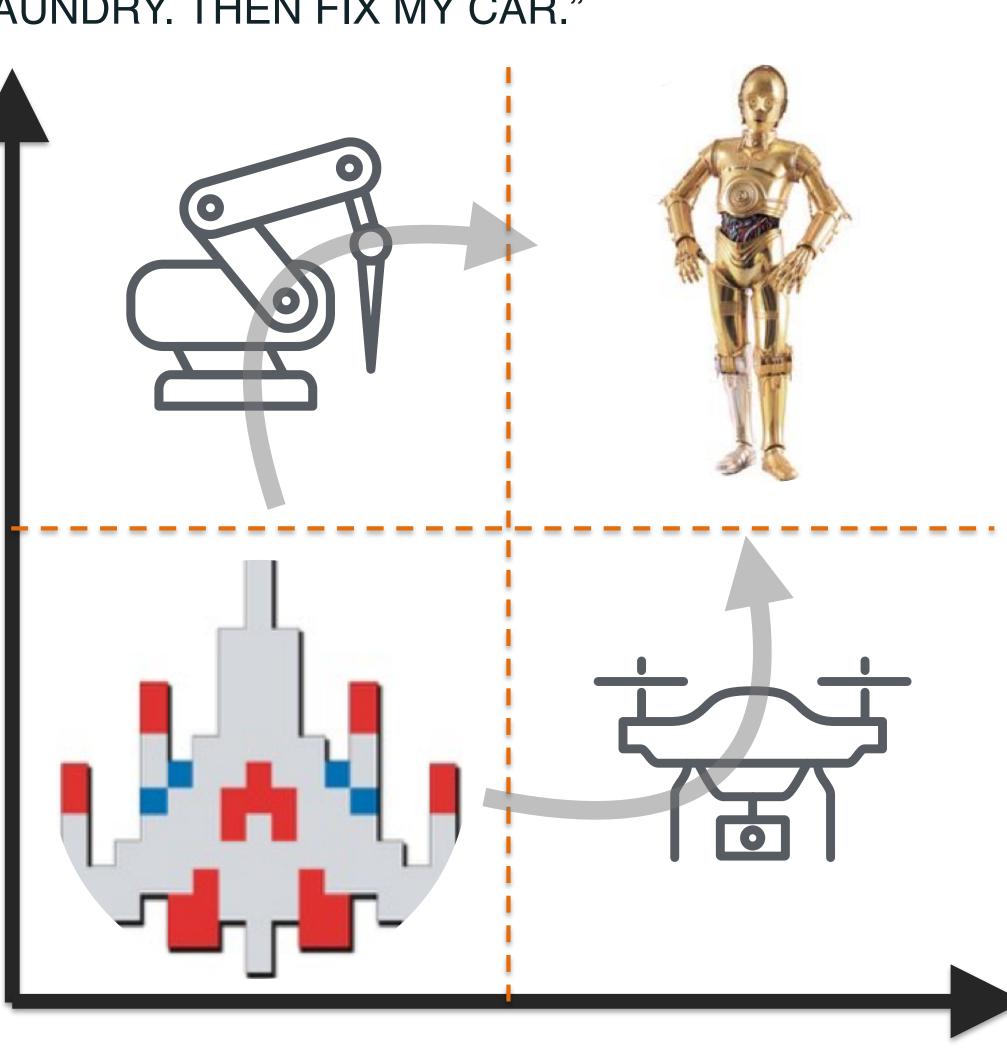


OSARO | 34

.

THE ULTIMATE DREAM: "FOLD MY LAUNDRY. THEN FIX MY CAR." **SCALABILITY & GENERALITY**

Degrees of Freedom / Task Complexity



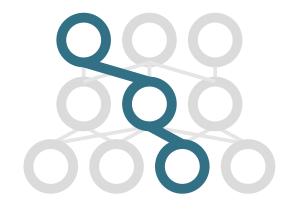
Structured

OSARO | 35

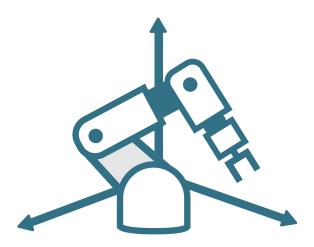
Unstructured

OSARO'S **APPROACH:** Interdisciplinary

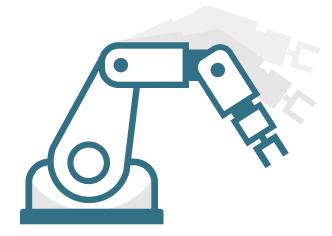
- Designed for tight integration
- Supports commodity hardware and sensors
- Verifiable, provides analytics
- Pipelined approach
- Pragmatic we choose the right tool for the job:



Deep Learning

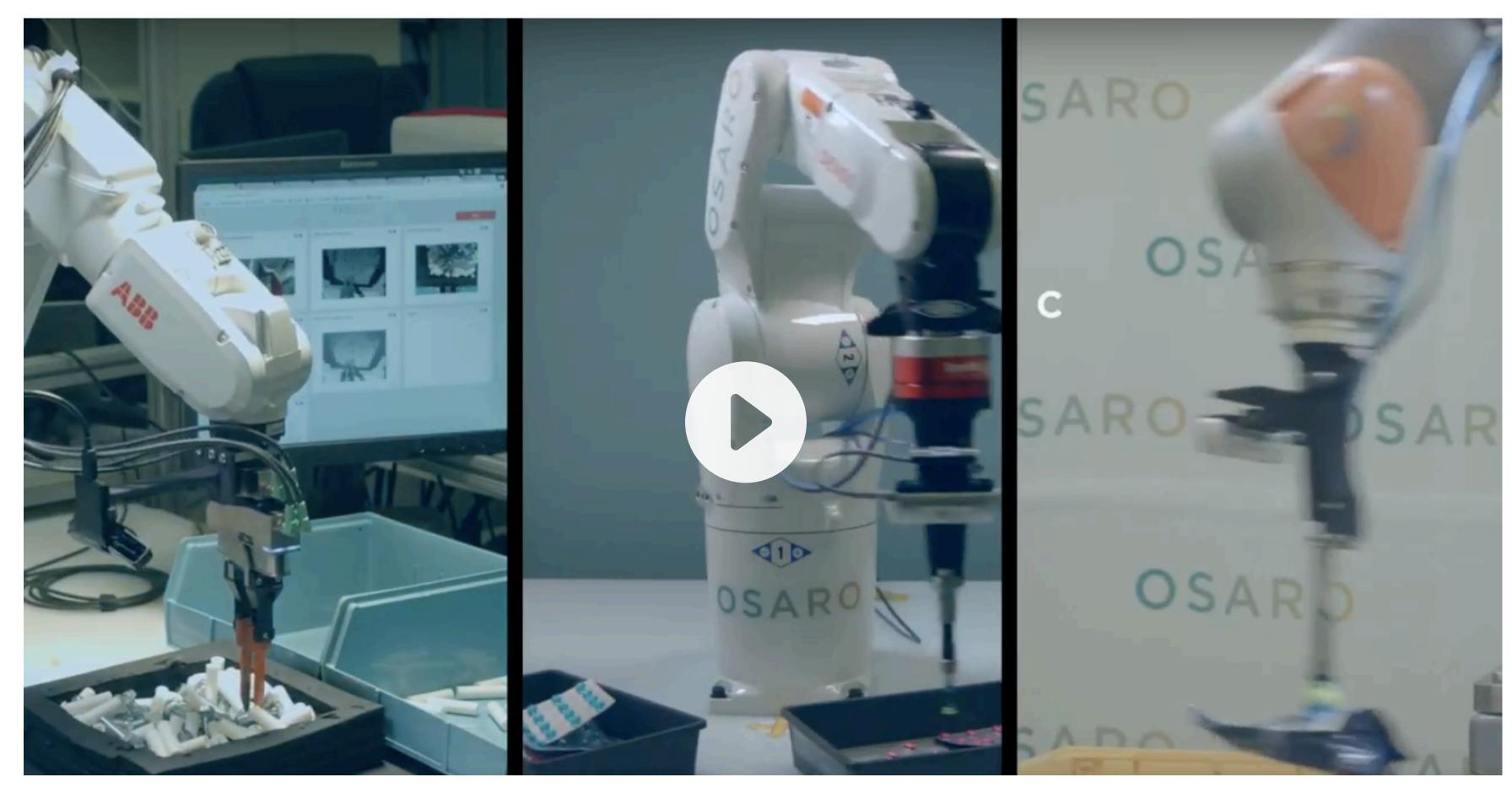


Simulation and Data Augmentation



Classical Robotics, Planning and Control Reinforcement Learning

OSARO'S **APPROACH**



https://www.osaro.com/video

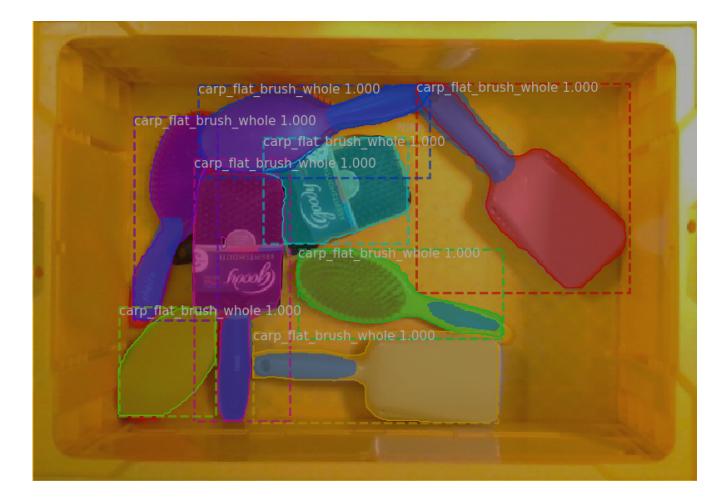
OSARO'S APPROACH

Support a variety of DL based vision models

- Pipelined approach
- Edge optimized
- Data cloud

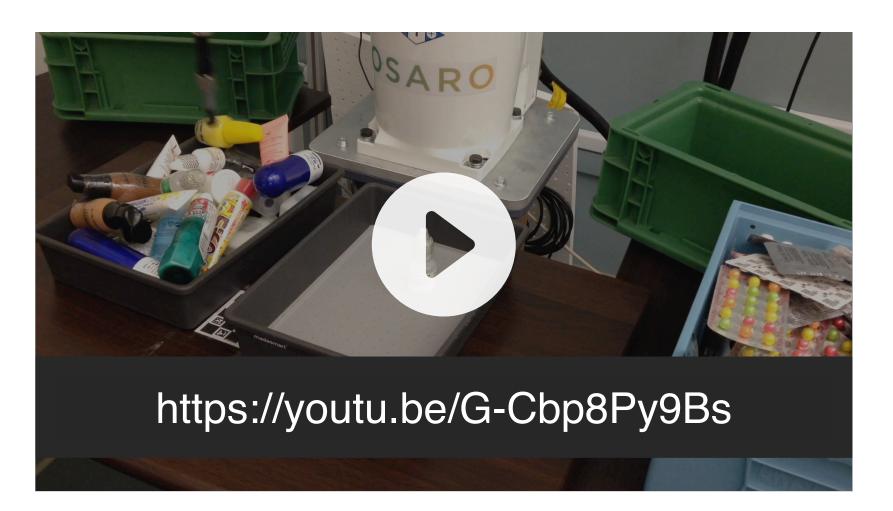
Models Include:

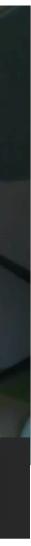
- → Proprietary MASK Algorithm
- → Grasp Affordance Learning
- → Grasp Quality Network
- → Sim to Real Techniques
- → Few-Shot Meta Learner
- → And More...



OSARO | 38

https://youtu.be/Z7bAD-OnU3k





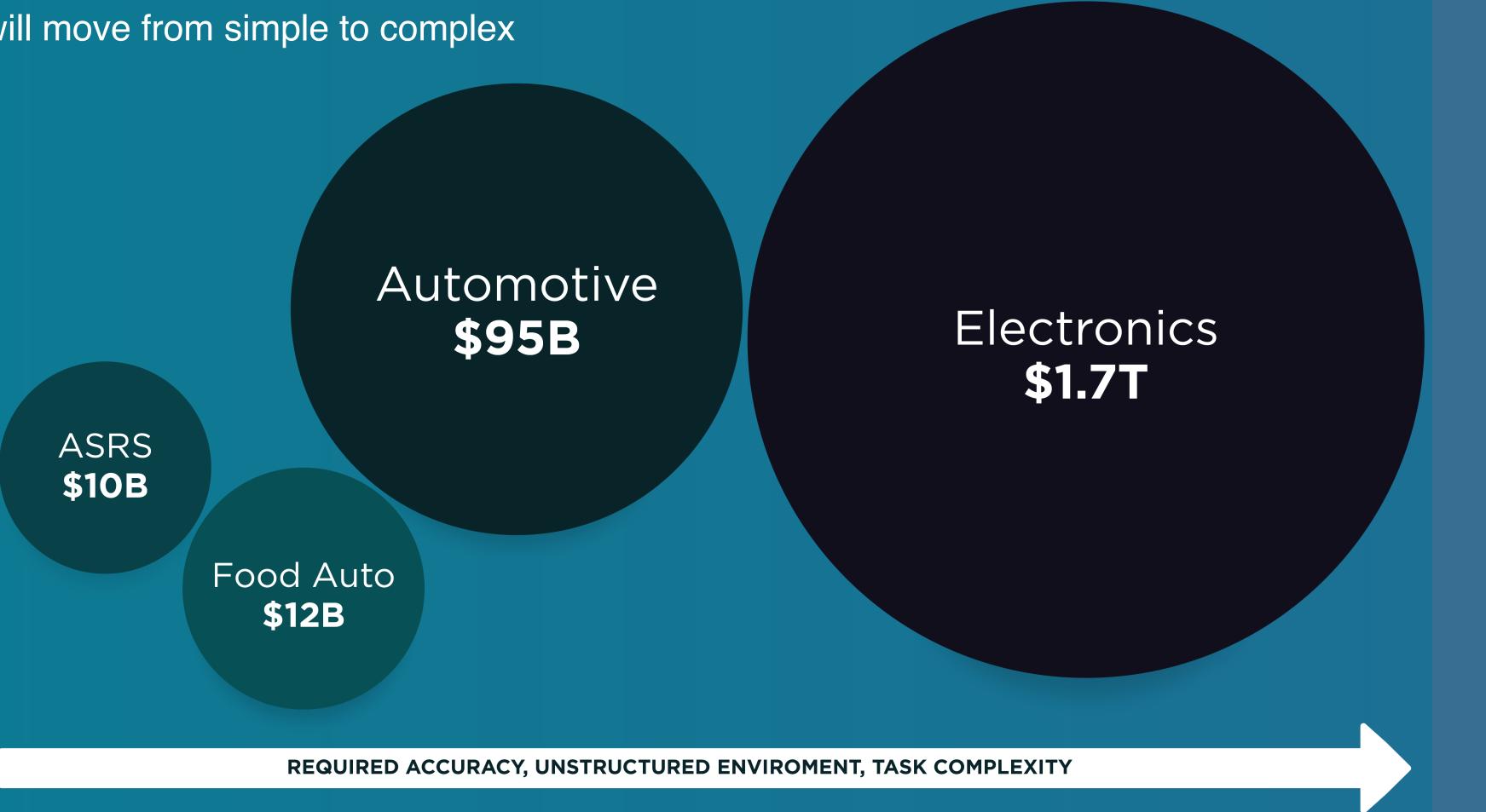
THE FUTURE OF ROBOTIC ML AT SCALE: ADJACENT MARKETS



OSARO | 39

THE FUTURE OF ROBOTIC ML AT SCALE

• Automation will move from simple to complex

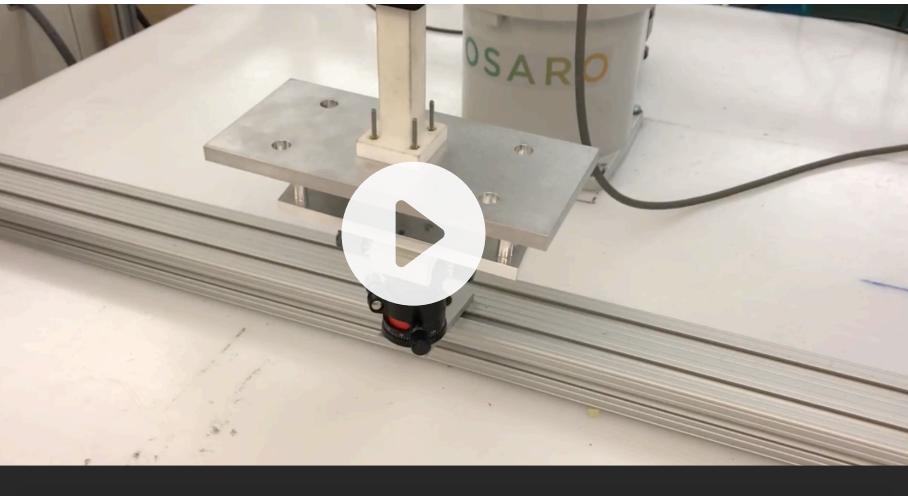


THE FUTURE OF ROBOTIC ML AT SCALE: Force Assembly

Models Include:

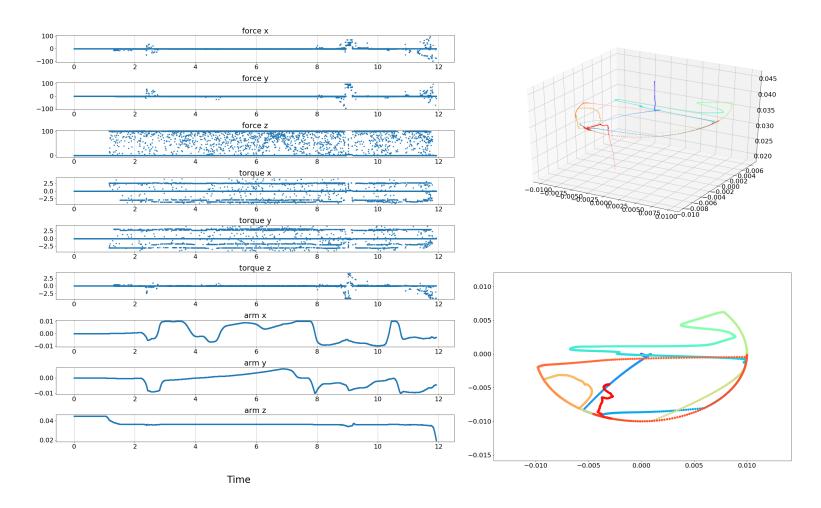
- → Tactile Perception (no vision)
- → Imitation Learning
- → Fit pegs/holes robustly
- \rightarrow Works with off the shelf sensors

OSARO | 41

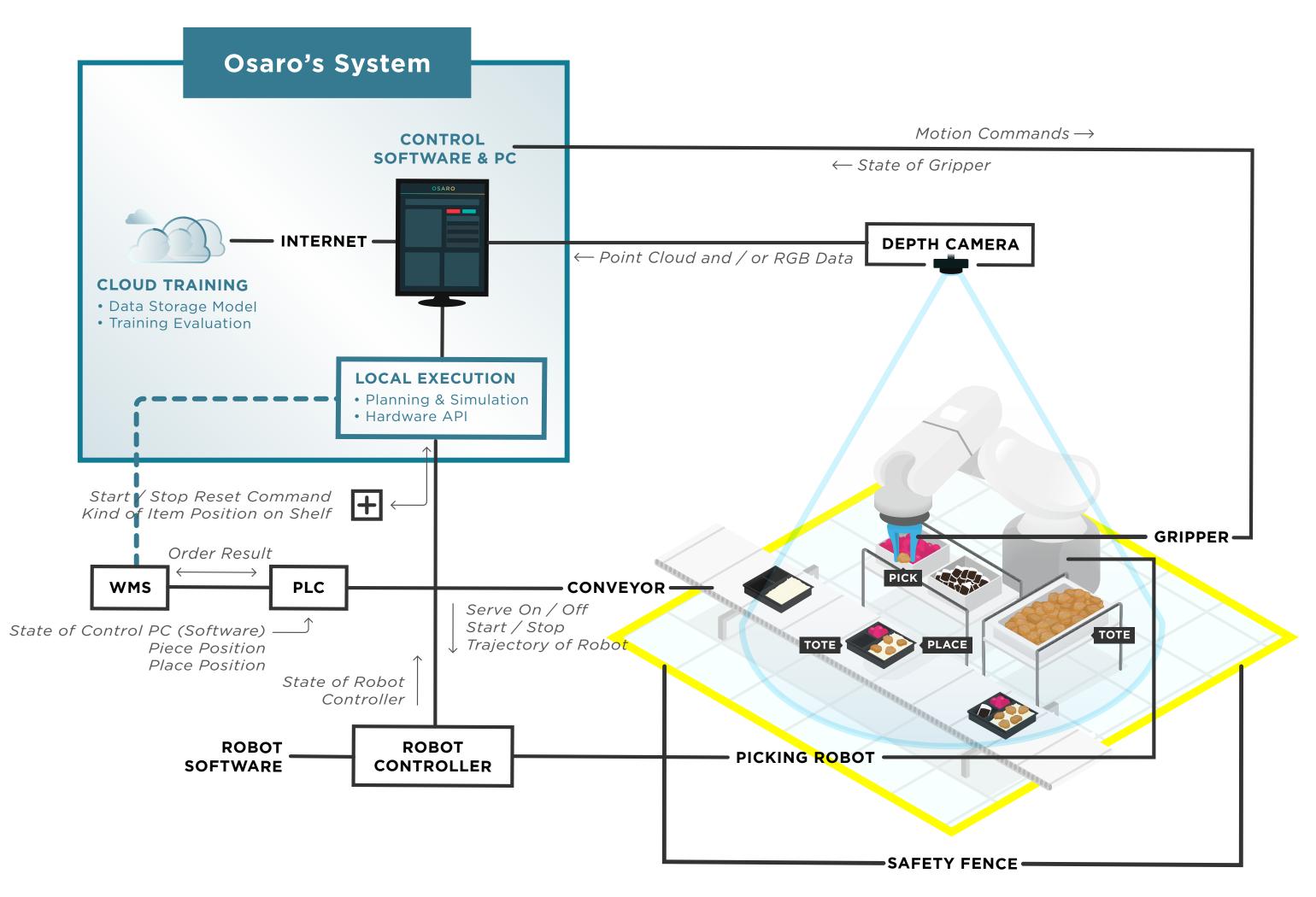


https://youtu.be/SSRNgaBGvSA

Case2(hard contact)/Person_A/Success



LEVEL 4 AUTONOMY: **FOOD ASSEMBLY AND PREPARATION**



OSARO | 42

THE FUTURE OF ROBOTIC ML - CASE STUDY: **BENTO BOX ASSEMBLY WITH DENSO AT FOOMA 2018**

Osaro invited to exhibit in Denso's booth for Japan's largest food automation show.

10 day integration

Drove record leads for Denso

2 weeks from invite to deployment

AI FOR INDUSTRIAL ROBOTS | WWW.OSARO.COM | CONFIDENTIAL

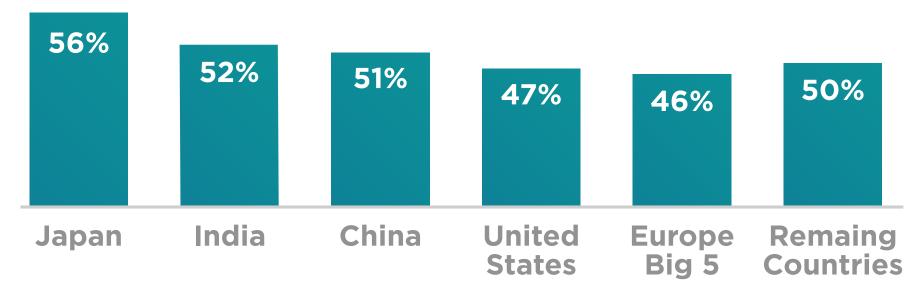
Bastiane Huang OSARO I bastiane@osaro.com https://medium.com/@Bastiane We're Hiring! https://www.osaro.com/careers

Thank You

US MARKET: **\$766 BILLION TOTAL WAGES FOR PREDICTABLE PHYSICAL WORK**

Technical automation potential is concentrated in countries with the largest populations and/or high wages

Potential impact due to automation, adapting currently demonstrated technology (46 countries)



Automation Potential

OSARO 45

Wages Associated with Technically Automatable Activities (\$ Trillion) China Remaining 3.6 Countries 4.7 100% = \$14.6T 2.3 1.0 United

1.1

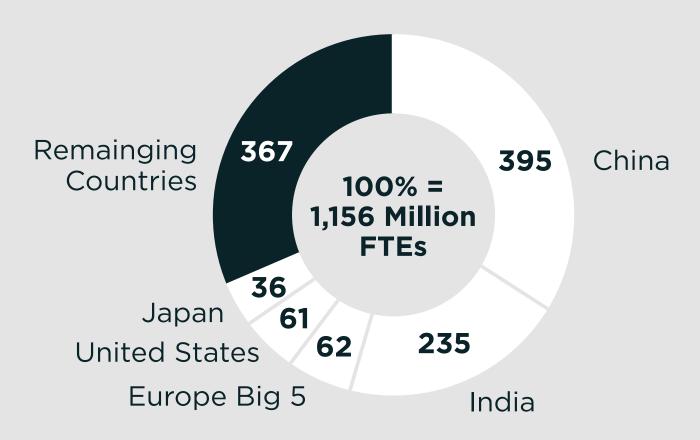
India

Japan

1.9

Europe Big 5

States



US MARKET: **\$766 BILLION TOTAL WAGES FOR PREDICTABLE PHYSICAL WORK**



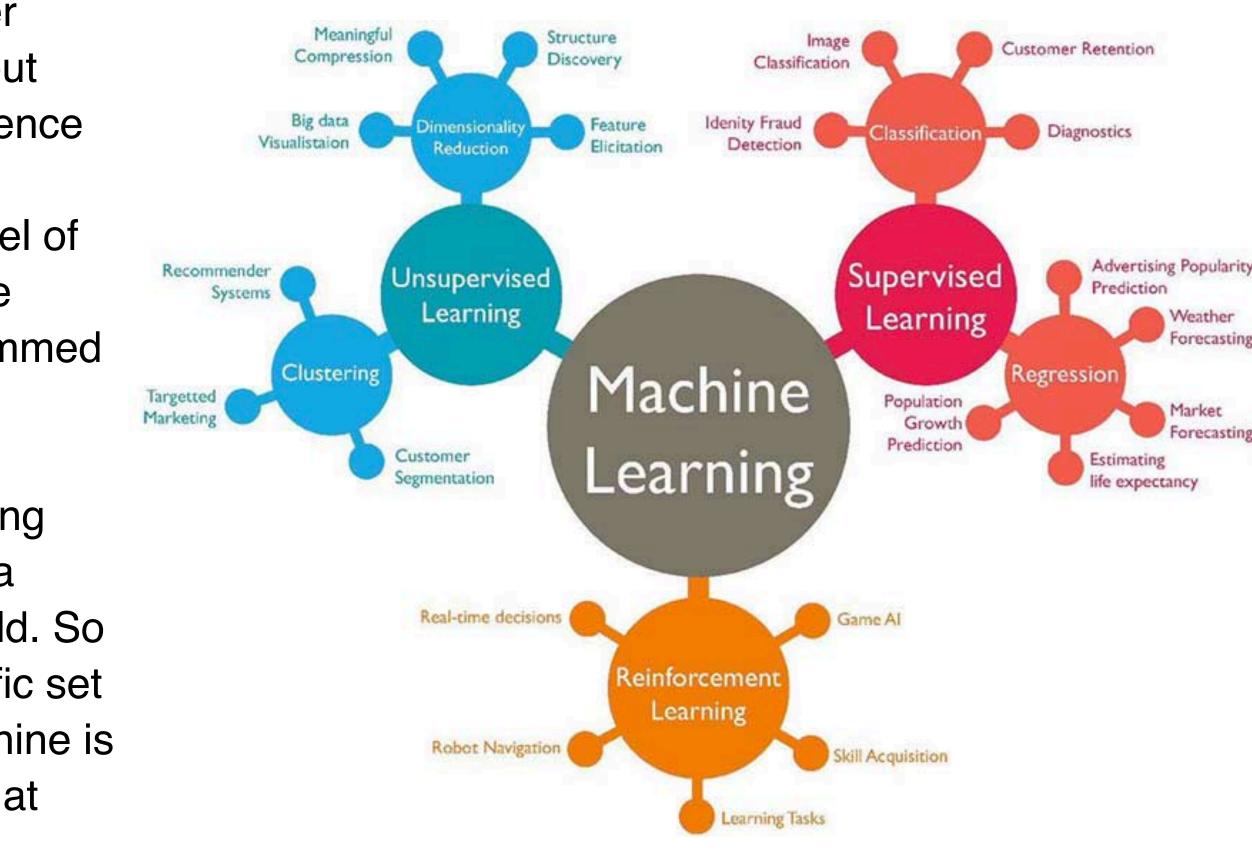
OSARO | 46

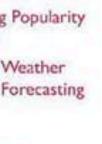
Technical feasibility: % of time spent on activities that can be automated by adapting currently demonstrated technology

MACHINE LEARNING

Machine learning (ML) is the scientific study of algorithms and statistical models that computer systems use to effectively perform a specific task without using explicit instructions, relying on patterns and inference instead. It is seen as a subset of artificial intelligence. Machine learning algorithms build a mathematical model of sample data, known as "training data", in order to make predictions or decisions without being explicitly programmed to perform the task.

Machine learning at its most basic is the practice of using algorithms to parse data, learn from it, and then make a determination or prediction about something in the world. So rather than hand-coding software routines with a specific set of instructions to accomplish a particular task, the machine is "trained" using large amounts of data and algorithms that give it the ability to learn how to perform the task.





Levels of Autonomy

Level 2: Partial automation. Robots can only operate by themselves at certain times under certain conditions.

Level 3: Conditional Automation. The robot takes over actively monitoring the environment when the system is engaged. However, human must be prepared to respond to a "request to intervene"

Level 4: High automation. The robot will be able to handle most "dynamic tasks" but will still require human intervention from time to time in unusual scenarios.

Robot

A robot is a machine—especially one programmable by a computer – capable of carrying out a complex series of actions automatically.[2] Robots can be guided by an external control device or the control may be embedded within. Robots may be constructed to take on human form but most robots are machines designed to perform a task with no regard to how they look.

GOOGLE RESEARCH: **ARM FARM**

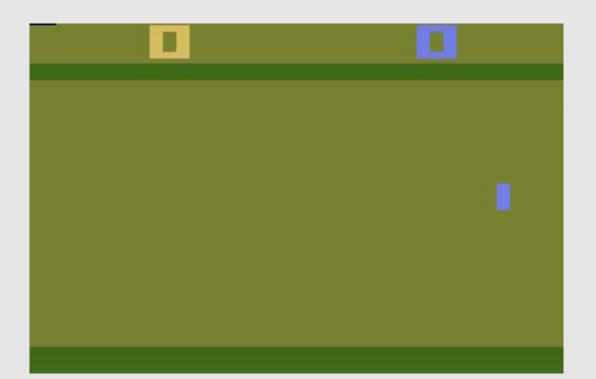
- Result: 14 arms, 800k grasps improves random policy from 30% to 70% in 3 months.
- Importance: early demonstration of the parallelism of optimization across robots.
- Problems: super slow, not practical in real-world use cases

 "Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection" Levine et al. March 2016.

EARLY WORK AT OSARO (2015)

• Result: 100-1000x speedup.

•



NAIVE DRL MENTOR DRL

https://youtu.be/9X25FpI16kA

https://youtu.be/dvYKpMURNVE

