GPU-Accelerated AI Applications for Smart Civil Infrastructure

Zheng Yi Wu, Ph.D., F.EWRI, M.ASCE, Bentley Fellow, Director Applied Research, Bentley Systems, Incorporated, Watertown, CT, USA

© 2016 Bentley Systems, Incorporated

Infrastructure Industry Going Digital

Bentley Software Platform Technology

4

entley

Advancing Infrastructure

Semantic 3D City Model

Philadelphia City Water and Energy Usage Visualization

Applied Research for Infrastructure Digital Twin

Digital twin

AI Application Research

blem Definition Run Optimization Option	and .			
Decision Variable File				
C:\Program Files (x86)\Bentley\DarwinC	Optimization\Examples\SingleObjective\DecisionVa	iria Edit	Browse	
Number of Decision Variables: 2	Number of possible solutions: 251	1001		
Configruation . xml				
C:\Program Files (x86)\Bentley\DarwinC	Optimization \Bin \Configuration xml	Edit	Browse	
Fitness DLL: Fitness.dll	Number of Objectives: 1			
Output Directory				
C:\Users\Zheng.Wu\AppData\Local\D	DarwinOptimization		Change	
		3		
evolutionary	y Deep Learning	g (eDL) I	Framew	ork
evolutionary	y Deep Learning	g (eDL) f	- ramew	ork
evolutionar	y Deep Learning	g (eDL) I	Framew	ork
		g (eDL) f	-ramew	ork
evolutionary Deep Neur		g (eDL) I	Framew	ork
		g (eDL) I	-ramew	ork
		g (eDL) I	- ramew	ork
		g (eDL) I	- ramew	ork
		g (eDL) I	- ramew	ork
		g (eDL) I	Framew	ork
		g (eDL) I	Framew	ork
		g (eDL) F	- ramew	ork

Darwin Optimization 0.91

GPU-Accelerated Analysis

GPU-Accelerated Modeling

12 | WWW.BENTLEY.COM | © 2016 Bentley Systems, Incorporated

GPU-Data-Driven Model

- Big data, big opportunity
- Data ≠ information
- Capture data relationships
- Fast ANN model training/calibration

GPU-Pump Scheduling

- Optimize pump operation
- Minimize energy cost

GPU-Accelerated Pump Scheduling

Singapore Smart Water Grid (SWG)

- 700 plus sensors
 - Pressure
 - Flow
 - pH, ORP, conductivity, temperature and turbidity

16 | WWW.BENTLEY.COM | © 2016 Bentley Systems, Incorporated

Real Time Monitoring for SWG: Digital Twin for Water Systems

Challenges

- Interoperability for sensors, communication and data management
- Data analytics
- Job redesign for PUB staff
- Public communication
- Further research and testing for SWG technology

Operation Analytics

- Predictive analytics
- Anomaly detection

Case Study

- System layout with sensor locations
- One inflow time series in 5-min interval
- Pressures in 15-min interval at 8 locations
- Service tank levels in 15-min interval
- Hydraulic model

Data Analysis and Event Detection

Flow Data Preprocess

Pressure Data Preprocess (Stn11)

nt detector		Plot	Summary Detail		Summary Detail		
	Sensor event System event Real time data		Items	Value	Timestamp	Value	Error
a files		•	Sensor name	stn11	9/1/2017 2:30 AM	39.01	Sensor fa
∖\BBSZ data\stn11.csv			Start time	9/1/2017 12:00:00 AM	9/1/2017 12:15 PM	35.70	Sensorf
cessing options	Sensor failure 🗹 Min value: 1 Time step:		End time	10/31/2017 11:45:00 PM		35.94	Sensor
ng time step 🗹 Duplicated time step 🗹	Imegular time step Min consecutive steps: 10 Max value: 100 00:15:00		Duplicated time step	0	9/2/2017 2:30 AM	39.09	Sensor
ord Summary Detail			Irregular time step	0	9/4/2017 3:00 AM	39.69	Sensor
	Before pre-processing		Missing time step	0	9/5/2017 2:45 AM	38.91	Senso
stn11(meter)			Sensor failure time step	86	9/6/2017 5:45 PM	38.04	Senso
50			Total time steps	5856	9/6/2017 11:45 PM	38.47	Senso
45 —		٠			9/7/2017 12:00 PM	37.94	Senso
40 - 1. A. A. A. A. A.	And a ded	A A A A A A A A	han		9/7/2017 1:15 PM	38.11	Senso
35	A LA IM IM KA	N N N N N N	(VWY		9/7/2017 7:45 PM	35.89	Senso
30					9/11/2017 12:15 AM	38.65	Senso
05					9/11/2017 3:30 AM	39.76	Senso
25 2017-09-01 00:00 2017-09-06 05:0	00 2017-09-11 10:00 2017-09-16 15:00 2017-09-21 20:00 2017-09-27 01:00 2017-10-02 06:00 2017-10-07 11:00 2017-10-12 16:00 2017-10-17 21:00 2017-10-23 0	2:00 2017-10-28 07:00			9/12/2017 2:15 AM	39.08	Senso
	After pre-processing				9/12/2017 3:30 AM	39.37	Senso
stn11(meter)					9/12/2017 11:15 PM	37.43	Senso
	4.4				9/13/2017 4:30 AM	39.71	Senso
45 —					9/13/2017 1:45 PM	37.71	Senso
40-1. A. A. A. A. A.	And a dealer and a dealer dealer and a dealer	AALAAA AA	Mai		9/14/2017 1:45 AM	38.86	Senso
35-	A LA MANA ANA ANA ANA ANA ANA ANA ANA ANA A				9/14/2017 4:15 AM	39.65	Senso
30							
2017-09-01 00:15 2017-09-06 05:	15 2017-09-11 10:15 2017-09-16 15:15 2017-09-21 20:15 2017-09-27 01:15 2017-10-02 06:15 2017-10-07 11:15 2017-10-12 16:15 2017-10-17 21:15 2017-10-23 0	2:15 2017-10-28 07:15	Correct and save				20-
						- T	Ber

Anomaly Event Detection

300

4.02

🛃 Water event detector

9/27/2017 1:30 AM Stn 16

.

ata pre-proce	ss Deco	mposition	Outlier dete	ection	Sensor event	System event	Real time data
Select even	t file						
Flow e	vent file:	D:\Work\	BBSZ data	event\3	Oflow.csv		
Pressure ev	vent file:	D:\Work	BBSZ data	event\3	Ostn12.csv		
Set system of Flow event Event reasu	: 🗹 Hi		essure event	_	High 🗹 Fl Low	ow and pressure	e correlation
Т	imestamp		Name	Value	Warning	duration	out difference
▶ 1 ^{9/}	/23/2017	11:15 PM	BBSZ flow	9.27	High	160	1.44
9/	24/2017	12:30 AM	Stn15	40.19	Low	30	-0.02
2 9/	26/2017	9:50 PM	BBSZ flow	24.14	High	220	16.20
9/	27/2017	1:30 AM	Stn14	30.92	Low	300	3.74

Low

37.54

Flow sensor: BBSZ flow (mgd) Event No.1

- 0 ×

Simulation Results

Anomaly/Leakage Event Localization

Digital Twin for Engineering Structures

Applied AI Research for Infrastructure Digital Twin

- Accelerometers
- Strain Gauges

Denney

Zhou. K., Wu*, Z. Y. (2017). "Strain gauge Placement Optimization for Structural Performance Assessment" *Engineering Structure* 141 (2017) 184-197.

Zhou, Kai, Wu*, Z.Y., Yi, X. H., Zhu, D. P., Narayan, R. and Zhao, J. (2017). "Generic Framework of Sensor Placement Optimization for Structural Health Modeling", ASCE. *J. Computing in Civil Engineering*, Vol. 31 No. 4, 1943-5487

26 | WWW.BENTLEY.COM | © 2016 Bentley Systems, Incorporated

Applied AI Research for Infrastructure Digital Twin

Finite Element Model Calibration Initial FE Model and Measurements Update finite element FEM model for in-service Model Error Responses Darwin FEM structure **GpenS**taad Framework Calibration Updated FE Research projects Model parameters Model Applied to buildings and Measured Frequency Optimized Frequency by Darwin bridges Frequency 2 **Bentley**[®]

Building Finite Model Calibration

Indian River Inlet Bridge Location

• Bridge FE model calibration (with Dr. Shenton from Uni. Delaware)

New Indian River Inlet Bridge

Sensor Layout Layout

- 69 strain and temperature sensors
- 9 tiltmeters
- 16 chloride sensors

- 27 accelerometers
 - 3 displacement gauges
- 2 anemometers

Bentley Darwin Optimization

- Tool for calibrating a model of a structural system using measured structural response data
- UD expertise
 - Bridge engineering
 - Structural Health Monitoring
 - Indian River Inlet Bridge
- Test the tool by calibrating a signature bridge using strain response data

Start		Pause	Resume	Stop
Optimization Method				
Number of Processes:		4	Optimization Method:	Fast Messy Genetic Algorithm 🔻
Constraint Handling:	Using Penalty		Penalty Factor:	2500000
Problem Size No. of Decision Variable	es: 3	No. of Objectives	: 1 No. of possib	ole solutions: 91733851
Run Status				
Number of Generations:		992	Best Solution Violation:	0.00
Number of Trials:		100056	Best Solution Fitness:	0.34
Estimated Time Remaining:		00:00:-02	Elapsed Time:	01:23:42
40 Fitness Value 35 - 31 -	Solution			
40 Fitness Value			0.34	Trial NO
40 Fitness Value 35 31 26 22 17 13 8 4 -3 -3		40200 902		
40 Fitness Value 35 - 31 - 26 - 22 - 17 - 13 - 8 - 4 -		40200 902		

Bentley®

Strain Response Used for Calibration

- Load Test 2, November 2012
- 4 truck pass
 - 110 strain response values
 - Magnitudes range from 2.5 to 90 microstrain

Bentley°

3

Δ

2

250

200

150

100

50

0

1

Microstrain

6-truck pass used for validation

60%

50%

40%

30%

20%

10%

0%

9

Measured

Design Model

Updated Model

---- Design % Diff

Validation of Calibrated Model

West Edge Girder

5

Sensor Locations

6

7

8

Structural Health Monitoring and Advanced Analysis of Bridges: A Pathway to Bridge Digital Twin

Video Camera as Sensor

- Conventional Sensors
 - Placed on structure
 - Limitations: high cost, safety concerns, service interruption
- Vision-based sensors
 - Remote sensing (non-contact)
 - Cost effective

Vision Sensor (Video Camera) for SHM

DRBA Bridges Test

42

- 28 strain gauges, 8 accelerometers, 6 displacement sensors and 2 tiltmeters (UD)
- Two video cameras (Bentley)
- Measuring responses for 5 cuts

Video Analysis for Extracting Structural Responses

Comparison: Displacement at T10

Comparison: Displacement at T11

Infrastructure Inspection with Machine Learning

Deep Learning Approach for Defect Detection

- Obtain inspection images and videos
- Work with Bentley users
- Label images with defects (e.g. cracks and corrosions)
 - Train models e.g. Faster RCNN and/or Mask RCNN
- Model inference on images and/videos
- Applications of various cases (buildings, bridges, roads and tunnels)
- Build 3D model with inferenced images
- Perform defect statistics
 - Crack length, width and area
 - Level of corrosion and areas

Deep Learning Model for Crack Detection

Deep Learning Applications – Crack Detection

Bridge with Deep Learning (Australia)

Road Inspection (Macao China)

Crack Detection and Evaluation with 3D Model:

Corrosion Detection and Segmentation

- Applied semantic CNN (DeepLab) for corrosion detection and segmentation
- Classified by Corrosion Index (CI): Heavy: 0.75 < CI <=1; Medium: 0.6 < CI <=0.75; Light: 0<= CI <= 0.6

Bentley

Soft-Story Building Detection for Seismic Retrofit

- What is a soft story
 - level less than 70% as stiff as the floor immediately above it
- Characteristics of soft story buildings
 - multi-story building with Wide opening
 - Multi-use buildings with commercial retail on the ground floor
 - Retail buildings with mostly glass front

Examples of typical soft-story buildings

Soft-Story Risk

- About 50% damaged homes at CA earthquake in 1989 were soft-story
- 1994 Northridge earthquake CA
 - about 200 buildings seriously damaged or destroyed
 - 16 people died at Northridge Meadows soft story apartment complex
- Need for retrofitting soft story

Soft-story Buildings Classification

- Buildings classified by engineers
 - Accurate but time consuming
 - Good dataset for training deep learning models
- Apply deep learning
 - Images from Google Street View
 - Training data from Los Angeles
 - Testing data from Santa Monica

Soft-story buildings map. Classified by engineers at Santa Monica, CA

A typical soft-story building from google street view using Santa Monica DS

Proposed Approach

Dataset

- Training
 - 1267 Buildings classified by engineers
 - non-soft story buildings
- Testing
 - 1500 building from Santa Monica
 - non-soft story buildings

Soft-story Detection

- Data sets preparation
 - Only using images of buildings with clear opening of the first floor (900 images)
 - Annotate only part of the building that may cause collapse.
- Training
 - Use 800 images for training and 100 images for testing
 - Using feature extractor network with the best accuracy, ResNet101 & Inception-ResNet

SS Detection Model Performance

- Tested 2399 images
- 75% detected with confidence >75%

Integrated Work Flow for Soft Story Detection

Address	City	State	Zip
5802 4TH AVE NW	SEATTLE	WA	98107-2117
5806 4TH AVE NW	SEATTLE	WA	98107-2117
5808 4TH AVE NW	SEATTLE	WA	98107-2117
5814 4TH AVE NW	SEATTLE	WA	98107-2117
5820 4TH AVE NW	SEATTLE	WA	98107-2117
5822 4TH AVE NW	SEATTLE	WA	98107-2117
5824 4TH AVE NW	SEATTLE	WA	98107-2117
5828 4TH AVE NW	SEATTLE	WA	98107-2117
5834 4TH AVE NW	SEATTLE	WA	98107-2117
5834 1/2 4TH AVE NW	SEATTLE	WA	98107-2117
5838 4TH AVE NW	SEATTLE	WA	98107-2117
5842 4TH AVE NW	SEATTLE	WA	98107-2117
5844 4TH AVE NW	SEATTLE	WA	98107-2117
310 NW 60TH ST	SEATTLE	WA	98107-2138

Test Area: San Bruno, CA

- Acquired and tested ~7600 addresses.
- ~3400 addresses were detected as soft-story.

SS Buildings Annotated in Google Map (San Bruno, CA)

Bentley

Test Area: Seattle, WA

- Acquired and tested ~8200 addresses.
- ~2700 addresses were detected as softstory.

64 | WWW.BENTLEY.COM | © 2016 Bentley Systems, Incorporated

SS Buildings Annotated in Google Map (Seattle, WA)

Recycle Bin C	ha_et_al-2	ContextCap Engine	Blue Jeans									
FSEG Study N	IB-CNN-D	ContextCap	Bentley Amazon E	Image: Image	^		-	→ O Search New fold	× v ? er P			
FSEG Test	Deep earning P	Cygwin64 Terminal	copy files to EC2.txt	 Quick access Desktop Downloads Documents 	ballard_seattle_images.js	Date modified 1/7/2019 12:31 PM 1/7/2019 12:31 PM		Size 3 KB 466 KB				
FSEG-original	1	NVIDIA Nsight HU	MainForm.txt	Rony # opencv # FSEG # Projects #	*							
HI ro	nn-family	Octave-4.2.1 (CLI)	Reply-Offe	 PycharmProjects object_detection This PC Desktop 	r r			Ŀ,				
	3D Vision hoto Viewer		utang yogi.txt Tean	E Pictures								
Test Natural	Acute3D Viewer	Oracle VM VirtualBox	daly_city.png	📱 Videos 🔩 Windows (C:) 🥩 Network								
Video C	CONNECTI Client		presentation	2 items 1 item selected 2.	.04 KB							
	Type here	to search		l 🗆 📄	o 🔹 🤹 🗹 🗈					~ 늘 탓 ↓×	12:39 PM	Ben

66

Research Collaborations

- Multidiscipline: Civil/Environmental/structural, Electrical Eng., Computer science etc.
- Multi Sectors: Water, power, transportation and buildings etc.

Summary

- Research for AI-based systematic approaches
- Connect data environment with Bentley software
- Construct various digital models
 - Semantic models: 3D mesh/texture models, point cloud etc.
 - Data-driven: machine learning, statistics etc.
 - Physics-based: finite element analysis, hydraulics and water quality etc.

Bentleu

- Decision-support: optimization models
- Enable digital twin for smart infrastructure
- Accelerate computations

Thank You !

Email: zheng.wu@Bentley.com

