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What 1s ATOM?

 Approach: An open public-private partnership
- Lead with computation supported by targeted experiments
- Data-sharing to build models using everyone’s data
- Build an open-source framework of tools and capabilities

e Status:
- Shared collaboration space at Mission Bay, SF
- 25 FTE's engaged across the partners

- R&D started March 2018
- In the process of engaging new partners
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Current drug discovery: long, costly, high failure

Is there a better way to get medicines to patients?

Screen millions
of functional
molecules to
inform design
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* 33% of total cost of medicine development
 Clinical success only ~12%, indicating poor translation in patients

Source: http://www.nature.com/nrd/journal/v9/n3/pdf/nrd3078.pdf
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Accelerated drug discovery concept
Vision of ATOM workflow in practice
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Top-level view of the ATOM molecular design
platform
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Roadmap

* Infrastructure and Architecture — what GPUs are we using?
» Data-Driven Modeling Pipeline — what have we built?

* Experiments — what have we been able to do?

* Future work — where are we going from here?

ATOM



Roadmap

* Infrastructure and Architecture — what GPUs are we using?
* Data-Driven Modeling Pipeline — what have we built?

* Experiments — what have we been able to do?

 Future work — where are we going from here?
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» Acts as front end for
interactive
development

» Also set up VNC to

enable use of IDE for

debugging

* Upload files to
Datastore via GUI or
API.

» Access control via Unix
groups

Jupyter
o

ChEMBL
KEGG
PDB

» Contains all input and
output files
* GUI and REST API

S Metadata for
onge Data Lake
Stores model
o0 ) it
mMOongc prediction results

* Deploy parallelized
runs for
hyperparameter search

* Memory/GPU/CPU-
intensive jobs




Kubernetes allocates GPU resources on our
% kubernetes
development server ool

* Our development server has 4 GPU
nodes with 4 Titan XPs in each node

KUBERNETES * 1 data server (cephid), 1 login/head
GPU ACCELERATED n Od e
NVIDIA GPU CLOUD APPLICATION * KUber_'neteS IS an open source
container orchestrator
NVIDIA GPU CONTAINERS . .
DOCKER * Manages containerized workloads and

services

NVIDIA GPUs . .

* Use it to orchestrate allocation of
AWS | GCP | Azure NVIDIA GPU SERVERS GPUS, CPUS, and memory

 Handles Role-Based Access Control

ATOM 10



LLNL HPC Software Specs and Computer Architecture

* Nodes: 164

» Cores/Node: 36

* Total Cores: 5,904

* Memory/Node: 256

 Total Memory: 41,984 GB

* GPU Architecture: NVIDIA Tesla P100 GPUs
 Total GPUs: 326

* GPUs per compute node: 2

A T<GPU peak performance (TFLOP/s double precision): 5.00



Data services are a necessity

» Data services are required to organize:
« Raw data
» Curated datasets
* Model-ready datasets
» Train/test/validation split of datasets
 Serialized models
» Performance results
« Simulation output

» These data types vary in size, format, and level of organization/complexity

ATOM 12



Have a variety of services to handle our needs

e Data Lake

* In-house object store service
* Allows for association of complex metadata with any type of file
« Can access via GUIl and REST API

* mongoDB
 Used as backend for Data Lake metadata

e Used as backend for Model Zoo metadata
» Used for Results DB

* MySQL

« Many public datasets are available in SQL format

AN

. mongo MySQGlL:

ATOM



Overall structure of data services
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Roadmap

* Infrastructure and Architecture — what GPUs are we using?
» Data-Driven Modeling Pipeline — what have we built?

* Experiments — what have we been able to do?

 Future work — where are we going from here?

ATOM
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End-to-End Data-Driven Modeling Pipeline

Enables portability of models and reproducibility of results

Data Lake Model Zoo Results DB

ATOM 16




Data Ingestion Model Training + Prediction Visualization +

Curation Tuning Generation Analysis

Data Lake Model Zoo Results DB

* Raw pharma data consists of 300 GB of a variety of bioassay
and animal toxicology data on ~2 million compounds from GSK

* Proprietary or sensitive data must only be stored on approved
servers

* Data may need to remain sequestered from other members

ATOM
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Target

ATOM has curated ~150
model-ready data sets
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Data Lake Model Zoo Results DB

* Support loading datasets from either Data + e
Lake or filesystem AT

* Support a variety of feature types
« Extended Connectivity Fingerprint
» Graph-based features

* Molecular descriptor-based features (MOE,
DRAGONY7, rdkit)

Molecular
descriptors

» Autoencoder-based features (MolVAE) i '
* Allow for custom featurizer classes

 Split dataset based on structure to avoid bias ir*é

ATOM 19



Featurization 1s key

3.5 Graph Convolutions

MOE Descriptors
mmm ECFP

3.0

2.5

2.0

1.5

1.0

0.5

0.0
-2.0 -1.5

-1.0

-0.5 0.0
Test set R™2 for best model

0.5

1.0

* We have found that the
best-performing feature
type varies by dataset

*[n general chemical
descriptors out-perform
other feature types

* Graph Convolutions
occasionally outperform
others

ATOM
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Dimensionality reduction can improve performance

Validation Set Average Precision vs Network Layers & UMAP Parameters
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>  Featurization

Data Lake Model Zoo Results DB

* Have built a train/tune/predict framework to create high-quality
models

* Currently support: l@n £ opyorch
® Sklearn mOdels TensorFlow

» deepchem models (wrapper for TensorFlow)
* Allow for custom model classes

* Tune models using the validation set and perform k-fold cross
validation

ATOM 22



Hyperparameter optimization

Support distributed hyperparameter search for
dataset/feature/model combinations

» Support linear grid, logistic grid, random, and g
user-specified steps SN e —————
UdiLadSTL_UULRCTL - ysnr_mu ,
» Currently does not support optimization ropiitter": “scaffold",
"ecfp_size" : "1024",
"datastore": "True",

Specify input with JSON file or command line resuLt_dir's "/p/lustrel/minnich2/new_test/",
system": ;
"t+ransformers": "True'.

* Generates all possible combinations of D T
hyperparams, accounting for model type ‘aver aizests 100,500 100,100, 100",

'dropouts": "0.40,0.40 0.50,0.60,0.60",
H H H 'weight_init_stddevs": "0.02,0.02 0.02,0.03,0.04"
Groups neural net architecture combinations ie: initicocti: ie 6 e e el '
“script_dir": "/usr/gapps/gskcraa/data_science/code/pipeline",

"nvthan nath': "/uesr/mic/bio/anaconda3/bin/python",
'hyperparam": "True"

ATOM 2



Hyperparameter search improves model accuracy for both regression and
classification models

Regression Models Classification Models
Neural net Naiical nat
Random forest 35
5
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3 2.0
1.5
2
1.0
1
0.5
0 i 0.0
-1.0 -0.5 0.0 0.5 1.0 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
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>  Featurization )

Data Lake Model Zoo %4

* Our models predict

 Binding activation/inhibition values for safety-relevant proteins
* Pharmacokinetic parameters for input into QSP models
* Also working on hybrid ML/Molecular Dynamics models

* Calculate model-based uncertainty quantification metrics

* [f ground truth provided, calculate a variety of prediction
accuracy metrics

* All predictions and results saved to Results Database or file
system based on user preference

ATOM
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>  Featurization )

Data Lake %4 Results DB

* Model Portability is key for:
* Releasing to the public
» Sending to partners for testing with internal data

* Incorporating into Lead Optimization Pipeline for de novo compound
generation

* Serialized models are saved to model zoo with detailed
metadata

» Support complex queries for model selection

* One command generates queries from dictionary or JSON file,
searches model zoo, and loads matching models

ATOM 20



) Featurization > - _ .~

Data Lake Model Zoo Results DB

* Visualizations enable validation and s S
evaluation of results Bz s
® '+ ook
* Support variety of visualizations and |+ AR S
. v TP :*; &

also allow for custom functions i i

- Examples: o s
» Predicted vs actual values N ) g
* Learning curve 2 . a K
« ROC curve/ precision vs. recall curve R "+

« 2-D projection of numeric features using
UMAP

-10 -8 -6 —4
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Data Lake

Model Zoo

Results DB

e Chemical diversity analysis is
crucial for analyzing domain of
applicability, bias in dataset
splitting, and novelty of de novo

compounds

« Support a number of input feature
types, distance metrics, and a
variety of clustering, analysis, and

plotting methods
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Roadmap

* Infrastructure and Architecture — what GPUs are we using?
* Data-Driven Modeling Pipeline — what have we built?

* Experiments — what have we been able to do?

 Future work — where are we going from here?

ATOM

29



Experimental Design

 Neural Nets and Random Forest Models

* Extended Connectivity FingerPrints (ECFP), Molecular
Operating Environment (MOE) descriptor vectors, and
GraphConvolution-based features

*NN: Vary learning rates, number of layers, layer sizes, dropout
rates

* RF: Vary max depth and number of estimators

* Train iteratively up to 500 epochs and pick best model based on
validation set performance

ATOM 30



Experimental Summary

5,964 total models for 41 Safety and Pharmacokinetic datasets
*4 696 Neural Net models

1,253 Random Forest models

3,819 Regression models

« 2,130 Classification models

* Models were trained on a wide range of proprietary GSK assay
datasets, including ones that are larger than public datasets
reported in the literature

ATOM
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Y

dataset_ke

Classification performance shows high accuracy for selected

safety targets

ABCB11_Bile_Salt_Export_Pump_BSEP_membrane_vesicles_Imaging_PIC50
ADRA1B_Adrenergic_Alpha_1B_Human_Antagonist_Intracell_Ca_PIC50
ADRA2C_Alpha_2C_Adrenoceptor Hum_CHO K1 LANCE_TR_FRET_PEC50
ADRB2_Beta2_Adrenoceptor Human_Agonist_TR_FRET_PEC50
CHRM1_M1_CHRM1_Human_Ag CHO_Intracellular_Ca_Fluorescence PEC50
CHRM1_M1_CHRM1 Human_Antag_CHO_Intracellular_Ca_Fluorescence_PIC50
CHRM2_M2_CHRM2_Human_Ag_CHO _Intracellular_Ca_Fluorescence PEC50
DRD2_Dopamine_D2_Human_Agonist HEK293F_Low_Na_GTPgS_SPA_PEC50
GRIN1_GRIN2B_NR2B_NRIA 2B_Subunit_Human_Antag_U20S_FLIPR PIC50
HRH1 Histamine_Receptor H1 HRH1 Human_Antag_Luminescence_PIC50
HTR1B_5_HT1B_Human_Antagonist_10ul_LEADseeker_GTPgS_PIC50

HTR2A 5_HT2A_Human_Agonist HEK Luminescence_PEC50
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KCNA5_Kv1.5_KCNA5_Human_Blocker_CHO_Electrophys PIC50
KCNE1_KCNQ1_KCNQ1_KCNE1_Kv7.1_MinK_Human_Blocker_CHO_Electrophys_PIC50
MAOA_Monoamine_Oxidase_A_MAOA_Human_FLINT_Dev_Panel_PIC50
PDE3A_Phosphodiesterase_3A_PDE3A 3H_cAMP_SPA Inhibition_PIC50
PDE4B_Phosphodiesterase_4B_PDE4B_SPA_PIC50
phospholipidosis_Phospholipidosis_Induction_ HEPG2_FLINT_PEC50
PIK3CG_PI3K_gamma_Human_Inhibition_TR_FRET_PIC50
PTGS2_Cyclooxygenase_2_COX_2_Human_FLINT_SAR_Assay_PIC50

SCN5A _NaV1.5_Human_Blocker_HEK lonWorks_Electrophys_2Hz_PIC50
SLC6A2_Noradrenaline_Transporter NET_Human_BacMam_Bind_SPA PIC50
SLC6A4 5 HT Transporter SERT Human_BacMam_binding_SPA PIC50
SLCO1B1_Organic_Anion_Transport_Polypeptide_ C_OATP1B1_HEK Image_PIC50
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Assays range in
size from 187 to
9173 compounds
23 of 28 of the
assays show
improvement with
NN
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largest
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Classification
accuracy appears
to be relatively high
( >0.8 ROC-AUC)

32



Regression models present a greater challenge

KCNH2 hERG Blocker Binding PIC50

SCN5A NaV1.5 Human Blocker PIC50

LogD ml reg

CACNALC Human CaV1.2 L type Calcium Channel Barracuda Ephys PIC50

KCNAS5 Kv1.5 KCNA5 Human Blocker CHO Electrophys PIC50

ABCBL1 Bile Salt Export Pump BSEP membrane vesicles Imaging PIC50

Microsomal Clearance human ml reg

Plasma Protein Binding HSA human ml reg

model_type/feat
I NN/descriptors
I NN/ecfp
B NN/graphconv
BN RF/descriptors
I RF/ecfp

0.0 01 0.2 03 0.4 05 0.6
r2_score_test

0.7

Assays range in
size from 101 to
123,759
compounds

4 of 8 of the assays
show improvement
with NN
Descriptors and
Graphconv
outperform ECFP
Test set R2
ranges from ~0.1 to
~0.7

ATOM
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Test set accuracy varies with number of compounds 1n dataset
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Summary of Observations

* Classification results look good, but need to better handle class
imbalance

* Regression models can be improved

* Adding data seems to help, so we are looking into:
« Sourcing public datasets
» Generated targeted experimental data
* Transfer learning
* Multi-task learning

ATOM
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Uncertainty Quantification (UQ) Analysis

* UQ helps reveal what a model is not confident about

* Goals for data-driven model UQ:

1. Accurately characterize confidence in model predictions as
a function of UQ

2. Use UQ to guide active learning
3. Use UQ to weight model ensembles

ATOM %



Modeling uncertainty

e Random Forest

* Calculate the standard deviation of predictions from individual
trees

* Neural Networks

« Use deepchem’s method, which combines aleatoric (sensing
uncertainty) and epistemic (model uncertainty) values

« Aleatoric: Modify loss function and train model to predict both
response variable and input variance

« Epistemic: Apply dropout masks during prediction and quantify
variability in predictions

_— 2 2
* Then oiptqr = \/O'aleatoric t Oepistemic

ATOM



Goal 1s to quantify prediction uncertainty for assays such as hERG

Random Forest
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Correlation between error and UQ 1s fairly low

LogD ml reg KCNH2Z hERG Blocker Binding PIC50 SCNS4& Navl.5 Human Blocker PICS0

0.35 NN/frandom

* Binned prediction error =
' Kept bins with > 150 20.30 : Eiﬂ;ﬁgffi'."
samples £
» Calculated Pearson’s ~ £°
Correlation between ® 5
error and UQ :
» Correlations range o
between ~0.14-0.35 <
+ All p-values are <<< ™
0.01 558
0.00 14 55 (0, 2] (0,21
Binned Error
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UQ threshold 1dentifies a fraction of the “low error” predictions,

which approximates experimental error
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Precision-Recall curves with varying UQ threshold show greater
challenges with scaffold splits and neural networks

LogD ml reg KCNH2 hERG Blocker Binding PIC50  SCN5SA NaV1.5 Human Blocker PIC50
1.0 —— NN/random
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Recall

NN does not reach a precision of 1 for any UQ threshold
AT Q M RF=Random Forest, NN=neural




Training time Analysis

*|In addition to understanding performance of models, need to
understand efficiency

« Examined training runtimes for our models and a variety of
variables

* All times were calculated for model building on supercomputers
« Can help to guide future experiments as we scale up

ATOM 2



Training time 1s highly dependent on number of compounds

 Plotted runtime versus
number of compounds
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Layer architecture does not appear to have an effect on training

time

 Plotted runtime normalized by
dataset size versus Layer
Architecture + Dropout
Probability Combination
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« Surprisingly, number of
parameters in network does not
affect training time

Runtime/Number of Compounds

 Currently investigating why some
Graph Convolution models are

much slower § &
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Roadmap

* Infrastructure and Architecture — what GPUs are we using?
* Data-Driven Modeling Pipeline — what have we built?

* Experiments — what have we been able to do?

* Future work — where are we going from here?

ATOM
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Current status

* Pipeline
* Dev 1.0 release
* Installable using pip as a whl file
* Runs internally at GlaxoSmithKline for evaluation

* Models

« Our models have been incorporated into our de novo compound
generation active learning loop

* We are able to export and share models with consortium members as
well

ATOM

46



Future Plans

 Improving Portability
» Release pipeline open source
* Dockerize the entire pipeline
* Release data services infrastructure as Kubernetes pods

* Improving performance
« Add in optimized hyperparameter search function
* Explore hyperparameters for uncertainty quantification
* Transfer learning
» Multi-task learning
* Ensemble modeling

ATOM
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Join ATOM

Visit atomscience.org/membership
Contact info@atomscience.org
@ATOM _consortium #ATOMscience

%
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?)

Transform drug discovery, accelerate R&D, and
integrate data, Al, and supercomputing to benefit
patients

Consortium Members:

Fre(_ierick Lawrence
National k;;gg;:;"e
Laboratory Laboratory
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AT Q M Feel free to email me with technical questions: minnich2@linl.gov



