TENSOR CORES: BUILT TO ACCELERATE AI
Available on NVIDIA Volta and Turing Tensor Core GPUs

Inference TOPS [FP16 or INT8] Training TOPS [FP16]

This talk: Learn basic guidelines to best harness the power of Tensor Core GPUs!
1. Tensor Core refresher - what, how, why?
2. Reasoning about Deep Learning performance
3. Guidelines for ideal Tensor Core performance
4. Case studies
Tensor Cores are ...

... special hardware execution units

... built to accelerate deep learning

... executing matrix multiply operations

Volta Tensor Cores

FP16/FP16 and FP16/FP32 modes

Turing Tensor Cores

+ INT8/INT32, INT4/INT32, INT1/INT32
HOW TO USE TENSOR CORES FOR TRAINING

Enable mixed precision training

S9143 - Mixed Precision Training of Deep Neural Networks

Easiest way: **AMP**

Automatic Mixed Precision

S9998 - Automatic Mixed Precision in PyTorch

S91003 - MxNet Models Accelerated with Tensor Cores

S91029 - Automated Mixed-Precision Tools for TensorFlow Training

This talk: How to maximize perf once MP is enabled
DEEP LEARNING PERFORMANCE BASICS
DOES <X> USE TENSOR CORES?
Or: Am I using TCs effectively? AKA: “Only 50 TFLOPS?!”
GPU PERFORMANCE BASICS
The GPU: a highly parallel, scalable processor

GPUs have processing elements (SMs), on-chip memories (e.g. L2 cache), and off-chip DRAM

Tesla V100: 125 TFLOPS, 900 GB/s DRAM

What limits the performance of a computation?

\[
\frac{\text{time}_{\text{math operations}}}{\text{math throughput}} > \frac{\text{time}_{\text{data movement}}}{\text{memory bandwidth}}
\]

\[
\frac{\text{FLOPS}}{\text{bytes}} > \frac{\text{math throughput}}{\text{memory bandwidth}}
\]
LIMITER ANALYSIS

Lesson 1: Understand your performance limiters

Math limited if: \[\frac{\text{FLOPS}}{\text{bytes}} \geq \frac{\text{math throughput}}{\text{memory bandwidth}} \]

Left metric is algorithmic mix of math and memory ops called arithmetic intensity

Right metric is the processor’s ops/byte ratio - e.g. V100 can execute 125/0.9=139 FLOPS/B

Comparing arithmetic intensity to ops/byte ratio indicates what algorithm is limited by!

<table>
<thead>
<tr>
<th>Operation</th>
<th>Arithmetic Intensity</th>
<th>Limiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Residual addition</td>
<td>0.166</td>
<td>Memory</td>
</tr>
<tr>
<td>ReLU activation</td>
<td>0.25</td>
<td>Memory</td>
</tr>
<tr>
<td>Batch normalization</td>
<td>O(10)</td>
<td>Memory</td>
</tr>
<tr>
<td>Convolution</td>
<td>1-10000+</td>
<td>Memory/Math</td>
</tr>
</tbody>
</table>

(assumes FP16 data)
HOW TO CHECK IF TENSOR CORES ARE USED

Simplest method: run GPU profiler

Run `nvprof` and look for `[i|s|h][some numbers]` in function names

```
volta_h884gemm_
```

```
turing_fp16_s1688cudnn_fp16_
```

But: not comprehensive

- some kernels use TCs but don’t follow this naming scheme
- no trivial mapping back to neural network operations

Useful as a first check: Am I using Tensor Cores, and are they close to being the top function?
END-TO-END PERFORMANCE
Lesson 2: Total Tensor Core speedup depends on memory limited time

The end-to-end network speedup depends on layer mix

Amdahl’s law: if you speed up X% of your runtime, then the (1-X)% limit your overall speedup

FP16, without Tensor Cores

FP16, with Tensor Cores

 Execution time
GPU PERF BASICS: SUMMARY

Before we dig into the details

Tensor Cores accelerate processing (not memory) by providing higher matrix math throughput

Rules of thumb to remember

1. Check arithmetic intensity against GPU ops/byte ratio to see if math or memory limited
2. End-to-end speedup from Tensor Cores depends on operation mix in the neural network
3. Use *nvprof* as a quick check to see if you are using Tensor Cores at all
TENSOR CORE PERF GUIDELINES
TENSOR CORE ACCELERATION

Which operations do benefit?

Dot product operations

- GEMMs (Dense/Linear/FullyConnected/...)
- Convolutions
- RNN/LSTM/GRU/...

Can be thought of as matrix-matrix multiplications

Arithmetic intensity = \(\frac{MNK}{(MK+KN+MN)} \)

E.g. \(M \times N \times K = 4096 \times 4096 \times 4096 \): **Arith. Intensity = 1365**

But: becomes BW bound if any dimension is small
DNN OPERATION MAPPING TO GEMM

Forward pass mappings

Fully Connected / Dense / Linear
(PyTorch nn.Linear, TensorFlow swaps A and B)

Weights

Activation

Out

Forward pass mappings

- **Weights**: \(M = \) output features
- **Activation**: \(K = \) input features
- **Out**: \(N = \) batch

Convolution
(implicit GEMM algorithm, matrices are never actually created)

Filter

Activation

Out

Forward pass mappings

- **Filter**: \(N = \) output channels
- **Activation**: \(K = \) input channels x filter height x filter width
- **Out**: \(M = \) batch x image height x image width
- **Out**: \(M = \) batch x output channels x image height x image width
BACKGROUND: TC-ACCELERATED GEMM

Output matrix partitioned into thread block tiles

GPUs execute work by mapping computation to threads

Threads are grouped into thread blocks to cooperate

Thread blocks are scheduled onto GPU SMs

GEMM algorithm: blocks produce output matrix tiles

Tiles require alignment for efficient access

If problem cannot be tiled cleanly, perf is lost

Smaller tiles are less efficient
FUNCTIONAL REQUIREMENTS

Multiple-of-8 and multiple-of-16 rule

Choose layer sizes as multiple of 8 (FP16) or 16 (INT8)

- Linear: inputs, outputs, batch size
- Convolution: input/output channels
- RNNs: hidden, embedding, batch, vocabulary

Tensor Core speeds require efficient aligned data accesses to keep the cores fed

Hardware uses CUDA cores as fallback

4-8x slower than Tensor Cores

Performance of NT GEMM with N = 2048, K = 2048

(Tesla V100-DGXS-16GB, cuBLAS 10.1)
PARALLELIZATION: TILE QUANTIZATION

Dimensions quantize to tile boundaries

When the problem size does not cleanly divide into tiles, performance is lost

- **best case**: 4/4 tiles used, 100% utilization
- **not-so-great case**: ~4/6 tiles used, 67% utilization
PARALLELIZATION: TILE QUANTIZATION

Dimensions quantize to tile boundaries

When the problem size does not cleanly divide into tiles, performance is lost

Choosing dimensions to be multiples of 64 minimizes tile quantization (cuBLAS 10.1)
PARALLELIZATION: WAVE QUANTIZATION

Number of tiles quantizes to the GPU size

Tiles are assigned to SMs, so performance is ideal when number of tiles is a multiple of SM count

Example with 12 tiles on an 8-SM GPU, assuming 1 tile/SM
- Second wave runs at 50% utilization
- Overall computation runs at 75% utilization
PARALLELIZATION: WAVE QUANTIZATION

Number of tiles quantizes to the GPU size

Tiles are assigned to SMs, so performance is ideal when number of tiles is a multiple of SM count

It is useful to check the number of thread blocks created (by calculation or nvprof/nsight)
PARALLELIZATION: TILE EFFICIENCY
Larger tiles are more bandwidth efficient, larger K amortizes overhead

Tiles are just smaller GEMMs - same data reuse principles

When tile’s M and N are smaller ...
 ... less data reuse is captured in the tile
 ... more external bandwidth is required

Also, when tile’s K is small ...
 ... setup and teardown overheads dominate

In general, larger operations perform better

![Graph showing performance of TN GEMM with K = 4096](image)

(Tesla V100-DGX-16GB, cuBLAS 10.1)
TENSOR CORE PERFORMANCE GUIDELINES
If you only remember one slide from this presentation, use this one!

1. Satisfy requirements to enable Tensor Cores
 • For linear layers: input size, output size, batch size need to be multiples of 8 (FP16) / 16 (INT8)
 • For convolutions: input and output channel counts need to be multiples of 8 (FP16) / 16 (INT8)

2. Ensure good Tensor Core GEMM efficiency
 • Choose the above dimensions as multiples of 64/128/256
 • (if the total number of tiles is small) Ensure that the tile count is a multiple of the SM count

3. Be aware of bandwidth limited regimes
 • If any GEMM dimension is 128 or smaller, the operation is likely bandwidth limited
CASE STUDY: TRANSFORMER

From “Attention is all you need”

Transformers perform neural machine translation without suffering from RNN dependencies
CASE STUDY: TRANSFORMER

From “Attention is all you need”

Transformers perform neural machine translation without suffering from RNN dependencies.
CASE STUDY: Transformer
From “Attention is all you need”

Step 1: Pad vocabulary to multiple of 8 to ensure TC usage in projection layer

Vocabulary size maps to M dimension in projection layer

Transformer: Projection Linear layer, batch 5120

Throughput [TFLOPS]

- forward
- activation grad
- weight grad

V=33708 V=33712
CASE STUDY: TRANSFORMER
From “Attention is all you need”

Step 2: Pad input sequence data to multiple of 8 to ensure TC usage in all other layers

Sequence length maps to M/N dimensions in attention layers

Sequence length * number of sentences maps to N dimension in most layers

Transformer: Feed-Forward Network, first layer
CASE STUDY: TRANSFORMER

From “Attention is all you need”

Step 3: Choose token count per batch such that tile count is multiple of SM count (80 here)

E.g. 5120 instead of 4096, 2560 instead of 2048, ...

Transformer: Feed-Forward Network, first layer
SUMMARY
 SUMMARY: TENSOR CORE GUIDELINES

Tensor Core GPUs provide considerable deep learning performance

Following a few simple guidelines can maximize delivered performance

Ensure key dimensions are multiples of 8 (FP16) or 16 (INT8)

Choose dimensions to avoid tile and wave quantization where possible

Up to a point, larger dimensions lead to higher efficiency

Visit the permanent online version of this guide (ETA early April)

RESOURCES
TENSOR CORES
For more information

Volta V100 whitepaper
Turing whitepaper
Mixed-precision training guide
Tensor Core technology webpage
Programming Tensor Cores blog post
DNN OPERATION MAPPING TO GEMM

All pass mappings

<table>
<thead>
<tr>
<th>Operation</th>
<th>Phase</th>
<th>GEMM “M”</th>
<th>GEMM “N”</th>
<th>GEMM “K”</th>
</tr>
</thead>
<tbody>
<tr>
<td>FC/Linear</td>
<td>Forward</td>
<td>Output features</td>
<td>Batch size</td>
<td>Input features</td>
</tr>
<tr>
<td></td>
<td>Data grad</td>
<td>Input features</td>
<td>Batch size</td>
<td>Output features</td>
</tr>
<tr>
<td></td>
<td>Weight grad</td>
<td>Input features</td>
<td>Output features</td>
<td>Batch size</td>
</tr>
<tr>
<td>Conv</td>
<td>Forward</td>
<td>Batch x iHeight x iWidth</td>
<td>Output channels</td>
<td>Input channels x fHeight x fWidth</td>
</tr>
<tr>
<td></td>
<td>Data grad</td>
<td>Batch x iHeight x iWidth</td>
<td>Input channels</td>
<td>Output channels x fHeight x fWidth</td>
</tr>
<tr>
<td></td>
<td>Weight grad</td>
<td>Input channels x fHeight x fWidth</td>
<td>Output channels</td>
<td>Batch x iHeight x iWidth</td>
</tr>
</tbody>
</table>
Tensor Core Throughputs

On Volta and Turing GPUs (except TU11x), MACs/SM/CLK

<table>
<thead>
<tr>
<th>GPU</th>
<th>CUDA Cores</th>
<th>Tensor Cores</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>FP64</td>
<td>FP32</td>
</tr>
<tr>
<td>Volta</td>
<td>32</td>
<td>64</td>
</tr>
<tr>
<td>Turing</td>
<td>2</td>
<td>64</td>
</tr>
</tbody>
</table>
CONVOLUTION DATA LAYOUTS
With Tensor Cores, NHWC layout is faster than NCHW layout

4D tensor data can be laid out two ways

 “channel-first” or NCHW
 “channel-last” or NHWC

TC convolutions natively process NHWC tensors
NCHW data incurs an extra transpose
Native NHWC support in MxNet and TF (via XLA)
PyTorch support in development
Enable NHWC layout when possible

Performance of Convolution Weight Gradient
with R = S = 1, C = 1024, K = 1024, H = W = 7

(Tesla V100-DGXS-16GB, cuBLAS 10.1)