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Revolutionary Leap of Tactile Internet

Tactile

Internet

Internet

Connecting machines into control loops
Mobile at humanoid reaction times of
Internet milliseconds and less

Source: ITU TechWatch Report: The Tactile Internet
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Tactile Internet for Production and Logistics 1
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5G for Industry 4.0

M Reliable remote machine operation CT
B  Augmented worker/workspace Collaboration
Securi
. . . Performance,e.gt..yReal—Time D emischen Bundesages
B Predictive maintenance 5G, TSN, Virtualization,...
B  Machine and process monitoring A
. . . .y . IC4F
| ngh precision pOSItlonlng oT PROJECT IT
i fficienc lexibili
- IndUStrIaI edge CIOUd Consistincy, Coyntinuity Co:t Redugion
Safety Security
H H Digital Twin in Real-Time Fast Data, auto. Deploymen
o TFUCk-tO-X Communlcatlon Igdtustrial Edge Cloud tMotbile Etdge CFI)ou)cli t
[ |

Secure remote access

Z Fraunhofer

HHI



Future Architecture for Industrial Communications am
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Interface to local applications (ERP/MES/PLM/CIM/CAX) Real-time remote control and maintenance
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Tactile Networked Mobility ,\ —
ooy ®|EE
L~

5G in Networked Driving
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To Shift or Not to Shift (the Burden to the Network)?

B Main drawbacks of in-vehicle processing

No coordination of decisions in scenarios
with multiple cars

Range reduction of e-cars due to high
power consumption (storage, cooling...)

Integration of sensors

THE COMING INAUTONOMOUS VEHICLES
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PER SECOND
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B Network-side sensing and processing may _ /" NTONOMOLS VEHCLE

; ) ] CAMERAS LIDAR
be infeasible in current networks
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Key Enabler: End to End (E2E) Quality of Service (QoS) Prediction

B V2X communication must provide guaranteed QoS for a certain amount of time
For example, 10 Mbps with 1ms delay for the next 20 seconds, and

Predict changes in the radio link quality to pro-actively perform adaptation.
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Softwareization: Machine Learning in the Base Stations

By predicting future radio conditions the BS
provides to the UE:

: _ E.g. coverage holes or out of coverage areas
1) Scheduling and channel allocation and link quality (considering network
2) Predicted link quality, network capacity environment e.g., obstacles) may be predicted

V2X
Application
server

Base Stations use Machine Learning for prediction and look-ahead
scheduling based on collected data from UEs and VV2X application servers

© Fraunhofer HHI'| 21.03.19 | 10

\

~ Fraunhofer
HHI




Wireless Communication Networks — Today

B Each base station divides radio recourses

B [nterference between cells
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Wireless Communication Networks — Tomorrow
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M-o)) B Exploding number of devices

B Different new service classes
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Wireless Communication Networks — Tomorrow

Massive MIMO

More antennas
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5G NR sub-6GHz 5G NR mmWave
(e.0. 3.4-3.6 GHz) (.. 24.25-27.5 GHz, 27.5-29.5 GHz)

24 GHz 100 GHz

'.‘. mmWave

B High spectral efficiency > Massive MIMO
B Additional bandwidth - mmWave

More resources
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mmW und THz Radio for Industrial Communication

M Potential solution for production
cells or distributed industrial plants

B Point to multi-point networking
with directional transmission

® large bandwidth, low latency

B |ow interference to neighboring
systems

B Higher immunity to jamming
and eavesdropping
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Operating Networks in the mmWave Band

MACRO BASESTATION

® Hardware
28,39,60 und 70/80 GHz

hybrid analog-digital beamformers S R
R % %, MM-WAVE HOTSPOT

low-rate ADCs S R

large number of antennas at both a5 3% U
transmitters and receivers S ERY ‘ /

o . < 'mm-wave U-Plane
high directivity 1/} .
B Characteristics

High attenuation
High penetration loss
Sparse channels (few clustered paths)

®
Mobile massive MIMO M®WEBA
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Operating Networks in the mmWave Band: Challenges

B Interference is reduced compared to cmWave networks. But:

Interference management problems are typically combinatorial
(selection of beam directions, beam widths, etc.)

B Initial access, handover, and mobility management are challenging tasks

® Requirement for relays: cooperation and multi-connectivity techniques
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Beam Alignment

B mmWave with hybrid beamforming
Find suitable beams for communication at the receiver and the transmitter
Naive approach: probe all possible beams (inefficient)

\\1Z
' ‘

Proposals (also present in standards): Start with wide beams and refine them in a
multi-step approach I

\\‘ V
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Beam Alignment: Networking Challenges

m Coordinate UEs and BSs to keep track of the individual beams in the network

B Significant overhead in uplink-downlink communication, especially in dense networks
with moving UEs and traditional handover mechanisms

B Efficient probing schemes have to be devised
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Mobility Management

B Idea: UEs communicate with a main beam and keep locking into backup beams

Backup beams can be reflections of different beams of the serving BS or other BSs

The communication is transparent for the UE; no formal handover procedure

® Challenge: Coordinate the beams of multiple BSs and multiple UEs
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Potential Benefits of Machine Learning and GPU-based Processing

B To enable us to cope with a massively increased complexity
=>diminish mismatch between model and reality

B to reduce the number of measurements and facilitate robust decisions
»enabling massive connectivity, MIMO, and mmWave

B To provide ultra-high speed processing (through massive parallelization)
<> meeting strict latency constraint in highly dynamic environments

B to facilitate self-organizing mmWave networks
=» cognitive network management

M to provide robust predictions
=» QoS prediction, anticipatory networking
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Machine Learning for 5G and Beyond: Examples

Amplitude

Deep Learning model
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Learning with Kernels
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Wireless Communication Networks — The Future

5G NOMA

LTE / 5G

e Y-
\ ¢

~Exclusive” resource
allocation

More devices
than resources!

B Non-exclusive resource sharing between devices

B Complex receivers to cope with interference
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5G NOMA Example: Multiple User Uplink

B Objective: For each user learn a filter f to minimize the probability of error
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Machine Learning for 5G NOMA

B Many unknowns: fast-time varying channels, varying number of users, inter- and intra-
cell interference, changing modulation and power, etc.

B Consequences

1.  Training samples are highly limited (hundreds). Deep neural networks often require
hundreds of thousands or more samples

2. Training and detection have to be performed within the coherence time, or ML tools
have to learn (or be given) time-invariant features

Coherence time (e.g. 10ms)
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Machine Learning for 5G NOMA

Conventional approach: Our machine-learning (ML) approach:
1. Send pilots 1. Send pilots
2. Estimate channels and other system 2—Estimatechannels-and-othersystem
parameters parameters
3. Construct, for example, a linear 3. Use pilots for ML tool training
filter (receiver) 4. Detect the symbols with the ML
4. Detect the symbols with the filter tool
in step (3)
M M
f.:C" —=C fmr : C* = C

Time

(one filter for each user) (one nonlinear filter for each user)

Time
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Machine Learning for 5G NOMA

B Goal: Use pilots to learn the receiver (filter)
structure directly

B Approach: Online adaptive learning in the
sum space of linear and Gaussian RKHS

Initial fast convergence and low
complexity

Easy to exploit side information and
convergence guarantees
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D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stanczak, "Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach," in

Proc. IEEE International Conference on Communications (ICC), May 2018
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Simulation Results
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Online Adaptive Learning in Reproducing Kernel Hilbert Spaces

B Train the receiver f such that it is in the
intersection of all the sets:

C(n) ={f €eH: |[f(rm)) —b(n)| < €}

nis time index

€ > 0 accounts for noise

B Challenge: Find a point in the .
intersection within latency constraints @@‘(\

@\\ Each hyperslab

= Convex feasibility problem (CFP) o N\ fe ; Cn is defined by a
L - - . nE >0 - -

= Massive parallelization across § ¢ 2 training sample

symbols and users
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Basic Methodology

B Many ML algorithms are designed for convex feasibility problems

B Projection methods are a

natural candidate for solving
such problems
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Projection-Based Methods for CFP: Main Idea

1. Assume that the sought function g : C¥ — C belongs to an appropriate Hilbert space #
(e.g., a reproducing kernel Hilbert space), and let 7, . cV — ¢ be its initial estimate

Joe H
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Projection-Based Methods for CFP: Main Idea

1. Assume that the sought function g : C¥ — C belongs to an appropriate Hilbert space #
(e.g., a reproducing kernel Hilbert space), and let 7, . cN — ¢ be its initial estimate

2. For each pilot by [t], construct a closed convex set C[t] that is likely to contain the
function g

Joe H

°g C[1]

Ctl ={f e H | |f(r[t]) = ba[t]] < €}
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Projection-Based Methods for CFP: Main Idea

1.

Assume that the sought function g : CV — C belongs to an appropriate Hilbert space #
(e.g., a reproducing kernel Hilbert space), and let 7, . cN — ¢ be its initial estimate

For each pilot by [t], construct a closed convex set C}[t] that is likely to contain the
function g

Update the current estimate by projecting on the convex set

Joe H

J1 g C[1]

Ctl ={f e H | |f(r[t]) = ba[t]] < €}
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Projection-Based Methods for CFP: Main Idea

1.

Assume that the sought function g : CV — C belongs to an appropriate Hilbert space #
(e.g., a reproducing kernel Hilbert space), and let 7, . cN — ¢ be its initial estimate

For each pilot by [t], construct a closed convex set C}[t] that is likely to contain the
function g

Update the current estimate by projecting on the convex set

Repeat the (2)-(3) for each pilot symbol

fi
2
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Adaptive Projected Subgradient Methods (APSM)

M Sequential methods are too slow for many applications

=» Massive parallelization via APSM-based approaches
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Adaptive Projected Subgradient Methods (APSM)

Fixed dictionary with 17k elements
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Proof of Concept: Hardware in the Loop Setup

2. Transmission

= 2

synchronization

4. Post processing and display ' 1. Generate and send TX signal
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Proof of Concept: Lab Pictures
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User view on base station Base station view on 4 out of 6 users
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Proof of Concept: Lab Pictures

M Users, display, processing, base station

B GUI, TX and RX constellations

1
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GUI - graphical user interface, RX — receive, TX — transmit
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Proof of Concept: Evaluation

B Measured key performance indicators
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Proof of Concept: Findings

B Carrier frequency offset (CFO) between local oscillators at users and BS

m CFO drifts (prominent for longer data-sequences)

B No explicit channel estimation
B Good channel tracking capabilities
Straight forward implementation

Very efficient in terms of symbol error rate (SER) for longer data-sequences
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Softwareization of Mobile Radio Networks

® Challenges of 5G are opportunities for machine learning (ML)
B Addressed by massively parallel algorithms on GPUs
® Example: APSM for NOMA
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