Softwareization of Mobile Radio Networks

Slawomir Stanczak and <u>Alexander Keller</u>

Joint work with Daniyal Amir Awan, Renato Cavalcante, Jochen Dommel, Martin Kurras, Matthias Mehlhose, Zoran Utkovski

Revolutionary Leap of Tactile Internet

Source: ITU TechWatch Report: The Tactile Internet

Challenges

Optimal functional split & interplay between

- sensing
- computation
- communication

- Future networks need to provide
 - higher data rates and
 - higher reliability at lower latencies

Tactile Internet for Production and Logistics

0

5G for Industry 4.0

- Reliable remote machine operation
- Augmented worker/workspace
- Predictive maintenance
- Machine and process monitoring
- High precision positioning
- Industrial edge cloud
- Truck-to-X communication
- Secure remote access

Future Architecture for Industrial Communications

Tactile Networked Mobility

5G in Networked Driving

- Platooning
- Crossing traffic
- Collaborative driving
- Remote driving
- AR-based driver assistance
- Complete street perception
- Analysis of vehicle & driver conditions

To Shift or Not to Shift (the Burden to the Network)?

- Main drawbacks of in-vehicle processing
 - No coordination of decisions in scenarios with multiple cars
 - Range reduction of e-cars due to high power consumption (storage, cooling...)
 - Integration of sensors

Network-side sensing and processing may be infeasible in current networks

© Intel

Key Enabler: End to End (E2E) Quality of Service (QoS) Prediction

- V2X communication must provide guaranteed QoS for a certain amount of time
 - For example, 10 Mbps with 1ms delay for the next 20 seconds, and
 - Predict changes in the radio link quality to pro-actively perform adaptation.

Softwareization: Machine Learning in the Base Stations

Wireless Communication Networks – Today

- Each base station divides radio recourses
- Interference between cells

Wireless Communication Networks – Tomorrow

Wireless Communication Networks – Tomorrow

More antennas

- High spectral efficiency → Massive MIMO
- Additional bandwidth → mmWave

5G NR mmWave

More resources

mmW und THz Radio for Industrial Communication

© Bosch

- Potential solution for production cells or distributed industrial plants
- Point to multi-point networking with directional transmission
- large bandwidth, low latency
- low interference to neighboring systems
- Higher immunity to jamming and eavesdropping

Operating Networks in the mmWave Band

Hardware

- 28,39,60 und 70/80 GHz
- hybrid analog-digital beamformers
- low-rate ADCs
- large number of antennas at both transmitters and receivers
- high directivity

Characteristics

- High attenuation
- High penetration loss
- Sparse channels (few clustered paths)
- Mobile massive MIMO

Operating Networks in the mmWave Band: Challenges

- Interference is reduced compared to cmWave networks. But:
 - Interference management problems are typically combinatorial (selection of beam directions, beam widths, etc.)
- Initial access, handover, and mobility management are challenging tasks
- Requirement for relays: cooperation and multi-connectivity techniques

Beam Alignment

- mmWave with hybrid beamforming
 - Find suitable beams for communication at the receiver and the transmitter
 - Naive approach: probe all possible beams (inefficient)

Proposals (also present in standards): Start with wide beams and refine them in a multi-step approach

Beam Alignment: Networking Challenges

- Coordinate UEs and BSs to keep track of the individual beams in the network
- Significant overhead in uplink-downlink communication, especially in dense networks with moving UEs and traditional handover mechanisms
- Efficient probing schemes have to be devised

Mobility Management

- Idea: UEs communicate with a main beam and keep locking into backup beams
 - Backup beams can be reflections of different beams of the serving BS or other BSs
 - The communication is transparent for the UE; no formal handover procedure
- Challenge: Coordinate the beams of multiple BSs and multiple UEs

Potential Benefits of Machine Learning and GPU-based Processing

- To enable us to cope with a massively increased complexity
 diminish mismatch between model and reality
- to reduce the number of measurements and facilitate robust decisions
 →enabling massive connectivity, MIMO, and mmWave
- To provide ultra-high speed processing (through massive parallelization)
 meeting strict latency constraint in highly dynamic environments
- to facilitate self-organizing mmWave networks
 cognitive network management
- to provide robust predictionsQoS prediction, anticipatory networking

Machine Learning for 5G and Beyond: Examples

Wireless Communication Networks – The Future

- Non-exclusive resource sharing between devices
- Complex receivers to cope with interference

5G NOMA Example: Multiple User Uplink

Objective: For each user learn a filter f to minimize the probability of error

Machine Learning for 5G NOMA

- Many unknowns: fast-time varying channels, varying number of users, inter- and intracell interference, changing modulation and power, etc.
- Consequences
- 1. Training samples are highly limited (hundreds). Deep neural networks often require hundreds of thousands or more samples
- 2. Training and detection have to be performed within the coherence time, or ML tools have to learn (or be given) time-invariant features

Machine Learning for 5G NOMA

Conventional approach:

- 1. Send pilots
- Estimate channels and other system parameters
- Construct, for example, a linear filter (receiver)
- 4. Detect the symbols with the filter in step (3)

$$f:\mathbb{C}^M\to\mathbb{C}$$

Time

Pilots Data

(one filter for each user)

Our machine-learning (ML) approach:

- 1. Send pilots
- 2. Estimate channels and other system parameters
- 3. Use pilots for ML tool training
- 4. Detect the symbols with the ML tool

(one nonlinear filter for each user)

Machine Learning for 5G NOMA

- Goal: Use pilots to learn the receiver (filter) structure directly
- Approach: Online adaptive learning in the sum space of linear and Gaussian RKHS
 - Initial fast convergence and low complexity
 - Easy to exploit side information and convergence guarantees

D. A. Awan, R. L. G. Cavalcante, M. Yukawa, and S. Stańczak, "Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach," in Proc. IEEE International Conference on Communications (ICC), May 2018

Simulation Results

Partially linear filtering (PLAF) vs. MMSE-SIC

PLAF vs. Nonlinear filtering (NLAF)

Online Adaptive Learning in Reproducing Kernel Hilbert Spaces

- Train the receiver f such that it is in the intersection of all the sets:
 - $C(n) := \{ f \in H : |f(r(n)) b(n)| \le \epsilon \}$
 - \blacksquare n is time index
 - $\epsilon > 0$ accounts for noise
- Challenge: Find a point in the intersection within latency constraints
 - Convex feasibility problem (CFP)
 - Massive parallelization across symbols and users

Basic Methodology

Many ML algorithms are designed for convex feasibility problems

 Projection methods are a natural candidate for solving such problems

1. Assume that the sought function $g:\mathbb{C}^N\to\mathbb{C}$ belongs to an appropriate Hilbert space \mathcal{H} (e.g., a reproducing kernel Hilbert space), and let $f_0:\mathbb{C}^N\to\mathbb{C}$ be its initial estimate

- 1. Assume that the sought function $g:\mathbb{C}^N \to \mathbb{C}$ belongs to an appropriate Hilbert space \mathcal{H} (e.g., a reproducing kernel Hilbert space), and let $f_0:\mathbb{C}^N \to \mathbb{C}$ be its initial estimate
- 2. For each pilot $b_1[t]$, construct a closed convex set $C_1[t]$ that is likely to contain the function g

- 1. Assume that the sought function $g:\mathbb{C}^N\to\mathbb{C}$ belongs to an appropriate Hilbert space \mathcal{H} (e.g., a reproducing kernel Hilbert space), and let $f_0:\mathbb{C}^N\to\mathbb{C}$ be its initial estimate
- 2. For each pilot $b_1[t]$, construct a closed convex set $C_1[t]$ that is likely to contain the function g
- 3. Update the current estimate by projecting on the convex set

- 1. Assume that the sought function $g:\mathbb{C}^N\to\mathbb{C}$ belongs to an appropriate Hilbert space \mathcal{H} (e.g., a reproducing kernel Hilbert space), and let $f_0:\mathbb{C}^N\to\mathbb{C}$ be its initial estimate
- 2. For each pilot $b_1[t]$, construct a closed convex set $C_1[t]$ that is likely to contain the function g
- 3. Update the current estimate by projecting on the convex set
- 4. Repeat the (2)-(3) for each pilot symbol

Adaptive Projected Subgradient Methods (APSM)

Sequential methods are too slow for many applications

→ Massive parallelization via APSM-based approaches

Adaptive Projected Subgradient Methods (APSM)

CPU vs. GPU

Proof of Concept: Hardware in the Loop Setup

Proof of Concept: Lab Pictures

User view on base station

Base station view on 4 out of 6 users

Proof of Concept: Lab Pictures

Users, display, processing, base station

GUI, TX and RX constellations

GUI – graphical user interface, RX – receive, TX – transmit

Proof of Concept: Evaluation

- Measured key performance indicators
 - Sum rate (goodput) as successful received bits of all users
 - Symbol error rate (SER) of a single user (worst user)
- Comparison
 - MMSE
 - ML-approach

Proof of Concept: Findings

- Carrier frequency offset (CFO) between local oscillators at users and BS
- CFO drifts (prominent for longer data-sequences)

Initial claim: ML can learn and "counteract" hardware impairments

- No explicit channel estimation
- Good channel tracking capabilities
 - Straight forward implementation
 - Very efficient in terms of symbol error rate (SER) for longer data-sequences

Softwareization of Mobile Radio Networks

- Challenges of 5G are opportunities for machine learning (ML)
- Addressed by massively parallel algorithms on GPUs
- Example: APSM for NOMA