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• Limited access to hardware

• Well-controlled experiments

• Good progress recently in Sim2Real

SIMULATION IN ROBOTICS

Quadruped Locomotion Dexterous Manipulation

OpenAI, 2018

Grasping in Clutter

Mahler and Goldberg, 2017
UC Berkeley

Jemin et al, 2019

ETH
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MOTIVATION
Reinforcement Learning

AlphaZero OpenAI Five

OpenAI, 2018Deepmind, 2018
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APPLICATIONS

Locomotion/Animation 

Reinforcement Learning

Liang, Makoviychuk, Handa et al, 

2018

NVIDIA
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APPLICATIONS

Sim2Real Robotics

Robotics

Chebotar, Handa, Makoviychuk, 

et al, 2018

NVIDIA
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ISAAC GYM
Platform for high-performace AI Learning Experiments
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ISAAC GYM

Simple to get started

Procedural API for scene and model definition

Performance (from Python) and scalability

Fast, high-fidelity physics/multi-physics

Fast, high-quality image generation

Visualization and camera sensors, fast multi-camera rendering

Decoupling of graphics/physics

Learning algorithm/framework agnostic

Key Goals
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ISAAC GYM

Multiple physics backends

Multiple rendering backends

Support for multiple robot definition formats

Many environments simulated in parallel

Scalable: 

Many simple/single-agent environments

Complex/multi-agent environments

Key Features
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ISAAC GYM

RTX

MJCF

URDF

Gym Graphics

Gym Framework Gym API
(.so/.dll)

Simple

RL Module

Gym Physics

Importers

C++ Application

Gym Bindings

Python

Other
Isaac Gym

Asset

PhysX FleX

OpenSim

Other
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PHYSICS

New 4.x version for robotics, reinforcement learning and engineering applications

Maximal coordinate representation and articulations

Performance and scalability

From small training environments to large city-scale worlds

CPU and GPU simulation

PhysX
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PHYSICS
PhysX
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PHYSICS
FleX

• Research features backends

• Only GPU simulation

• New Newton solver

• Multi-physics



13

PHYSICS
FleX

• Multi-physics

• Rigid and FEM soft bodies

• Cloth, ropes

• Liquids

• Two-way coupling and force 
propagation between 
different phases
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PHYSICS
FleX
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PHYSICS
FleX
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RENDERING
Multiple Rendering Backends

• Vulkan-based Raster 

• Fast raster graphics

• Simple materials and lights

• RTX-based Ray-Tracing

• High-fidelity hardware-accelerated ray tracing

• Support for MDL/complex materials

• Area lights, ambient occlusion, reflections, refraction
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RENDERING
Camera Sensors

• Camera sensors 

• Free control

• Fixed

• Attach to bodies

• Render to image buffers

• Input to visual learning algorithms

• Output 

• High Performance – thousands of images per second
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USING ISAAC GYM

• Use native C++ API or python bindings

• Scalable execution:

• Single laptop/desktop

• Cluster

• Remote viewer to visualize results of training on server/cluster 

• Includes example environments / experiments
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USING ISAAC GYM
from isaacgym import gymapi

# initialize gym
gym = gymapi.acquire_gym()

# create a viewer (optional)
viewer = gym.create_viewer(None, 1920, 1080);

# load asset
robot_asset = gym.load_asset("../assets", “franka.urdf")

# create a simulation
sim = gym.create_sim()
# get default sim params
params = gymapi.SimParams()
gym.get_sim_params(sim, params)
# set custom sim params
params.gravity = gymapi.Vec3(0.0, -9.8, 0.0)
params.solver_type = 5
params.num_outer_iterations = 4
params.num_inner_iterations = 10
params.relaxation = 0.75
params.warm_start = 0.5
gym.set_sim_params(sim, params)
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USING ISAAC GYM
# specify number of envs in the simulation
# - multiple envs can be stepped in parallel
num_envs = 1024

# specify environment spacing and bounds
spacing = 2.0
lower = gymapi.Vec3(-spacing, 0.0, -spacing)
upper = gymapi.Vec3(spacing, spacing, spacing)

# initialize an array of environments using a procedural API
# - easy to randomize properties
for i in range(num_envs):

# create env
env = gym.create_env(sim, lower, upper)

# add actor
pose = gymapi.Transform(gymapi.Vec3(0.0, 2.0, 0.0), gymapi.Quat(-0.707107, 0.0, 0.0, 0.707107))
gym.create_actor(env, robot_asset, pose, “franka")

# set some simulation parameters
dt = 1.0 / 60.0
num_substeps = 2
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USING ISAAC GYM
# main loop
while not gym.query_viewer_has_closed(viewer):

for i in range(num_envs):

torque = 20.0
# get some useful handles (this can be done before the main loop)
env = gym.get_env(sim, i)
joint3_handle = gym.get_joint_handle(env, “franka", “panda_joint3")

# apply efforts to individual joints
gym.apply_joint_effort(env, “panda_joint3, torque)

# step the simulation
gym.simulate(sim, dt, num_substeps)
gym.fetch_results(sim, True)

# update the viewer
gym.step_graphics(sim)
gym.draw_viewer(viewer, sim, True)

# Wait for dt to elapse in real time.
# This synchronizes the physics simulation with the rendering rate.
gym.sync_frame_time(sim)
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EXAMPLES
Locomotion
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EXAMPLES
Locomotion
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EXAMPLES
Locomotion
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EXAMPLES
Robotics

• Trained using RL in 
Isaac Gym

• RTX renderer, 
raytraced reflections 
and refractions
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WHAT’S NEXT?

• Further performance optimization: 

• GPU observations and control

• No-copy communication of camera image to learning framework

• More training environments and examples: robotics, locomotion, multi-agent

• Physics:

• Support of deformable objects – soft bodies, cloth, etc

• Soft actuators

• Early access soon (Contact if interested!)

• General release in 2019



Thank You!
vmakoviychuk@nvidia.com


