
Viktor Makoviichuk, 03.19.19

ISAAC GYM

2

• Limited access to hardware

• Well-controlled experiments

• Good progress recently in Sim2Real

SIMULATION IN ROBOTICS

Quadruped Locomotion Dexterous Manipulation

OpenAI, 2018

Grasping in Clutter

Mahler and Goldberg, 2017
UC Berkeley

Jemin et al, 2019

ETH

3

MOTIVATION
Reinforcement Learning

AlphaZero OpenAI Five

OpenAI, 2018Deepmind, 2018

4

APPLICATIONS

Locomotion/Animation

Reinforcement Learning

Liang, Makoviychuk, Handa et al,

2018

NVIDIA

5

APPLICATIONS

Sim2Real Robotics

Robotics

Chebotar, Handa, Makoviychuk,

et al, 2018

NVIDIA

6

ISAAC GYM
Platform for high-performace AI Learning Experiments

7

ISAAC GYM

Simple to get started

Procedural API for scene and model definition

Performance (from Python) and scalability

Fast, high-fidelity physics/multi-physics

Fast, high-quality image generation

Visualization and camera sensors, fast multi-camera rendering

Decoupling of graphics/physics

Learning algorithm/framework agnostic

Key Goals

8

ISAAC GYM

Multiple physics backends

Multiple rendering backends

Support for multiple robot definition formats

Many environments simulated in parallel

Scalable:

Many simple/single-agent environments

Complex/multi-agent environments

Key Features

9

ISAAC GYM

RTX

MJCF

URDF

Gym Graphics

Gym Framework Gym API
(.so/.dll)

Simple

RL Module

Gym Physics

Importers

C++ Application

Gym Bindings

Python

Other
Isaac Gym

Asset

PhysX FleX

OpenSim

Other

10

PHYSICS

New 4.x version for robotics, reinforcement learning and engineering applications

Maximal coordinate representation and articulations

Performance and scalability

From small training environments to large city-scale worlds

CPU and GPU simulation

PhysX

11

PHYSICS
PhysX

12

PHYSICS
FleX

• Research features backends

• Only GPU simulation

• New Newton solver

• Multi-physics

13

PHYSICS
FleX

• Multi-physics

• Rigid and FEM soft bodies

• Cloth, ropes

• Liquids

• Two-way coupling and force
propagation between
different phases

14

PHYSICS
FleX

15

PHYSICS
FleX

16

RENDERING
Multiple Rendering Backends

• Vulkan-based Raster

• Fast raster graphics

• Simple materials and lights

• RTX-based Ray-Tracing

• High-fidelity hardware-accelerated ray tracing

• Support for MDL/complex materials

• Area lights, ambient occlusion, reflections, refraction

17

RENDERING
Camera Sensors

• Camera sensors

• Free control

• Fixed

• Attach to bodies

• Render to image buffers

• Input to visual learning algorithms

• Output

• High Performance – thousands of images per second

18

USING ISAAC GYM

• Use native C++ API or python bindings

• Scalable execution:

• Single laptop/desktop

• Cluster

• Remote viewer to visualize results of training on server/cluster

• Includes example environments / experiments

19

USING ISAAC GYM
from isaacgym import gymapi

initialize gym
gym = gymapi.acquire_gym()

create a viewer (optional)
viewer = gym.create_viewer(None, 1920, 1080);

load asset
robot_asset = gym.load_asset("../assets", “franka.urdf")

create a simulation
sim = gym.create_sim()
get default sim params
params = gymapi.SimParams()
gym.get_sim_params(sim, params)
set custom sim params
params.gravity = gymapi.Vec3(0.0, -9.8, 0.0)
params.solver_type = 5
params.num_outer_iterations = 4
params.num_inner_iterations = 10
params.relaxation = 0.75
params.warm_start = 0.5
gym.set_sim_params(sim, params)

20

USING ISAAC GYM
specify number of envs in the simulation
- multiple envs can be stepped in parallel
num_envs = 1024

specify environment spacing and bounds
spacing = 2.0
lower = gymapi.Vec3(-spacing, 0.0, -spacing)
upper = gymapi.Vec3(spacing, spacing, spacing)

initialize an array of environments using a procedural API
- easy to randomize properties
for i in range(num_envs):

create env
env = gym.create_env(sim, lower, upper)

add actor
pose = gymapi.Transform(gymapi.Vec3(0.0, 2.0, 0.0), gymapi.Quat(-0.707107, 0.0, 0.0, 0.707107))
gym.create_actor(env, robot_asset, pose, “franka")

set some simulation parameters
dt = 1.0 / 60.0
num_substeps = 2

21

USING ISAAC GYM
main loop
while not gym.query_viewer_has_closed(viewer):

for i in range(num_envs):

torque = 20.0
get some useful handles (this can be done before the main loop)
env = gym.get_env(sim, i)
joint3_handle = gym.get_joint_handle(env, “franka", “panda_joint3")

apply efforts to individual joints
gym.apply_joint_effort(env, “panda_joint3, torque)

step the simulation
gym.simulate(sim, dt, num_substeps)
gym.fetch_results(sim, True)

update the viewer
gym.step_graphics(sim)
gym.draw_viewer(viewer, sim, True)

Wait for dt to elapse in real time.
This synchronizes the physics simulation with the rendering rate.
gym.sync_frame_time(sim)

22

EXAMPLES
Locomotion

23

EXAMPLES
Locomotion

24

EXAMPLES
Locomotion

25

EXAMPLES
Robotics

• Trained using RL in
Isaac Gym

• RTX renderer,
raytraced reflections
and refractions

26

WHAT’S NEXT?

• Further performance optimization:

• GPU observations and control

• No-copy communication of camera image to learning framework

• More training environments and examples: robotics, locomotion, multi-agent

• Physics:

• Support of deformable objects – soft bodies, cloth, etc

• Soft actuators

• Early access soon (Contact if interested!)

• General release in 2019

Thank You!
vmakoviychuk@nvidia.com

