Determinism in Deep Learning (S9911)
Duncan Riach, GTC 2019
RANDOMNESS

Pseudo-random number generation
Random mini-batching
Stochastic gradient descent
Data augmentation
Regularization / generalization
DETERMINISM

Elimination of truly random effects
Bit-exact reproducibility from run-to-run
Same model weights
Same inference results
Same graph generated
GOALS

Reasonably high performance
No changes to models
GUARANTEED FOR SAME

- number of GPUs
- GPU architecture
- driver version
- CUDA version
- cuDNN version
- framework version
- distribution setup
ADVANTAGES

AUDITING
In safety-critical applications

EXPERIMENTATION
Hold all independent variables constant

DEBUGGING
Reproduce a failure in a long run

REGRESSION
Re-factor without introducing bugs
Probability of Accuracy (on given run)

Model Accuracy

“Correct” range

after change

reference
BELIEFS

“TensorFlow is inherently non-deterministic.”

“GPUs are inherently non-deterministic.”

“This problem can’t be solved.”

“Nobody cares about this.”

“Non-determinism is required for high-performance.”

“It’s easy. Just set the seeds.”
HYPOTHESES

random seeds
tf.reduce_sum / tf.reduce_mean
broadcast addition (for adding bias)
TensorFlow autotune
gate_gradients
TensorRT
asynchronous reductions
GEMM split between thread-blocks
eigen kernels
max-pooling
distributed gradient update
multi-threading in the data loader
image and video decoding
data augmentation
CPU compute
CUDA atomicAdd()
tf.reduce_sum()

add bias using tf.add()
WORK-AROUND PART 1

\[
\text{input} = \text{tf.constant}([[1, 2, 3], [4, 5, 6]])
\]

\[
a = \text{tf.reshape}(\text{input}, [1, -1])
\]

\[
b = \text{tf.ones_like}(a)
\]

\[
deterministic_sum = \text{tf.matmul}(a, b, \text{transpose_b}=\text{True})
\]

\[
a = \text{tf.reshape}(\text{input}, [1, -1])
\]
WORK-AROUND PART 2

\[o = i \times w + b \]

<table>
<thead>
<tr>
<th>batch</th>
<th>inputs</th>
<th>layer outputs</th>
</tr>
</thead>
<tbody>
<tr>
<td>i00</td>
<td>i01</td>
<td>o00 o01 o02 o03</td>
</tr>
<tr>
<td>i10</td>
<td>i11</td>
<td>o10 o11 o12 o13</td>
</tr>
<tr>
<td>i20</td>
<td>i22</td>
<td>o20 o21 o22 o23</td>
</tr>
</tbody>
</table>

\[
\text{deterministic_mm_with_bias = tf.matmul(concat_1(i), concat(w, b))}
\]
BUT NOW

tf.reduce_sum() is deterministic

tf.add() is deterministic
SOLVE A REAL PROBLEM

Project MagLev: at-scale machine-learning platform

2D object detection model for autonomous vehicles

Production scale:

- Millions of trainable variables
- Millions of training examples
How to Debug Any Problem

The ability to quickly and effectively find and resolve bugs in new and established systems is one of the most valuable engineering skills that you can develop. Since this skill enables the rapid...

8 min read | 2.3K claps
HOW TO DEBUG

Determine what is working
Determine precisely what is not working
Generate hypotheses
Test hypotheses using divide and conquer
Generic Deep Learning Process
DETERMINISM DEBUG TOOL

Insert probe ops at various places in graph

Train the model twice

Identifies location and step of non-determinism injection
from tensorflow-determinism import probe

tensorflow_op_output = probe.monitor(
tensorflow_op_output, "name_for_place_in_graph")
Inserts back-propagatable monitor ops for:

- list, named-tuple, dict, or element
- element is int, float, string, or tf.Tensor (including zero-dimensional tensor)
- recursively, e.g. list-of-named-tuples-of-elements
Some of the other types of monitors:

- `probe.monitor_keras()`
 - For monitoring output of Keras layer
- `probe.monitor_gradients()`
 - Place between `compute_gradients()` and `apply_gradients()`
- `probe.summarize_trainable_variables()`
 - Use before training, after each step, or at the end of training

Also monitoring tools for `tf.estimator` and `tf.keras`, gradients and trainable variables
Run: 0 1

sum of weights (before training):
0 3738.0405251979828 | 3738.0405251979828 (MATCH)

load_examples_data_0:
0 f67dea7a7b36c2e3f44dd9451476993 | f67dea7a7b36c2e3f44dd9451476993 (MATCH)
1 05dd626e553e4de9120777796b66e80 | 05dd626e553e4de9120777796b66e80 (MATCH)
2 c344c0ffde1f8d32f6ce15fd0b8d7c44 | c344c0ffde1f8d32f6ce15fd0b8d7c44 (MATCH)
3 cef41f355e431546da36a09cb920ce9d | cef41f355e431546da36a09cb920ce9d (MATCH)
4 a3252ed988249ca6808da11a008b0d2b | a3252ed988249ca6808da11a008b0d2b (MATCH)
5 efd549a1b751bb6ef004ec593a6754e | efd549a1b751bb6ef004ec593a6754e (MATCH)
6 0b323c26f87e83754f52c84be8e71c41 | 0b323c26f87e83754f52c84be8e71c41 (MATCH)
99 59624187c5eab95623eda94eae06e2e3 | 59624187c5eab95623eda94eae06e2e3 (MATCH)

activation_1:
0 c9ec1a9495a6bdeada39824339217a6a | c9ec1a9495a6bdeada39824339217a6a (MATCH)
1 0e32644c2e091a65fb1c9314df5bf4 | 0e32644c2e091a65fb1c9314df5bf4 (MATCH)
2 ade8f097a13d8cb1b12e0d5c4d17 | 445cd0096eb2d86e0a4648f37f2b0 (MISMATCH)
3 77a97d2da46e67984b43967ad57661c64 | 099448c86672be5133001f2c90b8d808 (MISMATCH)
4 e5eb5f9b3c30d2494d30b2d2c2d33 | 40a2360b01da734f7505794449 (MISMATCH)
98 7d8a669e30fed8b0ac8c58eb7e0feca4 | 6bc154c26216e33f800c8fbb8243152c (MISMATCH)
99 c36fdcc5c5a49b656aebfd410e72f4c | 4f022b4a5a8301f19694bdad178342ca (MISMATCH)

Gradient for block_3b_conv_1/k0:0
0 a25625ecc4b7ff956e91960a2099426 | a25625ecc4b7ff956e91960a2099426 (MATCH)
1 44b1e9c648f2ddabac132ec4f8788685 | e9952981e265540d250ff280dada5b90e (MISMATCH)
2 437a2069155ea7c33d6424246ef0c4e36 | 65637a8b82febf88ddafe32fe0e1619a (MISMATCH)
3 ce2caaa7be36a50b6875a0d5ded29e3da | 0af8b48af6df7d2d485f5ac12af50 (MISMATCH)
CONVOLUTION

Back-Prop to Weight Gradients

FILTER (per output channel)

weight gradients
$\Delta \text{loss} / \Delta \text{weights}$
(per output channel)

CONVOLUTION OUTPUT

output gradients
$\Delta \text{loss} / \Delta \text{convolution_output}$
(per output channel)

C_input

reduction

H

W
CONVOLUTION
Back-Prop to Data Gradients

INPUT (per batch index)

C_input

W
H
input gradients
Δ loss / Δ input
(per batch index)

OUTPUT (per batch index)

C_output

W
H
output gradients
Δ loss / Δ output
(per batch index)

reduction
CONVOLUTION
Matrix-Multiplication Hierarchical Reduction

Final gradients

reduction

partial gradients from each thread-block
CONVOLUTION
CUDA atomicAdd()

Warp A
atomicAdd(0x10000, 5.0)

Warp B
atomicAdd(0x10000, 4.0)

Atomics Unit

Memory

0x10000: 1.0
0x10000: 6.0
0x10000: 10.0
0x10000: 1.0
0x10000: 5.0
0x10000: 10.0
CONVOLUTION

atomicAdd() Advantages

- Serializes operations without stalling parallel threads
- Assures atomic read-modify-write of memory
 - i.e. avoids race conditions
- Very easy to program
- No need to synchronize between thread-blocks
- Very fast read-modify-write loop near memory/cache
CONVOLUTION
Floating-Point Rounding Errors

A + B = C
usually
A + B + C
usually
CONVOLUTION
Root Cause and Solution

CUDA `atomicAdd()`

TensorFlow cuDNN auto-tuning

`TF_CUDNN_DETERMINISTIC` to disable auto-tuning and select deterministic cuDNN convolution algorithms

Added to TensorFlow master branch: bit.ly/tf-pr-24747

```
$ export TF_CUDNN_DETERMINISTIC=true
$ python tf_training_script.py

#!/usr/bin/python
import os
import tensorflow as tf
os.environ['TF_CUDNN_DETERMINISTIC'] = 'true'
# build a graph
```
BIAS ADDITION
Root Cause

bias gradient
Δ loss / Δ bias
(single value per output channel)

BIAS VALUE
(per output channel)

reduction

N

BIAS ADD OUTPUT (per output channel)

W

output gradients
Δ loss / Δ bias_add_output
(per output channel)

tensorflow.python.ops.nn.bias_add() uses CUDA atomicAdd()
BIAS ADDITION
Temporary Solution

Dynamically patch `tensorflow.python.ops.nn.bias_add()`

Use deterministic ops including implicit broadcasting

```python
if data_format == 'NCHW':
    value = tf.math.add(value, tf.reshape(bias, (1, tf.size(bias), 1, 1)))
elif data_format == 'NHWC' or data_format == None:
    value = tf.math.add(value, bias)

from tensorflow-determinism import patch
patch.bias_add()
```
RARER NON-DETERMINISM

tf.nn.fused_batch_norm() back-prop
 ○ Approximately every 10 steps
 ○ Temporary solution: run on CPU

gate_gradients=tf.train.Optimizer.GATE_OP (default)
 ○ optimizer.compute_gradients() parameter
 ○ Approximately every 100 steps
 ○ GATE_GRAPH is guaranteed to be deterministic
RAREST NON-DETERMINISM

Every few thousand steps at random locations

Changed from Pascal to Volta card => non-determinism persisted

Added ability to dump and compare probed tensors between runs

Suspected memory allocation and ownership (time / location)

Ran on cluster => fully deterministic

Updated my driver => fully deterministic locally

Possible causes: off-by-one memory allocation, incorrect cache invalidation, race conditions, clock speed, interface trims

batch-norm and gate_gradients fixes not required
Deterministic cuDNN convolution fixes upstreamed to TensorFlow master branch

TensorFlow determinism debugging tool developed

Autonomous-vehicle production model training fully deterministically and correctly on millions of examples
SINGLE GPU PERFORMANCE

Proprietary AV Perception Model

With unoptimized bias-add solution

- 6% DECREASE
- deterministic
- non-deterministic
MULTI-GPU WITH HOROVOD

Based on single-GPU determinism recipe

Two GPUs: deterministic out-of-the-box

More than two GPUs non-deterministic

Horovod uses NCCL2 ring-allreduce
RING-ALLREDUCE

Patarasuk, Pitch & Yuan, Xin. (2007). Bandwidth Efficient All-reduce Operation on Tree Topologies. 1 - 8. 10.1109/IPDPS.2007.370405.
Batch-reduce partial gradient tensors as they become ready

Order of reduction changes on each training step (apparently)

For now: disable Tensor Fusion

$ \text{HOROVOD_FUSION_THRESHOLD}=0 \; \text{python} \; \text{train.py}$
MULTI-GPU PERFORMANCE

Using Single-GPU Determinism Recipe

<table>
<thead>
<tr>
<th>GPUs</th>
<th>Relative Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Deterministic 0.5</td>
</tr>
<tr>
<td>2</td>
<td>Tensor Fusion 1.0</td>
</tr>
<tr>
<td>4</td>
<td>Tensor Fusion 1.5</td>
</tr>
<tr>
<td>8</td>
<td>Tensor Fusion 4.0</td>
</tr>
</tbody>
</table>

- Deterministic
- Non-Deterministic
- Perfect Scaling
ANOTHER REAL PROBLEM

GE Healthcare

Segmentation and Labeling
CT : BoneVCAR

Alerts for Critical Conditions
X-Ray : GE Critical Care Suite

Optimal Scans
MR : GE MR AIRx
MAX-POOLING

reduction

1 2 1 1
1 3 1 1
1 1 1 1

3 3 1
3 3 1
MAX-POOLING
Root Cause & Solution

CUDA `atomicAdd()`

TF_CUDNN_DETERMINISTIC

Added to TensorFlow master branch: bit.ly/tf-pr-25269

```bash
$ export TF_CUDNN_DETERMINISTIC=true
$ python tf_training_script.py
```

```python
#!/usr/bin/python
import os
import tensorflow as tf
import tensorflow as tf
os.environ['TF_CUDNN_DETERMINISTIC'] = 'true'
# build a graph
```
CPU NON-DETERMINISM

Noticed while I was debugging the distilled model
Much greater variance than GPU
Injection occurring at weight update step
Solution: Use single CPU thread

```
session_config.intra_op_parallelism_threads = 1  (default: 2)
session_config.inter_op_parallelism_threads = 1  (default: 5)
```

Only needed when running on CPU (vs GPU)
<table>
<thead>
<tr>
<th>SUM OF WEIGHTS</th>
<th>FINAL LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training five times with no fixes</td>
<td></td>
</tr>
<tr>
<td>-13.49609773233353291</td>
<td>6.1724668502807614</td>
</tr>
<tr>
<td>-9.3681446192786098</td>
<td>6.3305957317352295</td>
</tr>
<tr>
<td>-9.1963089210912585</td>
<td>6.3364742755889889</td>
</tr>
<tr>
<td>-13.6303959703072906</td>
<td>6.1670220375061033</td>
</tr>
<tr>
<td>-9.0079690776765347</td>
<td>6.3340478420257567</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUM OF WEIGHTS</th>
<th>FINAL LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training twice with all fixes</td>
<td></td>
</tr>
<tr>
<td>-9.6487178248353302</td>
<td>6.1068549633026121</td>
</tr>
<tr>
<td>-9.6487178248353302</td>
<td>6.1068549633026121</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUM OF WEIGHTS</th>
<th>FINAL LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training bigger config twice with all fixes</td>
<td></td>
</tr>
<tr>
<td>-8.8775541735813022</td>
<td>4.1930521011352537 (66.96 s)</td>
</tr>
<tr>
<td>-8.8775541735813022</td>
<td>4.1930521011352537 (66.70 s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUM OF WEIGHTS</th>
<th>FINAL LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training five times with no fixes</td>
<td></td>
</tr>
<tr>
<td>-13.5144761633127928</td>
<td>6.1083775520324703</td>
</tr>
<tr>
<td>-13.5144743174314499</td>
<td>6.1083775520324703</td>
</tr>
<tr>
<td>-13.5144757004454732</td>
<td>6.1083775520324703</td>
</tr>
<tr>
<td>-13.5144734960049391</td>
<td>6.1083775997161869</td>
</tr>
<tr>
<td>-13.5144746471196413</td>
<td>6.1083775997161869</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUM OF WEIGHTS</th>
<th>FINAL LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training twice with all fixes</td>
<td></td>
</tr>
<tr>
<td>-13.5144764725118876</td>
<td>6.1083775997161869</td>
</tr>
<tr>
<td>-13.5144764725118876</td>
<td>6.1083775997161869</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUM OF WEIGHTS</th>
<th>FINAL LOSS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training bigger config twice with all fixes</td>
<td></td>
</tr>
<tr>
<td>3.7987217940390110</td>
<td>3.9343416929244994 (2.43 s)</td>
</tr>
<tr>
<td>3.7987217940390110</td>
<td>3.9343416929244994 (2.41 s)</td>
</tr>
</tbody>
</table>
COMPLETE RECIPE

1. Set `TF_CUDNN_DETERMINISTIC=true`
 - Disables TensorFlow cuDNN auto-tuning
 - Uses deterministic cuDNN convolution back-prop algorithms
 - Uses deterministic cuDNN max-pooling algorithm

2. Dynamically patch `tf.nn.bias_add()`

3. Set random seed for all random number generators
 - `random.seed(SEED), np.random.seed(SEED), tf.set_random_seed(SEED)`

4. **HOROVOD_FUSION_THRESHOLD=0** for more than 2 GPUs
TENSORFLOW & CUDA ATOMICS

Analysis of TF v1.12, v1.13.1, and master branch (on 2019-03-03)

About 13 ops that use CUDA `atomicAdd()`

There are ten other CUDA atomic operations, e.g. `atomicCAS()`

‘atomic’ is present in 167 files in the TensorFlow repo

Some of these may be related to CUDA atomics

CUDA atomics not always associated with non-determinism

There are faster, deterministic ways to reduce within thread-blocks

i.e logarithmic tree reductions using inter-thread shuffling
INFEERENCE

All forward propagation (of course)

- Probably no need to set `TF_CUDNN_DETERMINISTIC=true`
- Possible issues with “deconvolution”

Disable TensorFlow cuDNN autotuning

- Set `TF_CUDNN_USE_AUTOTUNE=false`

TensorRT

- ~500 CUDA kernels, all of them deterministic
- Timing-based auto-tuning running on target architecture can produce different graphs on each run
- We’re working on adding a mechanism to TensorRT to address this
Set all the seeds

```python
random.seed(SEED), np.random.seed(SEED),
os.environ["PYTHONHASHSEED"] = str(SEED),
torch.manual_seed(SEED),
torch.cuda.manual_seed_all(SEED)
```

```
torch.backends.cudnn.deterministic=True
```

Covers convolution and max-pooling

I hear that some ops may still be non-deterministic
PLAN

Release current solution in NGC TensorFlow container

TF_CUDNN_DETERMINISTIC in TensorFlow v2.0 (end-of-year)

Make **bias_add** deterministic at CUDA kernel level

Open-source determinism debug tool

Add single deterministic switch for all of TensorFlow

Improve deterministic performance of Horovod

Deterministic simulated environments for reinforcement learning
CREDITS

Tero Karras
Tim Zaman
Hao Wu
Jose Alvarez Lopez
Ben Barsdell
Rakesh Ranjan
Simon Layton
John Montrym
Jorge Albericio Latorre
Nicolas Koumchatzky
Carl Case
Nathan Luehr
Conrado Silva Miranda
Jussi Rasanen
Dilip Sequeira
Mikko Ronkainen
Xiang Bo Kong
Sharan Chetlur
Luke Durant
Kevin Brown
Marc Edgar
Cindy Riach
Mostafa Hagog
Yifang Xu
William Zhang
Lauri Peltonen
Joey Conway
Matthijs De Smedt
Kevin Vincent
Bryan Catanzaro
Michael O’Connor
Stephen Warren
Bob Keating
Andrew Kerr
TAKEAWAYS

Neither TensorFlow nor GPUs are inherently non-deterministic
Root cause is asynchronous floating point operations
Use CUDA floating-point atomic operations with care
Deterministic kernels often already available
This was a hard problem to solve, but not impossible
It’s a very important topic. A lot of people care about it
New tools and methodology for debugging
Automated vigilance is warranted
CALL TO ACTION

watch: github.com/NVIDIA/tensorflow-determinism
follow: twitter.com/DuncanARiach
connect: www.linkedin.com/in/duncanriach
email: duncan@nvidia.com