

Ting-Chun Wang, Ming-Yu Liu, Jun-Yan Zhu, Guilin Liu, Andrew Tao, Jan Kautz, Bryan Catanzaro

GENERATIVE ADVERSARIAL NETWORKS

Unconditional GANs

Image credit: Celebrity dataset, Jensen Huang, Founder and CEO of NVIDIA, Ian Goodfellow, Father of GANs.

After training for a while using NVIDIA DGX1 machines

Fun sampling time begin

$$z_1, z_2, z_3, \dots$$
 Generator

Image credit: NVIDIA StyleGAN

CONDITIONAL GANS Allow user more control on the sampling process

Sampling $z \sim Z, y \sim Y$ (testing) $f \sim Z, y \sim Y$ output style Given info (e.g. image, text)

SKETCH-CONDITIONAL GANS

IMAGE-CONDITIONAL GANS

MASK-CONDITIONAL GANS

Semantic Image Synthesis

LIVE DEMO

- I need to get an RTX Ready Laptop (<u>https://www.nvidia.com/en-us/geforce/gaming-laptops/20-series/</u>)
- It is running live in GTC
- Will be online for everyone to try out in NVIDIA AI Playground website (<u>https://www.nvidia.com/en-</u> <u>us/research/ai-playground/</u>)

0 x =x =0 β 0 same output! affine transform de-normalization normalization

Batch Norm (loffe et al. 2015)

removes label information

- Do not feed the label map directly to network
- Use the label map to generate normalization layers instead

 $y = \frac{\sigma - \gamma}{\sigma} \cdot \gamma + \beta$

SPADE SPatially Adaptive DE-normalization

SPADE RESIDUAL BLOCKS

SPADE GENERATOR

IMAGE RESULTS

IMAGE RESULTS

IMAGE-TO-IMAGE SYNTHESIS

MOTIVATION

• Al-based rendering

Traditional graphics

Geometry, texture, lighting

Machine learning graphics

Data
MOTIVATION

- Al-based rendering
- High-level semantic manipulation

PREVIOUS WORK

Image translation

pix2pixHD [2018], CRN [2017], pix2pix [2017]

Video style transfer

MoCoGAN [2018], TGAN [2017], VGAN [2016]

PREVIOUS WORK: FRAME-BY-FRAME RESULT

- Sequential generator
- Multi-scale temporal discriminator
- Spatio-temporal progressive training procedure

Sequential Generator

Sequential Generator

Multi-scale Discriminators

Image Discriminator

Video Discriminator

 D_3

Spatio-temporally Progressive Training

Spatially progressive

Temporally progressive

Alternating training

RESULTS

- Semantic \rightarrow Street view scenes
- Edges \rightarrow Human faces
- Poses \rightarrow Human bodies

RESULTS

- Semantic \rightarrow Street view scenes
- Edges \rightarrow Human faces
- Poses \rightarrow Human bodies

STREET VIEW: CITYSCAPES

Semantic map

pix2pixHD

COVST (video style transfer)

Ours

STREET VIEW: BOSTON

STREET VIEW: NYC

RESULTS

- Semantic \rightarrow Street view scenes
- Edges \rightarrow Human faces
- Poses \rightarrow Human bodies

FACE SWAPPING (FACE \rightarrow EDGE \rightarrow FACE)

input

edges

output

FACE SWAPPING (SLIMMER FACE)

input

(slimmed) edges (slimmed) output

FACE SWAPPING (SLIMMER FACE)

input (slimmed) edges (slimmed) output

MULTI-MODAL EDGE \rightarrow FACE

Style 1

Style 2

Style 3

RESULTS

- Semantic \rightarrow Street view scenes
- Edges \rightarrow Human faces
- Poses \rightarrow Human bodies

9 🛛 💿 NIDIA

input

poses

51 💿 💿 🕺 💿

input

poses

MOTION TRANSFER

EXTENSION: FRAME PREDICTION

- Goal: predict future frames given past frames
- Our method: decompose prediction into two steps
 - 1. predict the semantic map for next frame
 - 2. synthesize the frame based on the semantic map

EXTENSION: FRAME PREDICTION

Ground truth

MCNet

INTERACTIVE GRAPHICS

- Real-time inference
- Combining with existing graphics pipeline
- Domain gap between real input and synthetic input

- Real-time inference
- Combining with existing graphics pipeline
- Domain gap between real input and synthetic input

- Real-time inference
 - FP16 + TensorRT \rightarrow ~5 times speed up
 - 36ms (27.8 fps) for 1080p inference
 - Overall: 15~25 fps

- Real-time inference
- Combining with existing graphics pipeline
 - CARLA: open-source simulator for autonomous driving research
 - Make game engine render semantic maps
 - Pass the maps to the network and display the inference result

- Real-time inference
- Combining with existing graphics pipeline
- Domain gap between *real* input and *synthetic* input
 - Network trained on real data but tested on synthetic data
 - Things that differ: Object shapes/edges, density of objects, camera viewpoints, etc
 - On-going work

ORIGINAL CARLA IMAGE

RENDERED SEMANTIC MAPS

RECORDED DEMO RESULTS

RECORDED DEMO RESULTS

- What can we achieve?
- What can it be used for?

- What can we achieve?
 - Synthesize high-res realistic images

- What can we achieve?
 - Synthesize high-res realistic images
 - Produce temporally-smooth videos

- What can we achieve?
 - Synthesize high-res realistic images
 - Produce temporally-smooth videos
 - Reinvent interactive graphics

- What can we achieve?
- What can it be used for?
 - AI-based rendering
 - High-level semantic manipulation

THANK YOU

https://github.com/NVIDIA/vid2vid

