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DIRECT + DIFFUSE GI
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DIRECT + DIFFUSE GI + VOLUMETRIC
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DIRECT + DIFFUSE GI + VOLUMETRIC + GLOSSY GI
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DIRECT + DIFFUSE GI + VOLUMETRIC + GLOSSY GI + MATERIALS

Diffuse GI:    1.0 ms/frame
Glossy GI:          1.1 ms/frame
Throughput:     1.5 Grays/s

GeForce RTX 2080 Ti @ 1080p 
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BEFORE: NO GLOBAL ILLUMINATION



10

BEFORE: CLASSIC PROBES
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AFTER: NEW DYNAMIC DIFFUSE GI
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MOVING CAMERA, GEOMETRY, AND LIGHTS…
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OVERVIEW

1 ms/frame dynamic diffuse global illumination on everything (static, dynamic, transparent, 
volumetric, forward, deferred)

Runs everywhere, best quality on RTX. Constant performance, varying indirect light latency 
across platforms. 

Uses existing engine data paths, no bake time, minimizes leaks and noise. Good artist 
workflow.

Fresh out of the lab after six years of R&D with academic collaborators [Mara 2012, Crassin 2013, 
Evangelakos 2015, Donow 2016, McGuire 2017, Wang 2019, Majercik 2019]

Working with partners on game integration and art team feedback now.

No patents on the algorithm. No SDK or licensing.

Dynamic Diffuse Global Illumination with Ray Traced Irradiance Fields
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AGENDA

1. Global Illumination Overview

2. Glossy GI Best Practices

3. The Diffuse GI challenge

4. New Dynamic Diffuse GI

5. Engine Integration

6. Examples & Demo
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GLOBAL ILLUMINATION
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DIRECT ILLUMINATION
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GLOBAL ILLUMINATION
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GLOBAL ILLUMINATION
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GLOBAL ILLUMINATION
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GLOSSY REFLECTION

Glossy Reflection:

(e.g., specular, microfacet, GGX, etc.)

- reflects off the surface

- only visible near mirror angle
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DIFFUSE REFLECTION
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Glossy Reflection:

(e.g., specular, microfacet, GGX, etc.)

- reflects off the surface

- only visible near mirror angle

Diffuse Reflection:

(e.g., matte, Lambertian, etc.)

- scatters just below the surface

- visible from all directions

Light

Glossy Reflection

Diffuse Reflection

Today: Dynamic Diffuse Global Illumination with correct Visibility
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GLOSSY GI
STATE OF THE ART
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GLOSSY GI
Battlefield V Metro: Exodus

Killzone: Shadow FallControl

State of the Art
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GLOSSY GI

1. Ray Trace
Trace and shade perfect mirror rays at full 

resolution X, ½ resolution Y

2. Blur
Bilateral filter into MIPs, respecting edges

3. Sample
Sample in screen-space based on primary 
roughness and total reflection distance

…

…

1.1 ms/frame in our simple demo, including BVH update 
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GLOSSY GI IMPLEMENTATION

Heavy lifting is all in your existing forward or deferred shader, which runs on ray hits. Uses shadow maps, regular materials, 
etc. so no special shading code for the base implementation.

We use half resolution only vertically because that gives a good performance to quality tradeoff on high-end hardware. Most 
reflections are on floors, and they’ll be blurred vertically in screen space anyway.

Stretch to full resolution and bilateral blur into MIP-maps. Gaussian kernel, normal & depth weighting. Expand out into 
untraced areas so that trilinear fetches don’t hit black. MIP generation is about 0.1 ms of total time.

When rendering the camera view, compute MIP level to gather from smoothness, distance to primary surface + distance to 
reflected surface. Produces proper distance fading.

To improve quality: address flicker. final-frame TAA can help and hurt. Use everything you know about filtering and flickering 
inside the glossy shader: MIP bias, bump to roughness, TAA/FXAA on the glossy trace, LOD.

Can optimize down to about 0.5 ms/frame (see Battlefield V): Combine with screen-space ray tracing and environment 
maps, use geometric and material level of detail, apply checkerboarding plus upsampling, DLSS. 
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DIFFUSE GI
STATE OF THE ART
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STATE OF THE ART

Baked light maps

Light propagation volumes

Sparse voxel cone tracing

Denoised ray tracing

Baked irradiance probes

Real-Time Diffuse GI



37

IRRADIANCE PROBES

Image Credits: Geomerics and Ninja Theory, https://unity3d.com/learn/tutorials/topics/graphics/probe-lighting,
https://docs.unrealengine.com/en-us/Engine/Rendering/LightingAndShadows/IndirectLightingCache, https://unity3d.com/learn/tutorials/topics/graphics/probe-lighting

Enlighten Unity

Dunia (Far Cry engine)Unreal Engine
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LIGHT & SHADOW LEAKS

[Hooker 2016]



39

LIGHT & SHADOW LEAKS

[Iwanicky 2013]

Image Sources: https://forums.unrealengine.com/development-discussion/content-creation/18712-need-help-how-to-fix-the-light-under-walls, https://answers.unrealengine.com/questions/336484/light-

leaking-problem-solid-geometry.html, https://www.worldofleveldesign.com/categories/udk/udk-lightmaps-03-how-to-fix-light-shadow-lightmap-bleeds-and-seams.php

[Rakhteenko 2018]
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NEW: DYNAMIC DIFFUSE GI
WITH RAY-TRACED IRRADIANCE FIELDS
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UPGRADING PROBES WITH VISIBILITY

Classic Probes: Fast to sample, noise-free, work with characters and transparents,  
parameterization-free, already in your engine.

Upgrade:

Leaks: Store visibility information to prevent light and shadow leaking.

Dynamic: Asynchronous GPU ray trace directly into low resolution probes, gather blending

Workflow: Art cost is in avoiding leaks and bake time. Real-time + no leaks fixes worflow.
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PROBE PLACEMENT

[Kaplanyan and Dachsbacher 2010] [Asirvatham and Hoppe 2005]

Grid

Optionally optimize around static geo [Chajdas 2011, Donow 2016, Wang et al. 2019, Unity]

Artists may override placement

Cascades

32 x 4 x 32 = 4 k probes around the camera that update frequently.

Coarse cascades in space and time to scale out to big scenes.

Top View
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DATA STRUCTURE

RG16F Depth: (radius, radius2) 
16x16-texel probe

6x6-texel probe

32x32-probe scene layer

R11G11B10F Irradiance

5 MB GPU RAM for 8k Probes



46

DYNAMIC DIFFUSE GI

1. Ray Trace
Trace and shade packed rays from active probes.
(Pack into the bottom of the Glossy GI ray pass)

Uses previous iteration for shading: infinite bounce GI.

2. Blend
Blend irradiance and depth into probes. 

Duplicate probe border texels for fast bilinear. 

3. Sample
Volumetric sample based on 3D position, 

visibility, and normal.

…

Independent of framerate and screen resolution
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ACCURATE & NOISE FREE

Direct Direct

Global Global
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ACCURATE & NOISE FREE

Path Tracing Dynamic Diffuse GI
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REALISTIC

Direct Illumination Only + Dynamic Diffuse GI
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REALISTIC

Direct Illumination Only + Dynamic Diffuse GI
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REALISTIC

Direct Illumination Only + Dynamic Diffuse GI
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DYNAMIC LIGHTING
EveningAfternoon
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LARGE SCENES
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DYNAMIC 
GEOMETRY
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DYNAMIC GEOMETRY
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AVOIDS LEAKS
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AVOIDS LEAKS

[Hooker 2016]
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AVOIDS LEAKS
Before: Classic Probes After: Dynamic Diffuse GI

Light leak

Shadow leak

Correct

Correct

Correct
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AVOIDS LEAKS

Light leak Correct

Before: Classic Probes After: Dynamic Diffuse GI
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LIMITATIONS

Self-shadow bias must be tuned to geometry thickness

Light crossfades in time under dramatic changes

Blurrier than light maps (use screen-space AO for contact shadows)
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ENGINE INTEGRATION
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RADIAL GAUSSIAN DEPTH

Encoding Visibility
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RADIAL GAUSSIAN DEPTH

Encoding Visibility
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RADIAL GAUSSIAN DEPTH
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RADIAL GAUSSIAN DEPTH

Encoding Visibility
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RADIAL GAUSSIAN DEPTH

Encoding Visibility
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RADIAL GAUSSIAN DEPTH

Encoding Visibility

Mean:
μ = ∑r / n

Standard Deviation:

σ = sqrt(∑(r - μ) 2 / n) 
= sqrt((∑r2) / n - μ2)

Each probe texel stores (∑r, ∑r2)

μ

σ

r0

r1 r2

r4

r5

r6

Irradiance blurs over a cosine-weighted 
hemisphere in a gather pass.

Blur depth over a power-cosine to capture 
variation but retain some sharpness.
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READING IRRADIANCE
// float3 n = shading normal, X = shading point

X

n
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READING IRRADIANCE
// float3 n = shading normal, X = shading point, P = probe location

P

X

n
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READING IRRADIANCE
// float3 n = shading normal, X = shading point, P = probe location

float4 irradiance = float4(0);
for (each of 8 probes around X) {

float3 dir = P – X;
float r = length(dir);
dir *= 1.0 / r;

// smooth backface
float weight = (dot(dir, n) + 1) * 0.5;

// adjacency
weight *= trilinear(P, X);

// visibility (Chebyshev)
float2 temp = texelFetch(depthTex, probeCoord).rg;
float mean = temp.r, mean2 = temp.g;
if (r > mean)  {

float variance = abs(square(mean) – mean2);
weight *= variance / (variance + square(r – mean));

}
irradiance += sqrt(texelFetch(colorTex, probeCoord) * weight;

}

return square(irradiance.rgb * (1.0 / irradiance.a));

P

X

n

dir

r

1

2

3
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READING IRRADIANCE
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READING IRRADIANCE
// float3 n = shading normal, X = shading point, P = probe location
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READING IRRADIANCE
// float3 n = shading normal, X = shading point, P = probe location
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READING IRRADIANCE

// float3 n = shading normal, X = shading point, P = probe location
// threshold = low-perception threshold (around 0.2)
X += bias * (n - viewVector)
float4 irradiance = float4(0);
float4 irradianceNoCheb = float4(0);
for (each of 8 probes around X) {

…

// smooth backface
float weight = square( (dot(dir, n) + 1) * 0.5 ) + 0.2;

// adjacency
weight *= trilinear(P, X) + 0.001;

// visibility (Chebyshev)
…
if (weight < threshold) 

weight *= square(weight) / square(threshold);
…

}

return lerp(square(irradianceNoCheb.rgb * (1.0 / irradianceNoCheb.a)), 
square(irradiance.rgb * (1.0 / irradiance.a)),
saturate(irradiance.a));

P

X

n

dir
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PROBE PACKING

Sphere → Octahedron → Square

Pack XZ squares, layer in Y

Including border texels for fast bilinear:

Depth:     16x16 RG16F          = 1024 bytes

Irradiance: 6x6   R11G11B10F=   144 bytes

= 1168 bytes/probe

[Cigolle 2014]
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DEMO
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MORE GI OPTIMIZATIONS

Scale down to lower-end hardware by reduce number of probes updated each frame or decreasing ray count and 
increasing hysteresis. Similar to what Enlighten did for their probes

Use fewer probes vertically for typical environments. Most illumination changes are due to walls. If you have two probes 
per room vertically that may be fine.

Order diffuse probe rays to capture coherence.

Pack diffuse probe rays and glossy into a single ray shader. Having more work in a single pass allows the scheduler to fill 
the machine and do more optimizations. This will get even faster over time with driver updates.

Compute ray derivatives for mip bias to reduce flicker and increase cache coherence. Force higher roughness on indirect 
bounces.

Clamp maximum radiance on indirect shading so that tiny reflections into light sources won’t become fireflies.

Use fewer rays for diffuse in bright situations. Dim/high contrast is the case where rays get different results and you need 
more to avoid low-frequency flicker.

Use simplified shaders on indirect rays: no shadow map filtering, simpler BRDF model, no volumetrics. 

Blurred mirror reflections are more stable than blurred stochastic reflections.
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STREAMING GI

The Ultimate Optimization

[Crassin et al. 2015]

H.265 DDGI Probe Texture
Game Engine 
Clients

Diffuse GI + 
Multiplayer
RTX Server

Proprietary Game Data

5G
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SUMMARY

Dynamic Diffuse GI

Avoids leaks to decrease artist workload while increasing visual quality

1 ms/frame, 4.5 MB per cascade

Scales down to XboxOne by reducing update frequency 

Scales up to 4k, 240 Hz, and VR

Dynamic lights and geometry, forward, deferred, transparent, volumetric
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MORE INFORMATION
mcguire@nvidia.com, @CasualEffects

After the conference:

Blog Post: https://morgan3d.github.io/articles/2019-04-01-ddgi

Technical Paper: Dynamic Diffuse Global Illumination with Ray-Traced Irradiance Fields, 
Zander Majercik (NVIDIA), Jean-Philippe Guertin (University of Montreal),                      
Derek Nowrouzezahrai (McGill University), and Morgan McGuire (NVIDIA), JCGT 2019

Thanks to Dylan Lacewell, Mike Mara, Dan Evangelakos, Sam Donow, and Corey Taylor for 
their work on the implementation infrastructure.
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VR VILLAGE

Explore the VR Village to get 
hands-on with the latest 
advances in virtual reality

VR THEATER

Go to the VR Theater to see 
and experience narrated VR 
demos built by our partners

VR PARTNERS

Explore a great lineup of VR 
partners around the VR Village 
showcasing their 
groundbreaking technology

COME EXPLORE ALL THINGS VR AT GTC 2019

VR VILLAGE HOURS Tuesday: 12:00pm - 7:00pm     Wednesday: 12:00pm - 7:00pm           

Thursday: 11:00am - 2:00pm

VR on the Exhibition Floor

Expo Hall 3, Concourse Level 


