

How GPU Computing can Accelerate the Treatment of Neurological Disorders

Eric K Oermann, MD Anthony B Costa, PhD Icahn School of Medicine at Mount Sinai

Disclosures

- EKO reports no relevant financial conflict of interest
- ABC reports no relevant financial conflict of interest

How can GPU computing impact neurologic disease?

A longer story than you might think

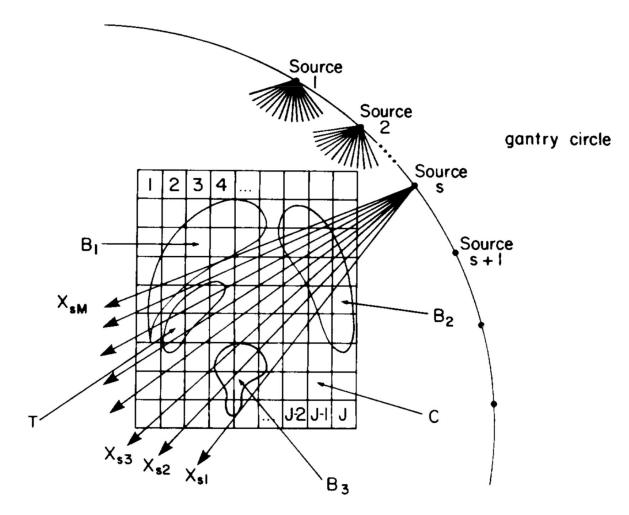
3 Stories Enabling Neurosurgery Applications

- Computing Power
- Computing Localization
- Computing Density

- \rightarrow Radiation Planning
- \rightarrow Intraoperative Applications
- \rightarrow Medical ML/DL

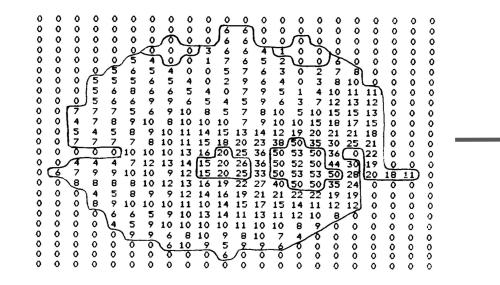
Basically, "what happened to enable us to build department computing resources for AI that really work?"

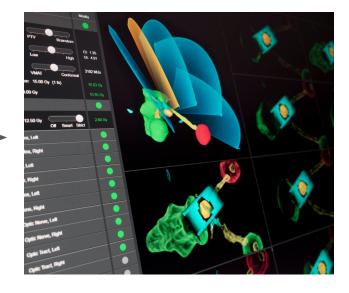
And then, what does that look like?



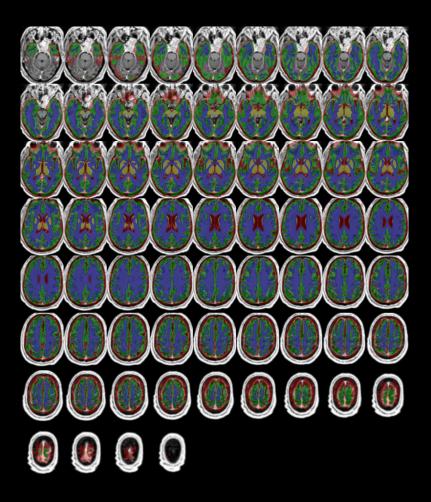
Censor, Y., Altschuler, M. D. & Powlis, W. D. Appl. Math. Comput. 25, 57–87 (1988).

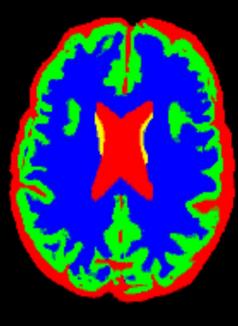
ο О Q Ö o ο Ó o O Q ?' [50] δ o o Q Q О δ Ö ō 6 10 o o О Ö o

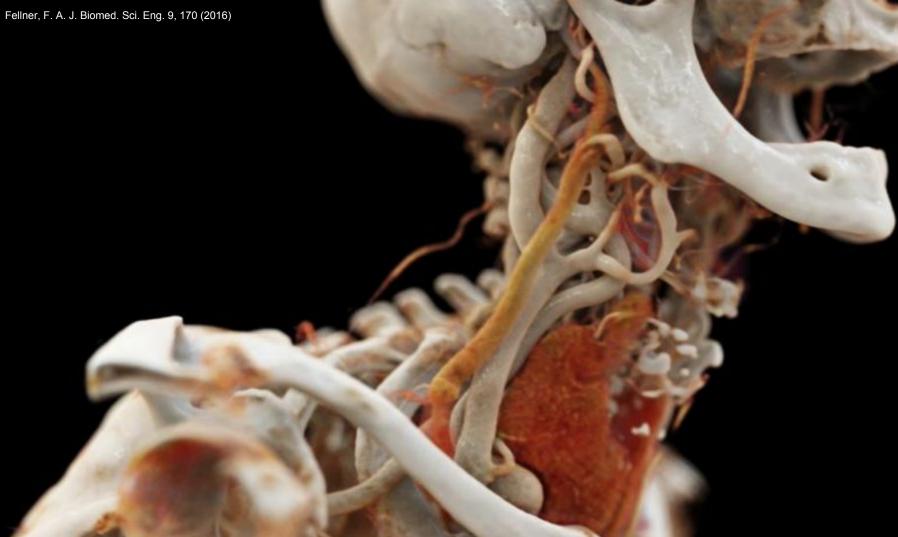


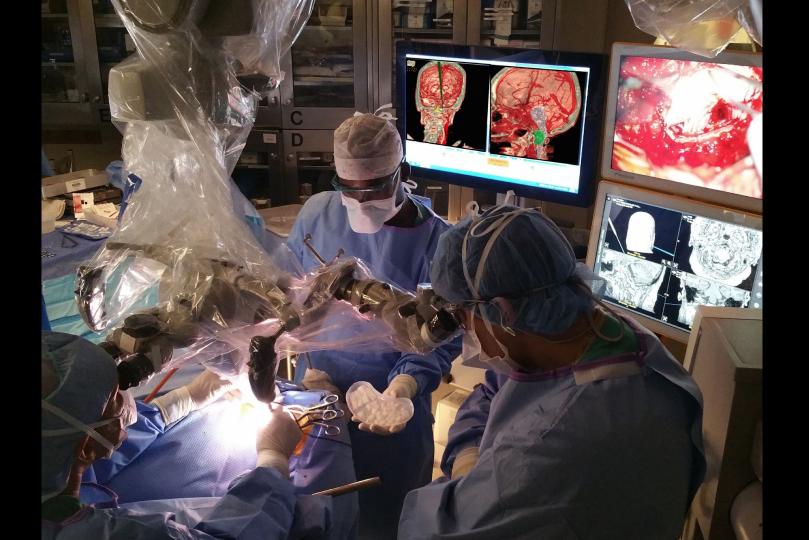


Censor, Y., Altschuler, M. D. & Powlis, W. D. Appl. Math. Comput. 25, 57–87 (1988). https://www.brainlab.com/press-releases/brainlab-optimizes-planning-processes-algorithms-cranial-indications/









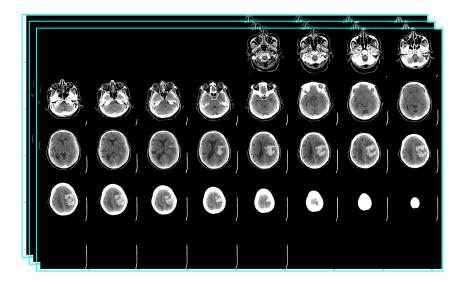
Needs of academic, medical DL

- Understand varied medical data needs
- Mixed compute/data access patterns
- Performance per dollar (financial constraints)
- Access to appropriate storage that can handle imaging down to free text
- Unified infrastructure, authentication and appropriate HIPAA privacy controls
- Support for current and future generation computing paradigms
 - E.g., Docker, Container frameworks

Medical Imaging Data IS big data

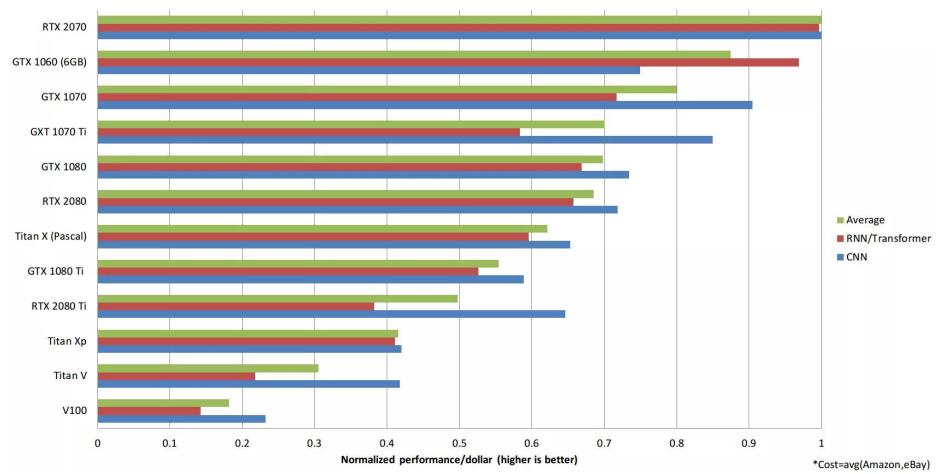
Consider 1 megapixel, 8 bit detector (# in batch, z, x, y, # channels):

- Single slice / 2D image (1, 1, 1024, 1024, 1) = 1 Mb
- 3D image with 100 slices (1, 100, 1024, 1024, 1) = 100 Mb
- 1024 images/batch (1024, 100, 1024, 1024, 1) = 100 Gb



- Memory
- Precision
- Bandwidth
- Performance/\$/Watt per application
 - 2D Imaging
 - 3D Volumetric Imaging
 - NLP, RNN, Time Series
 - Reinforcement Learning
- Comes down to:
 - What's your data?
 - What's your method?
 - What's your benchmark for performance?
 - How rich are you and how much do you value your time?

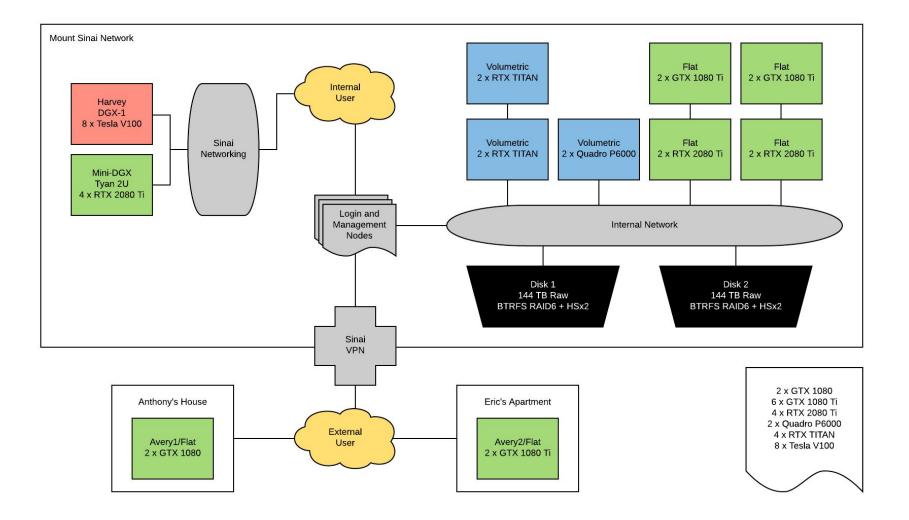
Performance per Dollar*



Academic medical centers tend to start with what they know and evolve

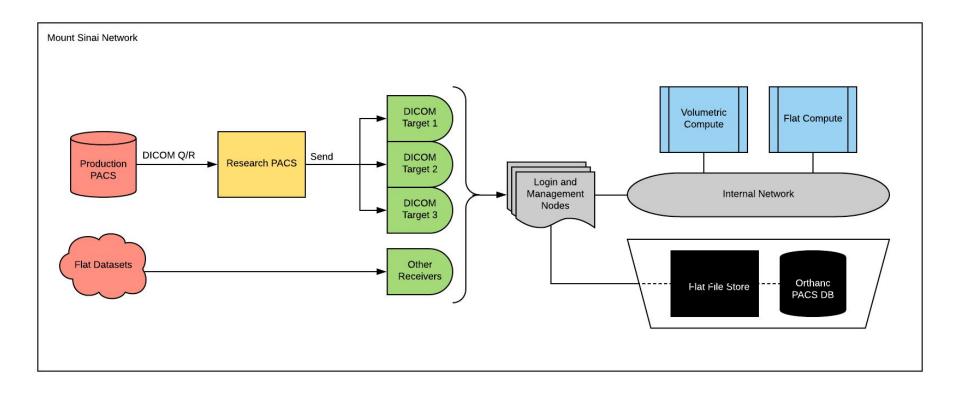
Management

- V1: Classic HPC Cluster
 - YP/NIS Authentication
 - Manual Time Sharing
 - NFS v3 XFS 20TB
- V2: Major Expansion, Not-So-Classic HPC Cluster
 - Transition to Docker/Container Frameworks
 - Manual Time Sharing
 - Manual Authentication
 - NFS v3 XFS 20TB + Local Flash/Scratch HDDs
 - Flat/Volumetric Box Allocation to Specific Projects



Total Compute

- "Flat" GPUs, Consumer GTX/RTX
 - Great bang for your buck, limited appropriateness for 3D volumetric work due to small amount of on-die memory (8-12GB)
 - 2 x GTX 1080 (FP32 8TF)
 - 6 x GTX 1080 Ti (FT32 10TF)
 - 2 x GTX 2080 Ti (FP32 14TF, **110TF w/ Tensor Cores**)
- "Volumetric" GPUs, Mid-Level and Enterprise
 - \circ 3 10x Cost, ~double the memory
 - 2 x Quadro P6000 (FP32 12TF, 24GB OD, FP64)
 - 4 x RTX Titan (FP32 16TF, **130TF w/ Tensor Cores**, 24GB OD, RP INT4/8 + FP16/64)
 - 8 x Tesla V100 (FP32 16TF, **125TF w/ Tensor Cores,** 32GB OD, RP INT4/8 + FP16/64)
- Total Tensor flops: **5.6PF** + General Purpose FP32 @ 0.86PF



Management

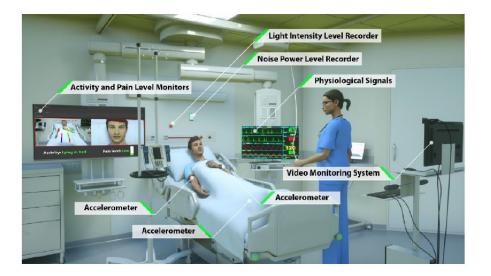
- V3: Next-Generation Containerized Cluster
 - Towards DeepOps
 - NFS v4 288TB BTRFS RAID6 + HSs
 - LDAP Unified Authentication (2 Factor + Sinai VPN)
 - Role-Based Data Access Validation
 - ContainerOS
 - Kubernetes Docker Orchestration Framework
 - Flat/Volumetric PXE Thin Nodes
 - Managed Docker Containers for All Projects

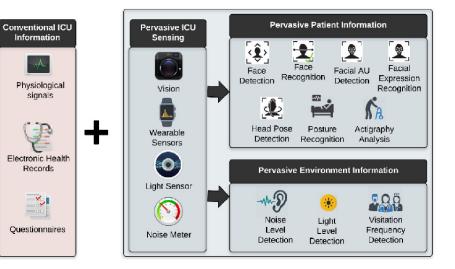
Bitbucket

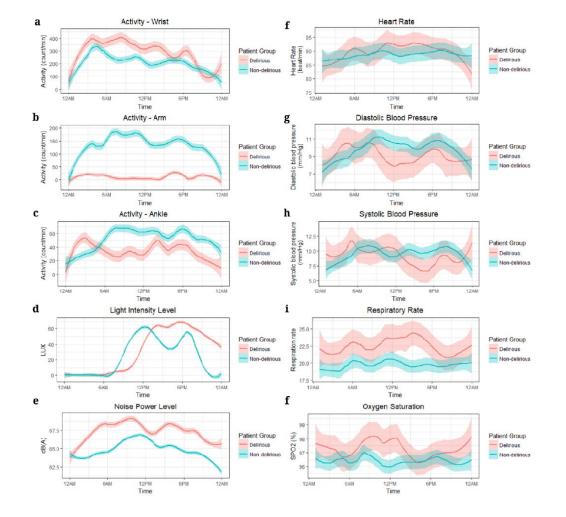
How can machine learning (on GPUs) impact neurological disease?

A universe of new applications

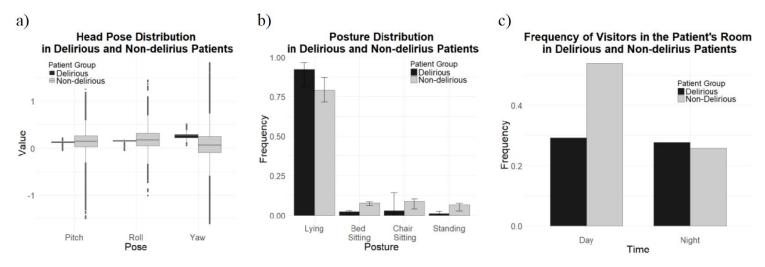
Assessments in the Neuro-ICU







Davoudi, A. et al. The Intelligent ICU Pilot Study: Using Artificial Intelligence Technology for Autonomous Patient Monitoring. arXiv [cs.HC] (2018).



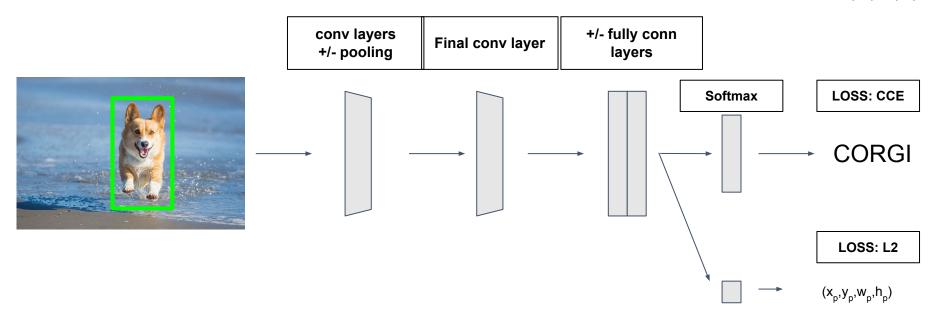
	Non-delirious (N=15)	Delirious (N=5)	p-value
Mean of activity for whole day, median (IOR)	53.9 (19.5, 161.6)	332 (251, 457.6)	0.01
Mean of activity for daytime	69.7 (16.7, 198.1)	347.4 (318.9, 384.8)	0.03
Standard deviation of activity	246.8 (99.3, 472.5)	640.6 (487.5, 697.2)	0.05
for daytime Mean of activity for nighttime	46.4 (22.8, 94.7)	332.3 (310.7, 541.8)	0.008
Standard deviation of activity for nighttime	192.5 (130.5, 313.3)	664.1 (469.1, 930.9)	<0.01
Activity of 10-hour window with	60137.3 (15029.5, 176498.3)	282918.1 (254729.3, 457448)	< 0.01
highest sum of activity (M10)			
Time of M10	318 (157, 574)	275 (47, 627)	1
Time of M10 (hour)	6 (3, 9)	5(1,11)	1
Activity of 5-hour window with	3916.7 (1195.7, 10236.2)	44163.2 (1949.3, 54779.3)	0.35
lowest sum of activity (L5)			
Time of L5	298 (176, 959)	1067 (212, 1119)	0.36
Time of L5 (hour)	5 (3.5, 16.5)	18 (4, 19)	0.36
Relative amplitude	0.9 (0.7, 0.9)	0.9 (0.8, 1)	0.61
Standard deviation of activity	199.9 (116.3, 456.3)	558.4 (523.1, 826.4)	0.02
for whole day			
RMSSD	223.4 (137.3, 469.7)	538.7 (487.4, 730.2)	0.04
RMSSD/SD	1.1 (1.0, 1.2)	0.9 (0.9, 1)	< 0.01
Number of immobile minutes during the day	564 (416, 654)	345 (200, 384)	0.02
Number of immobile minutes during the night	602 (580, 650)	344 (314, 374)	0.01

Davoudi, A. et al. The Intelligent ICU Pilot Study: Using Artificial Intelligence Technology for Autonomous Patient Monitoring. arXiv [cs.HC] (2018).

Convolutional Neural Network Approaches to Brain Imaging

Classification and Localization

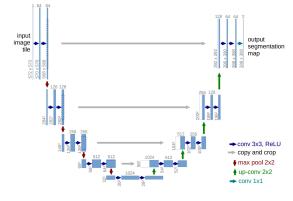
- Input: N classes + BBox (x,y,w,h)
- **Output**: Class K where K is in N + (xp,yp,wp,hp)
- **Performance Metrics**: Accuracy + Jaccard similarity (or Dice)

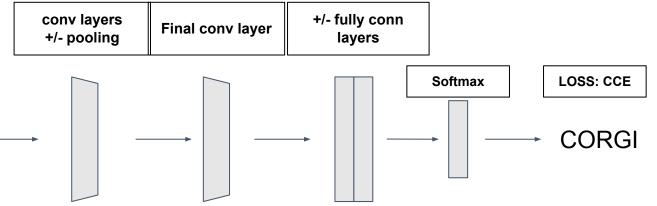


 $J(A,B) = \frac{|A \cap B|}{|A \cup B|} = \frac{|A \cap B|}{|A| + |B| - |A \cap B|}.$

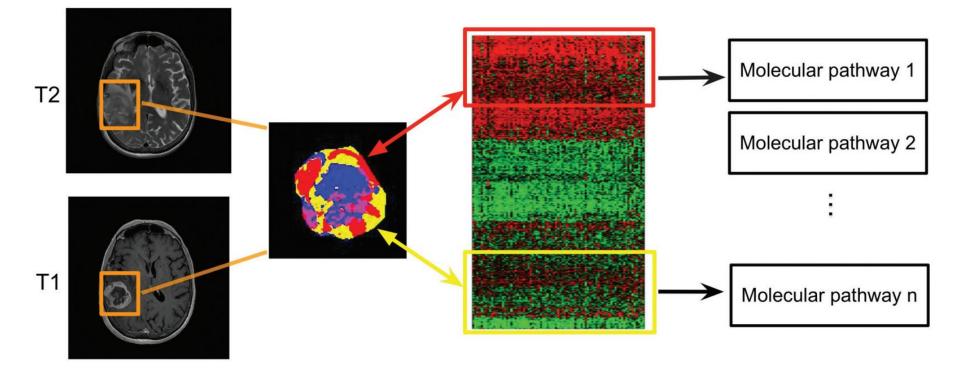
 $QS = \frac{2|X \cap Y|}{|X| + |Y|}$

Segmentation and Classification

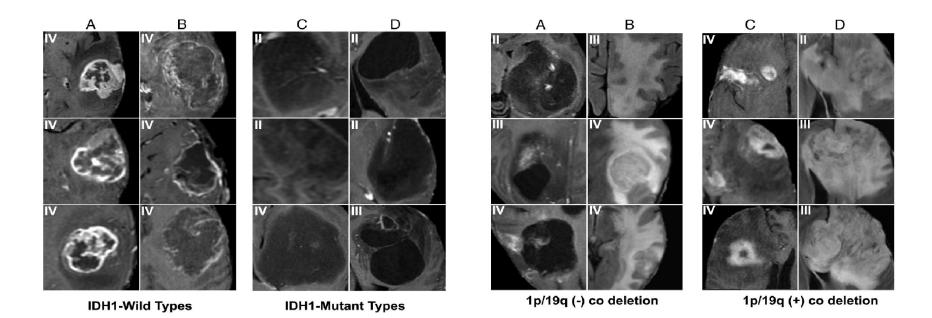




Brain Biopsies



Brain Biopsies



Weak Supervision

TRUST NO ONE

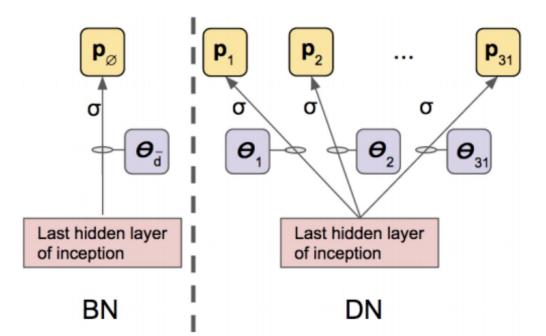
Two Kinds of Labels

Gold Standard Labels Ground Truth

Silver Standard Labels Noisy Labels

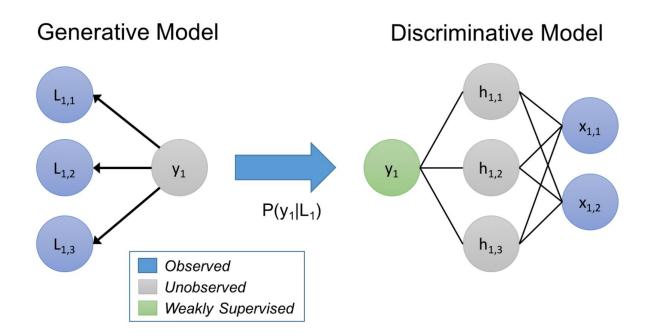
Are Medical GT Labels Fool's Gold?

- Medical labels can be challenging with low IRR
 - Google Retinopathy dataset = 55.4%
 - IRR and 70.1% agreement
 between each expert and
 her/himself at a later time point!
- Can average labels using EM.
- However, *average of modeled raters* may outperform *model of average raters*.
- Guan et al. 2017 had 1.97% decrease in test loss



Weak Supervision with Generated Silver Labels

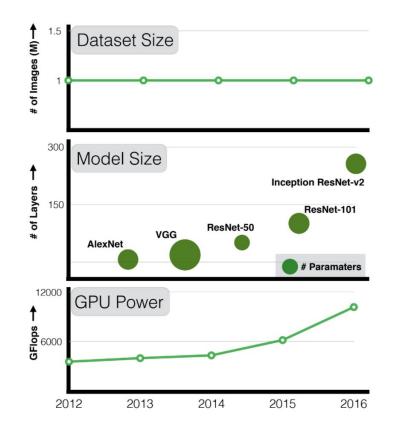
Solution? Accept noise in our label set.



The Unreasonable Effectiveness of Big Data with Silver Labels

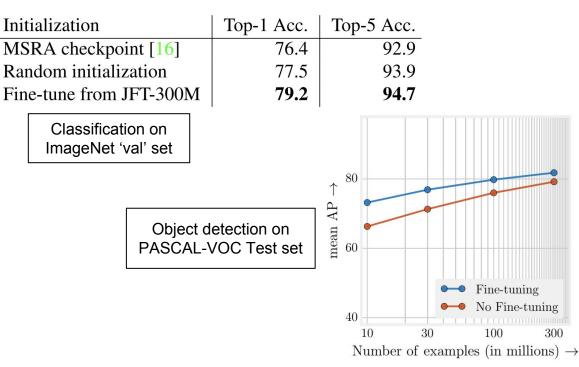
But does this work? Consider the following trends in computer vision with ImageNet....

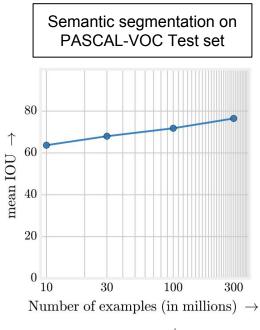
What if we had a dataset 300x ImageNet's size with noisy labels?



The Unreasonable Effectiveness of Big Data

Effect of pre-training ResNet-101 on JFT-300M's silver labels





initialization	mIOU
ImageNet	73.6
300M	75.3
ImageNet+300M	76.5

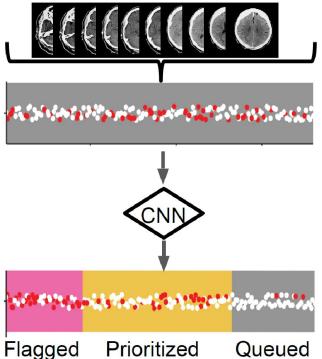
C Sun, et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era - arXiv 2017

Application to Acute Neurologic Events

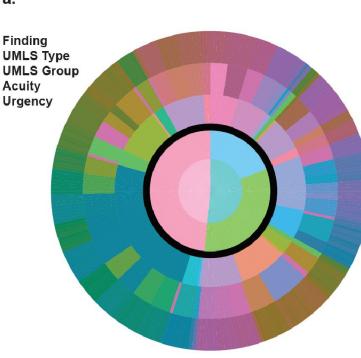
Titano, J. J. et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat. Med. (2018). doi:10.1038/s41591-018-0147-y

Faster Interpretation of Imaging

Clinical Imaging



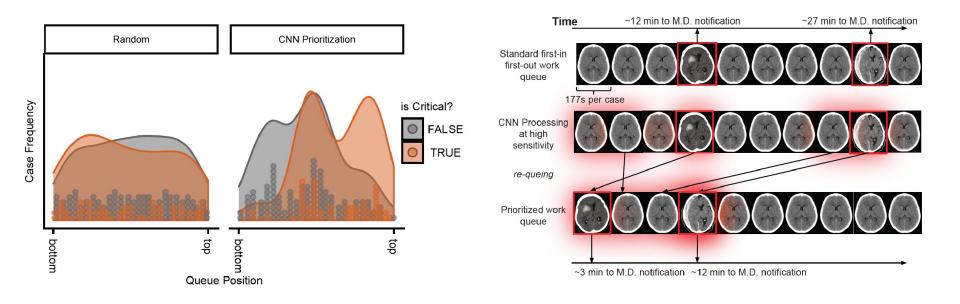
a.



Finding UMLS Atrophy Chronic Disease Stroke **Extracranial** Fluid Collection Fracture Hemorrhage Sinus Thrombosis Hydrocephalus Mass Lesion Misc Norm Post Operative Vascular Acuity Low Not Hiah High Urgency Non Urgent Urgent

Titano, J. J. et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat. Med. (2018). doi:10.1038/s41591-018-0147-y

Faster Interpretation of Imaging



Disclaimer #1: Generalization of deep models is not guaranteed

Automobile(Dog)

Airplane(Dog)

Deer(Dog)

Horse(Cat)

Frog(Dog)

Ship(Truck)

Automobile

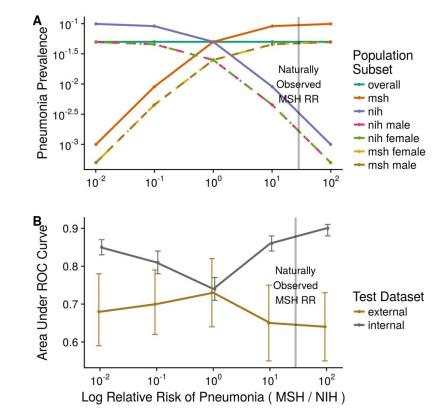
(Airplane)

Frog(Truck)

(Automobile)

Frog(Truck)

Dog(Cat)



Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv [cs.LG] (2016).

Disclaimer #2: Weak Classifiers are Easily Distracted

ResNet-50

('bucket', 0.43788964), ('tub', 0.13390972), ('caldron', 0.11801116) **SSD-300**

Average Precision (AP) @[IoU=0.50:0.95 | area= all | maxDets=100] = 0.900 Average Precision (AP) @[IoU=0.50 | area= all | maxDets=100] = 1.000 Average Precision (AP) @[IoU=0.75 | area= all | maxDets=100] = 1.000

Disclaimer #2: Weak Classifiers are Easily Distracted

ResNet-50

SSD-300

	Ground true with people	Ground true without people
Prediction with people	1540	767
Prediction without people	277	2416

Classification Accuracy: 0.7912

	Ground true with people	Ground true without people
Prediction with people	2236	31
Prediction without people	457	2276

Detection Accuracy: 0.9024

Disclaimer #3: Data is Everything

Disclaimer #4: Medical Data Paid for in Human Lives

We are going to need more training data...

MSHS MEDICAL A.I. CONSORTIUM

Neurological Surgery

Eric Karl Oermann, MD Instructor, Department of Neurosurgerv

Anthony Costa, PhD Assistant Professor, Department of Neurosurgery Director, Sinai BioDesign

Joshua B Bederson, MD Chairman, Department of Neurosurgery

Holly Oemke, BA Program Manager, Sinai Biodesign

Margaret Pain, MD Houseofficer, Department of Neurosurgery

Raj Shrivastava, MD Associate Professor, Department of Neurosurgery

John Caridi, MD Assistant Professor, Department of Neurosurgery

Neha Dangayach, MD Assistant Professor, Department of Neurosurgerv Research co-director for ICCM

ISMMS

Fred Kwon, MSE MD/PhD student

Deepak Kaji, BS MD/PhD student

Martin Kang, BS Medical Student

Varun Arvind, BS MD/PhD student

Radiology

Joseph Titano, MD Fellow, Department of Radiology

Javin Schefflein, MD Houseofficer, Department of Radiology

Burton Draver, MD Chairman, Department of Radiology

Brett Marinelli, MD Houseofficer, Department of Radiology

Nathaniel Swinburne, MD Houseofficer, Department of Radiology

Andres Su. MD Houseofficer, Department of Radiology

Michael Cai, MD Houseofficer, Department of Radiology

Orthopedics

Samuel Cho, MD Associate Professor, Department of Orthopedics and Neurosurgery

Jun Kim, MD Houseofficer, Department of Orthopedic Surgery

Komal Srivastava, BA Grant Specialist, Department of Orthopedic Surgery

Radiation Oncology

AISINAI

Sonam Sharma, MD Assistant Professor, Radiation Oncology

COLLABORATORS:

Stanford Stanford MEDICINE Alice Fan. MD Assistant Professor of Oncology

MERCK Joseph Lehar, PhD Director of Computational Biology

Senior Fellow

Viola Chen, MD Fellow, Department of Oncology

Translational and Molecular Imaging Icahn School of Medicine at Institute Mount

Zahi Fayad, PhD Director MSHS TMIII David Mendelson, MD Director of Informatics

Hammerlab: Alex Rubinstevn, PhD

Postdoc. GGS

intel Peter Tang, PhD

Google Marcus Badgeley, MEng PhD student, Google / Verilv Medical student, ISMMS