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How can GPU computing impact 
neurologic disease?

A longer story than you might think



3 Stories Enabling Neurosurgery Applications
● Computing Power → Radiation Planning
● Computing Localization → Intraoperative Applications
● Computing Density → Medical ML/DL

Basically, “what happened to enable us to build department computing resources 
for AI that really work?” 

And then, what does that look like?
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Needs of academic, medical DL
● Understand varied medical data needs
● Mixed compute/data access patterns
● Performance per dollar (financial constraints)
● Access to appropriate storage that can handle imaging down to free text
● Unified infrastructure, authentication and appropriate HIPAA privacy controls
● Support for current and future generation computing paradigms

○ E.g., Docker, Container frameworks



Medical Imaging Data IS big data
Consider 1 megapixel, 8 bit detector (# in batch, z, x, y, # channels):

● Single slice / 2D image (1, 1, 1024, 1024, 1) = 1 Mb
● 3D image with 100 slices (1, 100, 1024, 1024, 1) = 100 Mb
● 1024 images/batch (1024, 100, 1024, 1024, 1) = 100 Gb



● Memory 
● Precision 
● Bandwidth 

● Performance/$/Watt per application
○ 2D Imaging
○ 3D Volumetric Imaging
○ NLP, RNN, Time Series
○ Reinforcement Learning

● Comes down to:
○ What’s your data?
○ What’s your method?
○ What’s your benchmark for performance?
○ How rich are you and how much do you value your time?



http://timdettmers.com/2018/11/05/which-gpu-for-deep-learning/



Academic medical 
centers tend to start 
with what they know 
and evolve



Management
● V1: Classic HPC Cluster

○ YP/NIS Authentication
○ Manual Time Sharing
○ NFS v3 XFS 20TB

● V2: Major Expansion, Not-So-Classic HPC Cluster
○ Transition to Docker/Container Frameworks
○ Manual Time Sharing
○ Manual Authentication
○ NFS v3 XFS 20TB + Local Flash/Scratch HDDs
○ Flat/Volumetric Box Allocation to Specific Projects





Total Compute
● “Flat” GPUs, Consumer GTX/RTX

○ Great bang for your buck, limited appropriateness for 3D volumetric work due to small amount 
of on-die memory (8-12GB)

○ 2 x GTX 1080 (FP32 8TF)
○ 6 x GTX 1080 Ti (FT32 10TF)
○ 2 x GTX 2080 Ti (FP32 14TF, 110TF w/ Tensor Cores)

● “Volumetric” GPUs, Mid-Level and Enterprise
○ 3 - 10x Cost, ~double the memory
○ 2 x Quadro P6000 (FP32 12TF, 24GB OD, FP64)
○ 4 x RTX Titan (FP32 16TF, 130TF w/ Tensor Cores, 24GB OD, RP INT4/8 + FP16/64)
○ 8 x Tesla V100 (FP32 16TF, 125TF w/ Tensor Cores, 32GB OD, RP INT4/8 + FP16/64)

● Total Tensor flops: 5.6PF + General Purpose FP32 @ 0.86PF





Management
● V3: Next-Generation Containerized Cluster

○ Towards DeepOps
○ NFS v4 288TB BTRFS RAID6 + HSs
○ LDAP Unified Authentication (2 Factor + Sinai VPN)
○ Role-Based Data Access Validation
○ ContainerOS
○ Kubernetes Docker Orchestration Framework
○ Flat/Volumetric PXE Thin Nodes
○ Managed Docker Containers for All Projects





How can machine learning (on GPUs) 
impact neurological disease?

A universe of new applications



Assessments in the Neuro-ICU

Davoudi, A. et al. The Intelligent ICU Pilot Study: Using Artificial Intelligence Technology for Autonomous Patient Monitoring. arXiv [cs.HC] (2018). 
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Convolutional Neural Network 
Approaches to Brain Imaging



Classification and Localization
● Input: N classes + BBox (x,y,w,h)
● Output: Class K where K is in N + (xp,yp,wp,hp)
● Performance Metrics: Accuracy + Jaccard similarity (or Dice)

conv layers
+/- pooling

+/- fully conn 
layers

CORGI

Final conv layer

Softmax LOSS: CCE

(xp,yp,wp,hp)

LOSS: L2



Segmentation and Classification

conv layers
+/- pooling

+/- fully conn 
layers

CORGI

Final conv layer

Softmax LOSS: CCE



Brain Biopsies

Zhou, M. et al. Radiomics in Brain Tumor: Image Assessment, Quantitative Feature Descriptors and Machine-learning Approaches. AJNR Am. J. Neuroradiol. 39, 208 (2018).



Brain Biopsies

Chang, P. et al. Deep-Learning Convolutional Neural Networks Accurately Classify Genetic Mutations in Gliomas. AJNR Am. J. Neuroradiol. (2018). doi:10.3174/ajnr.A5667



Weak Supervision





Two Kinds of Labels

Gold Standard Labels
Ground Truth

Silver Standard Labels
Noisy Labels



Are Medical GT Labels Fool’s Gold? 
● Medical labels can be challenging 

with low IRR
○ Google Retinopathy dataset = 

55.4% 
○ IRR and 70.1% agreement 

between each expert and 
her/himself at a later time point!

● Can average labels using EM.
● However, average of modeled raters 

may outperform model of average 
raters.

● Guan et al. 2017 had 1.97% 
decrease in test loss

Guan et al. 2017 - Who Said What - Modeling Individual Labelers Improves Classification
Whitehill et al. 2009 - Whose Vote Should Count More - Optimal Integration of Labels from Labelers of Unknown Expertise



Weak Supervision with Generated Silver Labels
Solution? Accept noise in our label set.

Alex Ratner, Stephen Bach and Chris Ré - Snorkel Blog



The Unreasonable Effectiveness of Big Data with Silver Labels

C Sun, et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era - arXiv 2017

But does this work? Consider the 
following trends in computer vision with 
ImageNet….

What if we had a dataset 300x 
ImageNet’s size with noisy labels?



The Unreasonable Effectiveness of Big Data
Semantic segmentation on 

PASCAL-VOC Test set

Object detection on 
PASCAL-VOC Test set

Classification on 
ImageNet ‘val’ set

Effect of pre-training ResNet-101 on JFT-300M’s silver labels

C Sun, et al. Revisiting Unreasonable Effectiveness of Data in Deep Learning Era - arXiv 2017



Application to Acute Neurologic Events

Titano, J. J. et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat. Med. (2018). doi:10.1038/s41591-018-0147-y



Faster Interpretation of Imaging

Titano, J. J. et al. Automated deep-neural-network surveillance of cranial images for acute neurologic events. Nat. Med. (2018). doi:10.1038/s41591-018-0147-y
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Disclaimer #1: Generalization of deep models is not guaranteed

Zhang, C., Bengio, S., Hardt, M., Recht, B. & Vinyals, O. Understanding deep learning requires rethinking generalization. arXiv [cs.LG] (2016).



Disclaimer #2: Weak Classifiers are Easily Distracted

('bucket', 0.43788964), 
('tub', 0.13390972), 
('caldron', 0.11801116)

Average Precision  (AP) @[ IoU=0.50:0.95 | area=  all | maxDets=100 ] = 0.900
Average Precision  (AP) @[ IoU=0.50  | area= all | maxDets=100 ] = 1.000
Average Precision  (AP) @[ IoU=0.75  | area= all | maxDets=100 ] = 1.000



Disclaimer #2: Weak Classifiers are Easily Distracted



Disclaimer #3: Data is Everything



Disclaimer #4: Medical Data Paid for in Human Lives
We are going to 
need more training 
data...
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