Fast Neural Network Inference with TensorRT on Autonomous Vehicles

Zejia Zheng (<u>zheng@zoox.com</u>) Josh Park (<u>josh@nvidia.com</u>) Jeff Pyke (<u>jpyke@zoox.com</u>)

Table of Contents

TensorRT Introduction by Nvidia

TensorRT at Zoox

TensorRT Conversion Example

Background

	Massive amount of computation in DNN					GPU: Hi Comp	igh Perfo outing Pla	rmance Itform	SW Libro	iries	
layer name conv1	output size 112×112	18-layer	34-layer	50-layer 7×7, 64, stride 2	101-layer	152-layer		Tesla V100 PCle	Tesla V100 SXM2	DI Amiliantiano	
				3×3 max pool, strid	de 2		GPU Architecture	NVIDI	A Volta	DL Applications	
conv2_x	56×56	$[3 \times 3, 64]_{\times 2}$	[3×3, 64]×3	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \end{bmatrix} \times 3$	NVIDIA Tensor Cores	6	40	iraining + in	Terence
		[3×3, 64] ***	[3×3, 64] ***	1×1, 256	1×1,256	1×1,256	NVIDIA CUDA®	5,	120	DL Frameworks	
conv3_x	28×28	$\begin{bmatrix} 3\times3, 128\\ 3\times3, 128 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \end{bmatrix} \times 8$	Double-Precision Performance	7 TFLOPS	7.5 TFLOPS	(Tensorflow, PyTorch, etc.)	TensorRT
			L '' J		[1×1,512]		Single-Precision Performance	14 TFLOPS	15 TFLOPS		
conv4_x	14×14	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6$	1×1,256 3×3,256 ×6	1×1,256 3×3,256 ×23	1×1,256 3×3,256 ×36	Tensor Performance	112 TFLOPS	120 TFLOPS	CUDN	N
			5	[1×1, 1024]	[1×1, 1024]	[1×1, 1024]	GPU Memory	16 GB	HBM2	CLID	
conv5_x	7×7	$\begin{bmatrix} 3 \times 3, 512 \\ 2 \times 2, 512 \end{bmatrix} \times 2$	$\begin{bmatrix} 3 \times 3, 512 \\ 2 \times 3, 512 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \end{bmatrix} \times 3$	Memory Bandwidth	900 0	B/sec	CODF	1
		[3×3, 512] [3×	$\begin{bmatrix} 12 \end{bmatrix} \begin{bmatrix} 3 \times 3, 512 \end{bmatrix} \begin{bmatrix} 1 \times 1, 2048 \end{bmatrix}$	[1×1, 2048]	1, 2048 1×1, 2048	ECC	Y	es	CUDA Dr	iver	
	1×1		av	erage pool, 1000-d fc,	softmax		Interconnect	32 GB/sec	300 GB/sec		
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10^{9}	System Interface	PCIe Gen3		OS (ex. Ub	untu)
		·		· · · · · · · · · · · · · · · · · · ·			Form Factor	PCIe Full	SXM2		

Height/Length

250 W

Passive

CUDA, DirectCompute, OpenCL[™], OpenACC

300 W

Max Power

Comsumption Thermal Solution

Compute APIs

HW with GPUs

Parameter layers in billions FLOPS (mul/add)

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.

Nvidia TensorRT - Programmable Inference Accelerator

A sw platform for high-performance deep learning inference

TensorRT-based applications perform up to 40x faster than CPU-only platforms during inference

Deploy to hyperscale data centers, embedded, or **automotive** product platforms.

Speed up recommender, speech, video and translation in production

TensorRT 5 support Turing GPUs

Optimized kernels for mixed precision (FP32, FP16, INT8) workloads on Turing GPUs

Control precision per-layer with new APIs

Optimizations for depth-wise convolution operation

From Every Framework, Optimized For Each Target Platform

36X	20X	8X	27X	
NLP GNMT	RECOM Deep Recom	TTS WaveNet	VIDEO/ IMAGE ResNet-50	
	36X	36X 20X NLP GRWIT Deep Recorn	36X 20X 8X NLP GIWIT Deep Recorn WaveNet	36X 20X 8X 27X NLP GRWIT Deep Recorn WaveNet IMAGE ResNet-50

What TensorRT Does

Layer & Tensor Fusion:

Fuse several layers/ops into one layer

Auto-Tuning:

Platform specific kernels to maximize performance

Multi-Stream Execution:

Execute CUDA streams for independent batch/inference

Dynamic Tensor Memory:

Reuse activation from already used layers

Precision Calibration:

Calibrate computations on lower precision (FP16/INT8) tensor operations

Layer & Tensor Fusion

Unoptimized Network

TensorRT Optimized Network

Networks	Number of layers (Before)	Number of layers (After)		
VGG19	43	27		
Inception v3	309	113		
ResNet-152	670	159		

Kernel Auto-Tuning

Maximize kernel performance

Select the best performance for target GPU

Parameters

- Input data size,
- Batch,
- Tensor layout,
- Input dimension,
- ...
- Memory,
- Etc.

	100s	for specializ	zed kernels	\frown
	Optir	nized for ev	ery GPU platform	
		D) D	Multiple parameters: Batch size Input dimensions 	Kernel Auto-Tuning
Tesla V100	Jetson TX2	Drive PX2	Filter dimensions	

[V]	[TRT]	Timing resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/Conv2D + resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/Relu(14)
[V]	[TRT]	Tactic 5144900180810042977 time 0.209112
[V]	[TRT]	Tactic 7995089803833173579 time 0.147572
[V]	[TRT]	Tactic -9018593586369639207 time 0.229336
[V]	[TRT]	Tactic -8109134417363526151 time 0.210388
[V]	[TRT]	Tactic -3998689942157953075 time 0.228312
[V]	[TRT]	Tactic -3448915218022119398 time 0.14638
[V]	[TRT]	Tactic -3120440365138571960 time 0.147588
[V]	[TRT]	Tactic -242550410056126076 time 0.228548
[V]	[TRT]	
[V]	[TRT]	Timing resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/Conv2D + resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/Relu(1)
[V]	[TRT]	Tactic 0 time 0.547884
[V]	[TRT]	Tactic 1 time 0.424728
[V]	[TRT]	Tactic 2 scratch requested: 36864000, available: 16777216
[V]	[TRT]	Tactic 5 scratch requested: 131045440, available: 16777216
[V]	[TRT]	
[V]	[TRT]	Timing resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/Conv2D + resnet_v1_50/block1/unit_1/bottleneck_v1/conv1/Relu(33)
[V]	[TRT]	Chose 14 (-3448915218022119398)
[V]	[TRT]	
[V]	[TRT]	Timing resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/Conv2D + resnet_v1_50/block1/unit_1/bottleneck_v1/conv2/Relu(3)
[V]	[TRT]	

Lower Precision - FP16

FP16 matches the results closely to FP32

TensorRT automatically converts FP32 weights to FP16 weights

builder->setFp16Mode(true);

No guarantee that 16-bit kernels will be used when building the engine

builder->setStrictTypeConstraints(true);

Tensor Core kernels (HMMA) for FP16 (supported on Volta and Turing GPUs)

Lower Precision - INT8 Quantization

Setting the builder flag enables INT8 precision inference.

builder->setInt8Mode(true); IInt8Calibrator* calibrator; builder->setInt8Calibrator(calibrator);

Quantization of FP32 weights and activation tensors

Dynamic range of each activation tensor => the appropriate quantization scale

TensorRT: symmetric quantization with quantization scale calculated using absolute maximum dynamic range values

Control precision per-layer with new APIs

Tensor Core kernel (IMMA) for INT8 (supported on Drive AGX Xavier iGPU and Turing GPUs)

	Dynamic Range	Mininum Positive Value
FP32	-3.4×10 ³⁸ ~ +3.4×10 ³⁸	1.4 × 10 ⁻⁴⁵
FP16	-6 <mark>5</mark> 504 ~ +65504	5.96 x 10 ⁻⁸
INT8	-128 ~ +127	1

Lower Precision - INT8 Calibration

Run FP32 inference on Calibration

Per Layer:

Histograms of activations

Quantized distributions with different saturation thresholds.

Two ways to set saturation thresholds (dynamic ranges) :

manually set the dynamic range for each network tensor using setDynamicRange API

* Currently, only symmetric ranges are supported

use INT8 calibration to generate per tensor dynamic range using the calibration dataset (*i.e.*

'representative' dataset)

*pick threshold which minimizes KL_divergence (entropy method)

Plugin for Custom OPs in TensorRT 5

Custom op/layer: op/layer not supported by TensorRT => need to implement plugin for TensorRT engine

Plugin Registry

stores a pointer to all the registered Plugin Creators / look up a specific Plugin Creator

Built-in plugins: RPROI_TRT, Normalize_TRT, PriorBox_TRT, GridAnchor_TRT, NMS_TRT, LReLU_TRT, Reorg_TRT, Region_TRT, Clip_TRT

Register a plugin by calling **REGISTER_TENSORRT_PLUGIN(pluginCreator)** which statically registers the Plugin Creator to the Plugin Registry

Benchmark Tool: trtexec

Useful tool to measure performance (latency, not accuracy)

Source and prebuilt binary are provided.

Mandatory params: --deploy=<file> Caffe deploy file OR --uff=<file> UFF file --output=<name> Output blob name (can be specified multiple times) Mandatory params for onnx: ONNX Model file --onnx=<file> Optional params: --uffInput=<name>,C,H,W Input blob names along with their dimensions for UFF parser --model=<file> Caffe model file (default = no model, random weights used) --hatch=N Set batch size (default = 1) --device=N Set cuda device to N (default = 0) --iterations=N Run N iterations (default = 10) Set avgRuns to N - perf is measured as an average of avgRuns (default=10) --avgRuns=N --percentile=P For each iteration, report the percentile time at P percentage (0<P<=100, default = 99.0%) --workspace=N Set workspace size in megabytes (default = 16) Run in fp16 mode (default = false). Permits 16-bit kernels --fp16 --int8 Run in int8 mode (default = false). Currently no support for ONNX model. --verbose Use verbose logging (default = false) --hostTime Measure host time rather than GPU time (default = false) Generate a serialized TensorRT engine --engine=<file> --calib=<file> Read INT8 calibration cache file. Currently no support for ONNX model. Enable execution on DLA for all layers that support DLA. Value can range from 1 to N, where N is the number of DLA engines on the platform. Set the -- fp16 flag as well for DLA --useDLA=N --allowGPUFallback If --useDLA flag is present and if a layer cannot run on DLA, then run it on GPU.

TensorRT Performance on Xavier

8x Volta SM, 512 CUDA cores, 64 Tensor Cores, 20 TOPS INT8, 10 TFLOPS FP16, 8x larger L1 cache size, 4x faster L2 cache access, CUDA compute capability 7.2

TensorRT SpeedUp Per Precision (resnet-18)

TensorRT at Zoox

TensorRT Conversion Pipeline

CaffeMo	del	Convert To TensorRT E	Engine	Verif	y Performance	
Tensorflow .ckpt	Tensorflow frozen graph	TensorRT uff	٦	TensorRT Engine	Verify Performance	

TensorRT at Zoox

Almost all of neural network models are deployed with TensorRT at Zoox

Use cases include various vision/prediction/lidar models

2-6x speedup compared to Caffe/TensorFlow in Fp32.

6-13x speedup in Fp16.

9-19x speedup in Int8.

Benchmark results obtained on RTX 2080 Ti.

Fp16 Inference with TensorRT

Latency (Tesla V100, Resnet 50, Input Size: 224x224x3)

Batch Size	Fp32 (ms)	Fp16 (ms)	Speedup
4	4.356	2.389	1.8x
16	11.154	3.956	2.8x
32	20.090	6.439	3.1x
64	37.566	11.445	3.3x

Activation Overflow with Fp16

Activation Overflow with Fp16

Int8 Inference: Latency

Latency (RTX 2080 Ti, Standard Resnet50, Input Size: 224x224x3)

Batch Size	Fp32 (ms)	Fp16 (ms)	Int8 (ms)	Fp16 Speedup	Int8 Speedup
4	3.800	1.722	1.212	2.2x	3.1x
16	11.305	3.631	2.121	3.1x	5.3x
32	21.423	6.473	3.629	3.3x	5.9x
64	40.938	12.497	6.636	3.3x	б.2х

Int8 Inference: Detection Performance

Int8 Inference: Semantic Segmentation Visualization

Fp32 SSeg

Int8 SSeg

Int8 Inference: Semantic Segmentation Performance

IoU = (target \cap prediction) / (target \cup prediction)

Next Steps on Int8 Inference

To resolve the regression:

Inference with mixed precision

Manually set the dynamic range (see slide 10)

	Fp32	Int8	Mixed (7 Fp32 layers, 27 int8 layers)
Area Under Curve (regression)	0	-0.006	-0.003
Latency (relative)	1.0	0.61	0.69

Summary: TensorRT at Zoox

Almost all of neural network models are deployed with TensorRT at Zoox

2-4x speedup compared to Caffe/TensorFlow in Fp32.

Reduced precision inference

Fp16 inference works with no regression.

Int8 inference needs calibration and might yield regression.

6-13x speedup in Fp16.

9-19x speedup in Int8.

Example: Converting a Tensorflow LeNet

def network(self, X):

```
# Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(X, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
```

```
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max pooling2d(conv2, 2, 2)
```

```
# Fully connected layer (in tf contrib folder for now)
fc1 = tf.contrib.layers.flatten(conv2)
fc1 = tf.layers.dense(fc1, 1024)
logits = tf.layers.dense(fc1, 10)
output = tf.identity(logits, name = "output")
return output
```

Two Steps

\$ convert_to_uff --input_graph lenet5.pb --input-node input --output-node output --output lenet5.uff available after installing `uff-****-py2.py3-none-any.whl`

\$ convert_and_validate --uff_model lenet5.uff --output_engine lenet5.trt5p0p1 --input_dims 1,32,32 --original_graph lenet5.pb

modified from `loadModelAndCreateEngine` function in `samples/sampleUffSSD`

First Modification

```
def network(self, X):
    # Convolution Layer with 32 filters and a kernel size of 5
    conv1 = tf.layers.conv2d(X, 32, 5, activation=tf.nn.relu)
    # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
    conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
```

```
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
```

```
# Fully connected layer (in tf contrib folder for now)
fc1 = tf.contrib.layers.flatten(conv2)
fc1 = tf.layers.dense(fc1, 1024)
logits = tf.layers.dense(fc1, 10)
output = tf.identity(logits, name = "output")
return output
```

Use output node name: `dense_2/BiasAdd`

Let's convert it!

Well it converts, but ... (verification step is important!)

I0826 20:15:02.995867 I0826 20:15:02.995896 I0826 20:15:02.995903 I0826 20:15:02.995908 I0826 20:15:02.995913

576 convert_and_validate_tensorflow.cpp:152] Min diff 0.243159 576 convert_and_validate_tensorflow.cpp:153] Max diff 5.09985 576 convert_and_validate_tensorflow.cpp:154] 1/4 error 0.808826 576 convert_and_validate_tensorflow.cpp:155] Median error 1.25298 576 convert_and_validate_tensorflow.cpp:156] 3/4 error 2.02286

Diff is sky-high. Why?

Tensorflow defaults to channel last (NHWC).

TensorRT does not fully support this format.

Avoid changes in dimension if possible. (4D to 2D, or axis operations like slice, reshape, or split)

Getting Rid of Dimension Changes

```
def network(self, X):
    # Convolution Layer with 32 filters and a kernel size of 5
    conv1 = tf.layers.conv2d(X, 32, 5, activation=tf.nn.relu)
    # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
    conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
    # Convolution Layer with 64 filters and a kernel size of 3
    conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
    # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
```

```
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
```

```
# Fully connected layer (in tf contrib folder for now)
fc1 = tf.contrib.layers.flatten(conv2)
fc1 = tf.layers.dense(fc1, 1024)
logits = tf.layers.dense(fc1, 10)
output = tf.identity(logits, name = "output")
return output
```

After Modification

def network(self, X):

```
# Convolution Layer with 32 filters and a kernel size of 5
conv1 = tf.layers.conv2d(input, 32, 5, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of 2
conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
```

```
# Convolution Layer with 64 filters and a kernel size of 3
conv2 = tf.layers.conv2d(conv1, 64, 3, activation=tf.nn.relu)
# Max Pooling (down-sampling) with strides of 2 and kernel size of
conv2 = tf.layers.max_pooling2d(conv2, 2, 2)
//
```

```
# Use conv2d instead of fc for TensorRt
fc1 = tf.layers.conv2d(conv2, 1024, 6, activation=None)
fc2 = tf.layers.conv2d(fc1, 10, 1, activation=None, name="fc2")
logits = tf.contrib.layers.flatten(fc2)
output = tf.identity(logits, name="output")
return output
```

We only need the output here in trt. Output node: fc2/BiasAdd

In our network conv2 outputs a ?x6x6x64 tensor (nhwc).

A 6 by 6 conv with 1024 conv filters it's the same as a fully connected layer.

Let's Convert it Again!

10826 20:34:45.630537

I0826 20:34:45.630513 3969 convert_and_validate_tensorflow.cpp:152] Min diff 7.15256e-07 I0826 20:34:45.630527 3969 convert_and_validate_tensorflow.cpp:153] Max diff 5.72205e-06 I0826 20:34:45.630533 3969 convert_and_validate_tensorflow.cpp:154] 1/4 error 9.53674e-07 3969 convert_and_validate_tensorflow.cpp:155] Median error 2.86102e-06 I0826 20:34:45.630542 3969 convert_and_validate_tensorflow.cpp:156] 3/4 error 3.8147e-06

B=1 TensorRT avg per image 0.0002904s over 1000 iter.

B=1 Tensorflow avg per image 0.0007458s over 1000 iter.

~2.5x speedup with TensorRT

Some Other Tips

Use Tensorflow tools/graph_transforms/summarize_graph to verify frozen graph.

Use Identity op to control input node.

Use graphsurgeon package to manipulate Tensorflow graphs.

Use tensorflow transform_graph to fold BatchNorms.

Thanks!

Special thanks to:

Perception team and Infra team members from Zoox

Joohoon Lee's team from Nvidia

Q & A

Extra Materials

Converting BatchNorms

bn = layers.batch_norm(pool, scope='bn', is_training = is_training)

Issue 1: *is_training* creates a Select op that's not supported in TensorRT.

Solution: Find all Select op and replace them with Identity.

```
# Find the select op in the graph and replace it with identity op.
def remove select(input graph):
    no select graph = copy.deepcopy(input graph)
    for i in range(len(no_select_graph.node)):
        if (no_select_graph.node[i].op == "Select"):
            node_name = no_select_graph.node[i].input[0]
            curr node = no select graph.node[i]
            # is training is always False during inference.
            evaluated value = False
            # Replace the select op with Identity.
            no select graph.node[i].op = "Identity"
            if (evaluated_value == False):
                input name = no select graph.node[i].input[2]
                input_name = no_select_graph.node[i].input[1]
            no select graph.node[i].ClearField("input")
            no select graph.node[i].input.extend([input name])
    return no select graph
```

Converting BatchNorms

bn = layers.batch_norm(pool, scope='bn', is_training = is_training)

Issue 2: batch_norm involves a series of operations that's not supported in TensorRT.

Solution: Fold the batch_norm into convolution.

from tensorflow.tools.graph_transforms import TransformGraph

Verify Frozen Graph

There should be no variables, all weights	This is your input node					
are frozen	This is your output node.					
/						
INFO: Running command line: bazel	-bin/external/org_tensorflow/tensorflow/tools/graph_transforms/summarize_graph 'in_graph					
=/mnt/flashb/lade/zejia/tf_to_trt_	example/output_graph.pb'					
<u>Found 1 possible input</u> s: (name=in	put, type=float(1), shape=[?,32,32,1])					
No variables spotted.						
Found 1 possible outputs: (name=c	utput, op=Identity)					
Found 2389902 (2.39M) const param	eters, 0 (0) variable parameters, and 0 control_edges					
Op types used: 12 Const, 9 Identi	p types used: 12 Const, 9 Identity, 4 BiasAdd, 2 Conv2D, 2 MatMul, 2 MaxPool, 2 Relu, 1 Pack, 1 Placeholder, 1 Reshape, 1					
hape, 1 StridedSlice						
To use with tensorflow/tools/benc	hmark:benchmark_model try these arguments:					
<pre>bazel run tensorflow/tools/benchm how_flopsinput_layer=inputi</pre>	ark:benchmark_modelgraph=/mnt/flashblade/zejia/tf_to_trt_example/output_graph.pbs nput_layer_type=floatinput_layer_shape=-1,32,32,1output_layer <u>=output</u>					

What if I only want to convert part of the network?

E.g., input queues are a lot faster than naive placeholder.

Solution: use tf.identity.

```
def network(self, X):
    input = tf.identity(X, name = "input")
    # Convolution Layer with 32 filters and a kernel size of 5
    conv1 = tf.layers.conv2d(input, 32, 5, activation=tf.nn.relu)
    # Max Pooling (down-sampling) with strides of 2 and kernel size of 2
    conv1 = tf.layers.max_pooling2d(conv1, 2, 2)
```

Then in tf_to_uff and convert_and_validate_tensorflow use this as your input layer

TensorRT Graphsurgeon

For Tensorflow -> Uff conversion, sometimes the graph needs to be processed first in order to be successfully converted to TensorRT.

Example: Tensorflow inserts chain of Shape, Slice, ConcatV2, Reshape before Softmax. Slice is not supported by TensorRT. Solution: Use the TensorRT graphsurgeon API to remove this chain and pass the inputs directly to Softmax.