
Zejia Zheng (zheng@zoox.com)
Josh Park (josh@nvidia.com)
Jeff Pyke (jpyke@zoox.com)

Fast Neural Network Inference
with TensorRT on Autonomous

Vehicles

mailto:zheng@zoox.com
mailto:josh@nvidia.com
mailto:jpyke@zoox.com

Table of Contents

TensorRT Introduction by Nvidia

TensorRT at Zoox

TensorRT Conversion Example

Background

Massive amount of computation in DNN GPU: High Performance
Computing Platform SW Libraries

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

Parameter layers in billions FLOPS (mul/add)

Nvidia TensorRT - Programmable Inference Accelerator

A sw platform for high-performance deep learning inference

TensorRT-based applications perform up to 40x faster than
CPU-only platforms during inference

Deploy to hyperscale data centers, embedded, or automotive product
platforms.

Speed up recommender, speech, video and translation in production

TensorRT 5 support Turing GPUs

Optimized kernels for mixed precision (FP32, FP16, INT8) workloads on Turing GPUs

Control precision per-layer with new APIs

Optimizations for depth-wise convolution operation

From Every Framework, Optimized For Each Target Platform

What TensorRT Does

Layer & Tensor Fusion:
Fuse several layers/ops into one layer

Auto-Tuning:
Platform specific kernels to maximize performance

Multi-Stream Execution:
Execute CUDA streams for independent batch/inference

Dynamic Tensor Memory:
Reuse activation from already used layers

Precision Calibration:
Calibrate computations on lower precision (FP16/INT8) tensor operations

Layer & Tensor Fusion

TensorRT Optimized Ne TensorRT Optimized Network

e.g

Unoptimized Network

Networks Number of layers
(Before)

Number of
layers (After)

VGG19 43 27

Inception v3 309 113

ResNet-152 670 159

Kernel Auto-Tuning

Maximize kernel performance

Select the best performance for target GPU

Parameters
Input data size,
Batch,
Tensor layout,
Input dimension,
Memory,
Etc.

Lower Precision - FP16

FP16 matches the results closely to FP32

TensorRT automatically converts FP32 weights to FP16 weights

builder->setFp16Mode(true);

 No guarantee that 16-bit kernels will be used when building the engine

 builder->setStrictTypeConstraints(true);

Tensor Core kernels (HMMA) for FP16 (supported on Volta and Turing GPUs)

Lower Precision - INT8 Quantization
Setting the builder flag enables INT8 precision inference.

builder->setInt8Mode(true);
IInt8Calibrator* calibrator;
builder->setInt8Calibrator(calibrator);

Quantization of FP32 weights and activation tensors
(weights) Int8_weight = ROUND_To_Nearest (scaling_factor * FP32_weight_in_the_filters)

* scaling_factor = 127.0 f / max (| all_FP32_weights |)

(activation) Int8_value = if (value > threshold): threshold; else scaling_factor * FP32_value

* Activation range unknown (input dependent) => calibration is needed

Dynamic range of each activation tensor => the appropriate quantization scale

TensorRT: symmetric quantization with quantization scale calculated using absolute maximum
dynamic range values

Control precision per-layer with new APIs

Tensor Core kernel (IMMA) for INT8 (supported on Drive AGX Xavier iGPU and Turing GPUs)

Lower Precision - INT8 Calibration
Run FP32 inference on Calibration

Per Layer:
Histograms of activations

Quantized distributions with different saturation thresholds.

Two ways to set saturation thresholds (dynamic ranges) :

manually set the dynamic range for each network tensor using setDynamicRange API

 * Currently, only symmetric ranges are supported

use INT8 calibration to generate per tensor dynamic range using the calibration dataset (i.e.

‘representative’ dataset)

 *pick threshold which minimizes KL_divergence (entropy method)

Plugin for Custom OPs in TensorRT 5

Custom op/layer: op/layer not supported by TensorRT => need to implement plugin for TensorRT engine

Plugin Registry

stores a pointer to all the registered Plugin Creators / look up a specific Plugin Creator

Built-in plugins: RPROI_TRT, Normalize_TRT, PriorBox_TRT, GridAnchor_TRT, NMS_TRT, LReLU_TRT, Reorg_TRT, Region_TRT, Clip_TRT

Register a plugin by calling REGISTER_TENSORRT_PLUGIN(pluginCreator) which statically registers the Plugin Creator

to the Plugin Registry

Benchmark Tool: trtexec

Useful tool to measure performance (latency, not accuracy)

Source and prebuilt binary are provided.

TensorRT Performance on Xavier
8x Volta SM, 512 CUDA cores, 64 Tensor Cores, 20 TOPS INT8, 10 TFLOPS FP16, 8x larger L1 cache size, 4x faster L2 cache access, CUDA compute capability 7.2

TensorRT SpeedUp Per Precision (resnet-18)

TensorRT at Zoox

TensorRT Conversion Pipeline

Verify PerformanceCaffeModel Convert To TensorRT Engine

Tensorflow .ckpt Tensorflow
frozen graph TensorRT uff Verify

Performance
TensorRT
Engine

Almost all of neural network models are deployed with TensorRT at Zoox

Use cases include various vision/prediction/lidar models

2-6x speedup compared to Caffe/TensorFlow in Fp32.

6-13x speedup in Fp16.

9-19x speedup in Int8.

Benchmark results obtained on RTX 2080 Ti.

TensorRT at Zoox

Fp16 Inference with TensorRT
Latency (Tesla V100, Resnet 50, Input Size: 224x224x3)

Batch Size Fp32 (ms) Fp16 (ms) Speedup

4 4.356 2.389 1.8x

16 11.154 3.956 2.8x

32 20.090 6.439 3.1x

64 37.566 11.445 3.3x

Activation Overflow with Fp16

Conv

Backbone

Conv

...

Activation Overflow with Fp16

Conv

Backbone

Conv

...

BN

BN

Int8 Inference: Latency

Latency (RTX 2080 Ti, Standard Resnet50, Input Size: 224x224x3)

Batch Size Fp32 (ms) Fp16 (ms) Int8 (ms) Fp16
Speedup

Int8
Speedup

4 3.800 1.722 1.212 2.2x 3.1x

16 11.305 3.631 2.121 3.1x 5.3x

32 21.423 6.473 3.629 3.3x 5.9x

64 40.938 12.497 6.636 3.3x 6.2x

Int8 Inference: Detection Performance

Int8 Inference: Semantic Segmentation Visualization

Int8 SSeg Fp32 SSeg

Int8 Inference: Semantic Segmentation Performance

IoU = (target ⋂ prediction) / (target ⋃ prediction)

Next Steps on Int8 Inference

To resolve the regression:

Inference with mixed precision

Manually set the dynamic range (see slide 10)

Fp32 Int8 Mixed (7 Fp32 layers,
27 int8 layers)

Area Under
Curve
(regression)

0 -0.006 -0.003

Latency
(relative)

1.0 0.61 0.69

Summary: TensorRT at Zoox

Almost all of neural network models are deployed with TensorRT at Zoox

2-4x speedup compared to Caffe/TensorFlow in Fp32.

Reduced precision inference

Fp16 inference works with no regression.

Int8 inference needs calibration and might yield regression.

6-13x speedup in Fp16.

9-19x speedup in Int8.

Example: Converting a Tensorflow LeNet

Two Steps

$ convert_to_uff --input_graph lenet5.pb --input-node input --output-node output --output lenet5.uff

available after installing `uff-****-py2.py3-none-any.whl`

$ convert_and_validate --uff_model lenet5.uff --output_engine lenet5.trt5p0p1 --input_dims 1,32,32

--original_graph lenet5.pb

modified from `loadModelAndCreateEngine` function in `samples/sampleUffSSD`

First Modification

Use output node name:
`dense_2/BiasAdd`

Let’s convert it!

Well it converts, but … (verification step is important!)

Diff is sky-high. Why?
Tensorflow defaults to channel last (NHWC).
TensorRT does not fully support this format.

Avoid changes in dimension if possible. (4D to 2D, or axis operations like slice, reshape, or split)

(Exercise: convert the graph till conv2 layer and verify things are fine up to that point)

Getting Rid of Dimension Changes

After Modification

In our network conv2 outputs a
?x6x6x64 tensor (nhwc).

A 6 by 6 conv with 1024 conv
filters it’s the same as a fully
connected layer.

We only need the output here in
trt. Output node: fc2/BiasAdd

Let’s Convert it Again!

~2.5x speedup with TensorRT

Use Tensorflow tools/graph_transforms/summarize_graph to verify frozen graph.

Use Identity op to control input node.

Use graphsurgeon package to manipulate Tensorflow graphs.

Use tensorflow transform_graph to fold BatchNorms.

Some Other Tips

Thanks!

Special thanks to:

Perception team and Infra team members from Zoox

Joohoon Lee’s team from Nvidia

Q & A

Extra Materials

Converting BatchNorms

Issue 1: is_training creates a Select op that’s not
supported in TensorRT.

Solution: Find all Select op and replace them with
Identity.

Converting BatchNorms

Issue 2: batch_norm involves a series of
operations that’s not supported in TensorRT.

Solution: Fold the batch_norm into convolution.

Verify Frozen Graph

There should be no
variables, all weights
are frozen

This is your input
node

This is your output node.

What if I only want to convert part of the network?

E.g., input queues are a lot faster than naive placeholder.

Solution: use tf.identity.

Then in tf_to_uff and convert_and_validate_tensorflow use this as your input layer

TensorRT Graphsurgeon

For Tensorflow -> Uff conversion, sometimes the graph needs to be processed first in
order to be successfully converted to TensorRT.

Example: Tensorflow inserts chain of Shape, Slice, ConcatV2, Reshape before Softmax.
Slice is not supported by TensorRT.
Solution: Use the TensorRT graphsurgeon API to remove this chain and pass the inputs
directly to Softmax.

