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Background

Massive amount of computation in DNN GPU: High Performance 
Computing Platform SW Libraries 

[1] He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In 
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.

Parameter layers in billions FLOPS (mul/add)



Nvidia TensorRT - Programmable Inference Accelerator 

A sw platform for high-performance deep learning inference

TensorRT-based applications perform up to 40x faster than 
CPU-only platforms during inference

Deploy to hyperscale data centers, embedded, or automotive  product 
platforms.

Speed up recommender, speech, video and translation in production



TensorRT 5 support Turing GPUs

Optimized kernels for mixed precision  (FP32, FP16, INT8) workloads on Turing GPUs

Control precision per-layer with new APIs

Optimizations for depth-wise convolution operation

From Every Framework, Optimized For Each Target Platform



What TensorRT Does

Layer & Tensor Fusion: 
Fuse several layers/ops into one layer   

Auto-Tuning: 
Platform specific kernels to maximize performance 

Multi-Stream Execution: 
Execute CUDA streams for independent batch/inference 

Dynamic Tensor Memory: 
Reuse activation from already used layers

Precision Calibration: 
Calibrate computations on lower precision (FP16/INT8) tensor operations



Layer & Tensor Fusion 

TensorRT Optimized Ne TensorRT Optimized Network

e.g

Unoptimized Network

Networks Number of layers 
(Before)

Number of 
layers (After)

VGG19 43 27

Inception v3 309 113

ResNet-152 670 159



Kernel Auto-Tuning 

Maximize kernel performance 

Select the best performance for target GPU 

Parameters 
Input data size, 
Batch, 
Tensor layout, 
Input dimension, 
Memory,
Etc. 



Lower Precision - FP16 

FP16 matches the results closely to FP32 

TensorRT automatically converts FP32 weights to FP16 weights

builder->setFp16Mode(true);

 No guarantee that 16-bit kernels will be used when building the engine

 builder->setStrictTypeConstraints(true);

Tensor Core kernels (HMMA) for FP16 (supported on Volta and Turing GPUs) 



Lower Precision - INT8 Quantization 
Setting the builder flag enables INT8 precision inference.

builder->setInt8Mode(true); 
IInt8Calibrator* calibrator; 
builder->setInt8Calibrator(calibrator);

Quantization of FP32 weights and activation tensors
(weights) Int8_weight = ROUND_To_Nearest ( scaling_factor * FP32_weight_in_the_filters )

* scaling_factor = 127.0 f / max ( | all_FP32_weights | )

(activation) Int8_value = if (value > threshold): threshold; else scaling_factor * FP32_value 

* Activation range unknown (input dependent) => calibration is needed 

Dynamic range of each activation tensor => the appropriate quantization scale

TensorRT: symmetric quantization with quantization scale calculated using absolute maximum 
dynamic range values

Control precision per-layer with new APIs

Tensor Core kernel (IMMA) for INT8 (supported on Drive AGX Xavier iGPU and Turing GPUs)



Lower Precision - INT8 Calibration 
Run FP32 inference on Calibration 

Per Layer: 
Histograms of activations 

Quantized distributions with different saturation thresholds.

Two ways to set saturation thresholds (dynamic ranges) : 

manually set the dynamic range for each network tensor using setDynamicRange API 

   * Currently, only symmetric ranges are supported

use INT8 calibration to generate per tensor dynamic range using the calibration dataset (i.e. 

‘representative’ dataset)

    *pick threshold which minimizes KL_divergence (entropy method)



Plugin for Custom OPs in TensorRT 5 

Custom op/layer: op/layer not supported by TensorRT => need to implement plugin for TensorRT engine 

Plugin Registry 

stores a pointer to all the registered Plugin Creators / look up a specific Plugin Creator

Built-in plugins: RPROI_TRT, Normalize_TRT, PriorBox_TRT, GridAnchor_TRT, NMS_TRT, LReLU_TRT, Reorg_TRT, Region_TRT, Clip_TRT

Register a plugin by calling REGISTER_TENSORRT_PLUGIN(pluginCreator) which statically registers the Plugin Creator 

to the Plugin Registry

 



Benchmark Tool: trtexec

Useful tool to measure performance (latency, not accuracy) 

Source and prebuilt binary are provided. 



TensorRT Performance on Xavier 
8x Volta SM, 512 CUDA cores, 64 Tensor Cores, 20 TOPS INT8, 10 TFLOPS FP16, 8x larger L1 cache size, 4x faster L2 cache access, CUDA compute capability 7.2

TensorRT SpeedUp Per Precision (resnet-18)



TensorRT at Zoox



TensorRT Conversion Pipeline

Verify PerformanceCaffeModel Convert To TensorRT Engine

Tensorflow .ckpt Tensorflow 
frozen graph TensorRT uff Verify 

Performance
TensorRT 
Engine



Almost all of neural network models are deployed with TensorRT at Zoox

Use cases include various vision/prediction/lidar models

2-6x speedup compared to Caffe/TensorFlow in Fp32.

6-13x speedup in Fp16.

9-19x speedup in Int8. 

Benchmark results obtained on RTX 2080 Ti.

TensorRT at Zoox



Fp16 Inference with TensorRT
Latency (Tesla V100, Resnet 50, Input Size: 224x224x3)

Batch Size Fp32 (ms) Fp16 (ms) Speedup

4 4.356 2.389 1.8x

16 11.154 3.956 2.8x

32 20.090 6.439 3.1x

64 37.566 11.445 3.3x



Activation Overflow with Fp16

Conv

Backbone

Conv

...



Activation Overflow with Fp16

Conv

Backbone

Conv

...

BN

BN



Int8 Inference: Latency

Latency (RTX 2080 Ti, Standard Resnet50, Input Size: 224x224x3)

Batch Size Fp32 (ms) Fp16 (ms) Int8 (ms) Fp16 
Speedup

Int8 
Speedup

4 3.800 1.722 1.212 2.2x 3.1x

16 11.305 3.631 2.121 3.1x 5.3x

32 21.423 6.473 3.629 3.3x 5.9x

64 40.938 12.497 6.636 3.3x 6.2x



Int8 Inference: Detection Performance



Int8 Inference: Semantic Segmentation Visualization

Int8 SSeg Fp32 SSeg



Int8 Inference: Semantic Segmentation Performance

IoU = (target ⋂ prediction) / (target ⋃ prediction)



Next Steps on Int8 Inference

To resolve the regression:

Inference with mixed precision

Manually set the dynamic range (see slide 10)

Fp32 Int8 Mixed (7 Fp32 layers, 
27 int8 layers)

Area Under 
Curve 
(regression)

0 -0.006 -0.003

Latency 
(relative)

1.0 0.61 0.69



Summary: TensorRT at Zoox

Almost all of neural network models are deployed with TensorRT at Zoox

2-4x speedup compared to Caffe/TensorFlow in Fp32.

Reduced precision inference

Fp16 inference works with no regression.

Int8 inference needs calibration and might yield regression.

6-13x speedup in Fp16.

9-19x speedup in Int8. 



Example: Converting a Tensorflow LeNet



Two Steps

$ convert_to_uff --input_graph lenet5.pb --input-node input --output-node output --output lenet5.uff

available after installing `uff-****-py2.py3-none-any.whl`

$ convert_and_validate --uff_model lenet5.uff --output_engine lenet5.trt5p0p1 --input_dims 1,32,32 

--original_graph lenet5.pb

modified from `loadModelAndCreateEngine` function in `samples/sampleUffSSD` 

 



First Modification

Use output node name: 
`dense_2/BiasAdd` 



Let’s convert it!

Well it converts, but … (verification step is important!)

Diff is sky-high. Why? 
Tensorflow defaults to channel last (NHWC).
TensorRT does not fully support this format.

Avoid changes in dimension if possible. (4D to 2D, or axis operations like slice, reshape, or split)

(Exercise: convert the graph till conv2 layer and verify things are fine up to that point)



Getting Rid of Dimension Changes



After Modification

In our network conv2 outputs a 
?x6x6x64 tensor (nhwc). 

A 6 by 6 conv with 1024 conv 
filters it’s the same as a fully 
connected layer.

We only need the output here in 
trt. Output node: fc2/BiasAdd



Let’s Convert it Again!

~2.5x speedup with TensorRT



Use Tensorflow tools/graph_transforms/summarize_graph to verify frozen graph.

Use Identity op to control input node. 

Use graphsurgeon package to manipulate Tensorflow graphs. 

Use tensorflow transform_graph to fold BatchNorms.

Some Other Tips



Thanks!

Special thanks to:

Perception team and Infra team members from Zoox 

Joohoon Lee’s team from Nvidia



Q & A



Extra Materials



Converting BatchNorms

Issue 1: is_training creates a Select op that’s not 
supported in TensorRT. 

Solution: Find all Select op and replace them with 
Identity. 



Converting BatchNorms

Issue 2: batch_norm involves a series of 
operations that’s not supported in TensorRT. 

Solution: Fold the batch_norm into convolution.



Verify Frozen Graph

There should be no 
variables, all weights 
are frozen

This is your input 
node

This is your output node.



What if I only want to convert part of the network?

E.g., input queues are a lot faster than naive placeholder. 

Solution: use tf.identity.

Then in tf_to_uff and convert_and_validate_tensorflow use this as your input layer 



TensorRT Graphsurgeon

For Tensorflow -> Uff conversion, sometimes the graph needs to be processed first in 
order to be successfully converted to TensorRT.

Example: Tensorflow inserts chain of Shape, Slice, ConcatV2, Reshape before Softmax. 
Slice is not supported by TensorRT.
Solution: Use the TensorRT graphsurgeon API to remove this chain and pass the inputs 
directly to Softmax.


