

S9893 - KVM GPU VMs: Maximize Perf and Utilization

Anish Gupta, 03/08/2019

Agenda

INTRODUCING KVM VIRTUALIZATION ON DGX-2 KVM BENEFITS

- SECURE MULTI-TENANCY
- IMPROVE SYSTEM AVAILABILITY
- EASY TO USE

HOW WE ENABLE KVM

DGX-2 has Immense compute

PROBLEM STATEMENT WITH GPU VIRTUALIZATION

SECURE MULTI-TENANCY

Launch secure tenants with different number of GPUs targeting Healthcare, CSPs, Higher Education use cases

IMPROVED SYSTEM AVAILABILITY

((Hypervisor assisted Hardware health management with no down time

Secure Multi-Tenancy

DGX-2 KVM VIRTUALIZATION

- Enable your own private DL Training Cloud for your Enterprise
 - KVM hypervisor for Ubuntu Linux
- Hypervisor Enable teams of developers to simultaneously access DGX-2
 - Flexibly allocate GPU resources to each user and their experiments
 - Full GPU's and NVSwitch access within VMs — either all GPU's or as few as 1

DGX-2 KVM provides secure Multi-tenancy

Many Users For Improved Utilization

Multiple Users on one DGX Server

- 16 x1-GPU VMs
- Many non-GPU VMs

Schedule Multi-DL apps on available HW

ML/DL training, NGC containers, RAPIDS

Healthcare, Higher Education

Cloud / Datacenters deployment

Ex: Data Science team within Fortune 500 organization

GPU VMs Can Run Different CUDA & Drivers

Good for: Developing apps across CUDA

GPU VM Can Have Different Guest OS

Good for: Developing apps across OSes

GPU VMs Can Run Different Apps : DL & Data Analytics

GPU VM	GPU VM	GPU VM	GPU VM		GPU VM				
TensorFlow	Microsoft Social Verset	Caffe 2	mxnet	R F C	RAPIDS, .edu lealthcare, Dther apps				
TF Tuned SW	CNTK Tuned SW	Caffe2 Tuned SW	Pytorch Tuned SW		Tuned SW				
CUDA RT	CUDA RT	CUDA RT	CUDA RT		CUDA RT				
Guest OS	Guest OS	Guest OS	Guest OS		Guest OS				

HYPERVISOR

Ex: Demo RAPIDs in a 16-GPU VM

Secure Multi-tenancy Considerations

- Each tenant gets <u>dedicated</u> HW i.e. CPUs, Mem, GPUs etc.
- HW is *isolated* across tenants
- GPUs, NVSwitches are passthrough
- NVLINKs are isolated
- Cannot "reset" PCI HW
- Cannot download malicious "code" to HW

VMs Get Complete Isolation Of GPUs & NVLINKs

Improved System Availability

Baremetal : HW Fault Can Impact Entire Server

Fault Inside A VM Doesn't Impact Entire Server

Track Unhealthy HW In Hypervisor

One Faulted HW Is RMAed - We Recover

What We Did To Enable KVM

Modified System SW For KVM

Modified "qemu" & Guest OS

Pre-Configured Templates For Optimal Perf

Pre-Configure Templates for Optimal Performance:

- Only support power-of-2 GPU VMs
- Select IO devices Using PCIe and NVLINK topology
- Select CPU cores and Memory based on NUMA
- Pin vCPU cores with Core-affinity for Hyper Threads

NOTE : Pre-Configured Templates can be <u>easily</u> modified

How To Use KVM

One Command To Change to KVM "Mode"

Creating & Deleting GPU VMs Is Easy

One Command To Revert To Bare-metal Mode Apps & VMs **GPUs** Hypervisor apt remove dgx-kvm-sw Server Bare-metal Mode KVM Mode

Day Use as KVM Server, Night for HPC workloads

Near Bare-Metal Performance

Apply Performance "Knobs"

- 1. Leverage HW topology to get near Bare-metal Perf
 - NVLINK & PCI topology to select GPUs & NVSwitches
 - NUMA to select Memory and CPU cores
- 2. Multiple queues for Network and Block Devices

Before Performance "Knobs"

Typically Virtualization has ~ 20-30% performance overhead*

* See OpenBenchMarking.org: KVM vs Baremetal Benchmarks

After Performance "Knobs"

DGX performance tuned Virtual Machines show minimal impact

ResNet152, Batch 16 Training

Where To Get KVM Software

- 1. By default, not installed
- 2. Download repository pre-configured on DGX
- 3. Need to explicitly install
 - 1. dgx-kvm-sw package
 - 2. Guest OS images available as separate package
 - 3. Multiple Guest OS versions available

4. Air Gapped Customers : Reach NVIDIA Enterprise Experience

DGX-2 KVM Demo

• See DGX2 KVM Demo Page

Can Use OSS Tools To Monitor VMs

••	🗴 Virtual Machine Manager	
File I	dit View Help	
E	💻 Open 🕨 🔟 🕑 👻	
Name	▼ ▼	CPU usage
	oneGPU-VM-1g0 Running	
	oneGPU-VM-1g1 Running	
	oneGPU-VM-1g10 Running	
	oneGPU-VM-1g11 Running	
	oneGPU-VM-1g12 Running	
	oneGPU-VM-1g13 Running	
	oneGPU-VM-1g14 Running	
	oneGPU-VM-1g15 Running	
	oneGPU-VM-1g2 Running	
	oneGPU-VM-1g3 Running	
	oneGPU-VM-1g4 Running	
	Running	
	OnesPU-VM-1g6 Running	
	onesru-vm-1g/ Running	
	oneGPU-VM-1g8 Running	
	oneGPU-VM-1g9 Running	

https://github.com/dholt/openstack-lab

References

- DGX2 User Guide
 - https://docs.nvidia.com/dgx/pdf/dgx2-user-guide.pdf
 - See chapter 11
- DGX Best Practices
 - https://docs.nvidia.com/dgx/bp-dgx/index.html#topic_2
 - See Chapters 10, 11
- KVM Questionnaire: http://tinyurl.com/y4d3y6xm

SUMMARY

DGX-2 KVM Team

Engineering

Anish Gupta

Govinda Tatti

Peter Bradstreet

Ranen Chatterjee

Management Prod Mktg

Raaghav Hebbar

Newton Liu

Haiduong Vo

36 📀 nvidia.

NVIDIA LED DGX SESSIONS AT GTC 2019

NOTE: For details on <u>all DGX-related sessions</u>, visit: <u>GTC site</u> and search for "DGX" or look-up session ID

NVIDIA LED SESSIONS							
Session #, Date/Time	Location	Session Name	Product Featured				
S91003 Wed 3/20, 2pm	Convention Center Room 210A	MXNet Computer Vision and Natural Language Processing Models Accelerated with NVID. TensorCores - Przemyslaw Tredak (DevTech Engineer) and Cyrus Vahid (Principle Evangelist AWS Deep Eng	A gine)				
S9417 Wed 3/20, 3pm	SJ Convention Center Room 211B	Molecular Generative VAEs: Parallelization, Optimization, and Latent Space Analysis on D - Ellen Du and Joey Storer, Research Scientists, Dow Chemical Company)GX-1				
S9469 Wed 3/20, 4pm	SJ Convention Center Room 231	MATLAB and NVIDIA Docker: A Complete Al Solution, Where You Need It, in an Instant - Jos Martin and Joss Knight, Engineering, MathWorks					
S9892 Wed 3/20, 4pm	SJ Convention Center Room 220A	Deep Learning for Autonomous Driving at BMW - Alexander Frickenstein, PhD Candidate, BMW					
CE9153 Wed 3/20, 4pm	SJ Convention Center Hall 3 Pod D	Connect with Experts: How to effectively use GPGU VMs on DGX-2 - Anish Gupta, Varinder Singh, Raaghav Hebbar, Ranen C and Chris Zankel (Nvidia)					

Thank You !!