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AUTONOMOUS DRIVING AT BMW

▪ BMW Autonomous Driving Campus in Unterschleißheim (Munich), established in 2017

▪ 1400 Employees incl. Partners (Sensor-processing, Data-Analytics, ML, Driving-Strategy, HW-Architecture)

▪ 81 Feature teams (incl. Partners), working in 2 weekly sprints (LESS)

▪ 30 PhDs 

‘Raw data are good data’ -Unknown Author-

▪ BMW AD research fleet consist of 85 cars collecting 2TB/h per car

→ High resolution sensor data, like LIDAR, Camera

►Insight into three PhD-projects, which are driven by the AD strategy at BMW
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DESIGN PROCESS OF ML-APPLICATIONS FOR AD

▪ An rough outline of the deployment* 

process for ADAS and AD

▪ Inspired by Gajski-Kuhn chart (or Y diagram) [1] 

▪ Design of real-world applications include:

- Multiple domains (structural, modelling, optimization)

- Abstraction levels

- Knowledge sharing  is essential for the drive of inovation

(e.g. Car manufactures, technology companies)

*Presented projects gives an academic insight of PhD-candidates

*Datasets shown here are not used for commercial purpose

Fig. 1: Design Process of AD-Applications.
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01
FINE-GRAINED VEHICLE REPRESENTATIONS FOR AD
BY THOMAS BAROWSKI, MAGDALENA SZCZOT AND SEBASTIAN HOUBEN
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FINE-GRAINED VEHICLE REPRESENTATIONS FOR AD
BY THOMAS BAROWSKI, MAGDALENA SZCZOT AND SEBASTIAN HOUBEN

▪ Motivation: a detailed understanding of complex traffic scenes:

- State and possible intentions of other traffic participants

- Precise estimation of a vehicle pose and category

- Be aware of dynamic parts, e.g. Doors, Trunks

- React fast and appropriate to safety critical situations

Thomas Barowski, Magdalena  Szczot and Sebastian 
Houben: Fine-Grained Vehicle Representations for 
Autonomous Driving, ITSC, 2018, 
10.1109/ITSC.2018.8569930. 

Fig. 2: Exemplary 2D visualization of fragmentation 
levels in the Cityscapes[3] segmentation benchmark.
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FINE-GRAINED VEHICLE REPRESENTATIONS FOR AD

▪ Goal:

- Learn new vehicle representations by semantic segmentation

- Three vehicle fragmentation levels (Course → Fine → Full):

- Dividing vehicle into part areas, based on materials and function

- Embedding pose information

- Annotating representations on CAD-Models

- Empirically examined on VKITTY[4], Cityscapes[3]

▪ Core idea is to extend an existing image-dataset by manual labeling

▪ Data generation pipeline is an adaption of the 

semi-automated method from Chabot et al. [5]

▪ Instead, annotation is done on a set of models (3D Car Models)

Fig. 2: Exemplary 2D visualization of fragmentation 
levels in the Cityscapes[3] segmentation benchmark.
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SEMI-AUTOMATED LABELING PIPELINE (1)

▪ Vehicle Fragmentation Levels from ShapeNet (3D Model 

Repository): 

- Different car models  including WorldNet synsets (>4000)

- Three fragmentation levels (Coarse (4) – Fine (9) – Full (27))

- Including classes for: Body, windows, lights, wheels, doors, 

roof, side, trunk, wheels, windshiels

- In finer grained representations: model needs to solve 

challenging task of separation between parts that share visual 

cues but vary in position, e.g. individual doors

- Identify parts with small local visual context: representation 

becomes suitable for pose estimation with high occlusion or 

truncation 

Fig. 3: Visualization of the annotated CAD models [5] .
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SEMI-AUTOMATED LABELING PIPELINE (2)

1. Apply well overlapping 3D bounding boxes to raw images

2. Suited model is selected based on the vehicle type or 
dimensions of the model (L1-distance)

3. Mesh of the 3D-model is resize to fit the bounding box 
and aligned to 3D space

4. Mesh is projected on the image plane:

→ Resulting in a segmentation map containing     

fragmentation level information of the vehicle

5. Only pixels labeled as vehicle in the respective dataset are 
propagated to the image 

→ To overcome projection errors

→  Results in fine-grained dense representations
Fig. 4: Semi-automated labeling pipeline.
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FCN MODEL EXPLORATION

▪ Reimplemented FCN8 [6] and VGG16 [7] as backbone

▪ End to end training, using cross entropy loss

▪ Trained on 4-27 classes (based on fragmentation level) 

▪ Plus classes of datasets

▪ Multi-GPU training (Kubernets and Horovod on DGX1)

→ Full fragmentation level → High resolution input images

▪ Aim: not loosing significant accuracy in non vehicle-related background classes

Fig. 5: FCN8 [6] with VGG16[7] backbone.
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FCN MODEL EXPLORATION

Experiment IoUclass IoUnon-parts IoUparts

VKITTY Baseline 68.77 68.77 -

VKITTY ShapeNet [15] Coarse 61.05 66.49 63.64

Fine 56.93 66.31 44.73

Full 36.67 58.22 27.44

Cityscapes ShapeNet [15] Coarse 49.56 48.81 52.96

Fine 48.63 50.88 44.20

Full 33.50 50.78 21.98

Tab. 1: Segmentation results for the three fragmentation levels, performed on VKITTY and Cityscapes using FCN8.
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FCN MODEL EXPLORATION – VKITTY AND CITYSCAPES 

Fig. 6a: Qualitative results on VKITTY dataset for the three fragmentation levels.

Coarse: Fine: Full:

Fig. 6b: Qualitative results on Cityscapes dataset for the three fragmentation levels.
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02
SELF-SUPERVISED LEARNING OF THE DRIVABLE AREA OF AD
BY JAKOB MAYR, CHRISTIAN UNGER, FEDERICO TOMBARI
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SELF-SUPERVISED LEARNING OF THE DRIVABLE AREA OF AD

▪ Motivation:

- Automated approach for generating training data for the task of drivable 
area segmentation → Training Data Generator (TDG)

- Acquisition of large scale datasets with associated ground-truth still poses 
an expensive and labor-intense problem

▪ Deterministic stereo-based approach for ground-plane detection:

Fig. 7a: Automated generated data of TDG. Fig. 7b: Segmentation of DNN trained on TDG.

Jakob Mayr, Christian Unger, Federico Tombari: 
Self-Supervised Learning of the Drivable Area 
for Autonomous Driving, iROS, 2018.
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WHY GROUND-PLANE DETECTION?

▪ Important aspect is the planning of safe and comfortable driving maneuvers

▪ Knowledge about the environment of the vehicle

▪ especially drivable areas (important role in ADAS and AD)

▪ e.g. road ahead/ drivable area is blocked by obstacles

▪ Parallel processing of GPUs allow frame based semantic segmentation

▪ Why Automated Data-Labeling?

- Pace and cost pressure

- Labeling is expensive

- Existing datasets do not suit the desired application:

o Technical aspects: e.g. field of view, mounting position, camera geometry

o Environmental conditions: e.g. weather condition, time, street types

Technical Aspect of Cityscapes:
images show part of the hood, 
initialization of the ground-plane  
model including non-ground plane 
disparity is necessary!



Page 18GTC 2019 - Silicon Valley| Deep Learning for Autonomous Driving at BMW | 03/20/19

AUTOMATED LABELING PIPELINE

▪ Based on so-called v-disparity map [8]:

- Different use cases

- No fine tuning of existing models required

Fig. 8: Automated labeling pipeline.
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CNN-MODEL EXPLORATION (1)

▪ Automatically generated data are used to train Unet and SegNet → low resolution inputs (512*256 and 480*360)

▪ Models are trained only on automatically generated datasets

▪ Evaluation is performed by using human labeled ground-truth data, e.g. Cityscape [3], Kitty [2]

→ Drivable (road, parking) and non-drivable area (side walks, pedestrians)

▪ Observations:

- Low detection in lateral direction

- Noisy data of TDG → generate robust CNN model

- Dynamic objects are detected reliably

Fig. 9a: SegNet segmentation. Fig. 9b: U-Net segmentation.
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CNN-MODEL EXPLORATION (1)

▪ Robustness of model - Flipping images upside down:

- SegNet [9] →  Not capable of detecting ground-plane

- UNet [10]    → Detects ground-plane

Fig. 9c: Flipped SegNet segmentation. Fig. 9d: Flipped U-Net segmentation.
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CNN-MODEL EXPLORATION (2)

▪ Performance:

- Data generation: 

- Hand labeling Cityscape [3] 19d

- Using automated labeling 3.5h (CPU) not parallelized on GPU yet

- U-Net [10] : 10 fps on Titan X

- ResNet [9].:4.4fps on Titan X

→ Optimization of DNNs comes into account

→ Out of the box CNNs come along with substantial drawbacks

Cityscapes KITTY

Approach Rec Prec Acc IoU Rec Prec Acc IoU

Training Data Generator (TDG) 70.84 91.49 85.35 66.46 81.87 58.07 86.58 51.45

Unet trained on auto. TDG labels 85.29 92.83 91.27 80.01 87.25 81.35 94.31 72.70

SegNet trained on auto. TDG labels 85.75 76.10 85.29 67.56 90.96 70.01 91.35 65.45

Tab. 2: Segmentation results for the TDG, performed on Cityscapes [3] and Kitty [2] using U-Net [10] and SegNet [9].
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03
CNN OPTIMIZATION TECHNIQUES FOR AD
BY ALEXANDER FRICKENSTEIN, MANOJ VEMPARALA, WALTER STECHELE
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CNN OPTIMIZATION TECHNIQUES FOR AD

Fig. 10: How deployment of DNNs can be seen differently.

▪ Running example: Quantization of CNNs:

- Normally, floating-point PEs is 10× less energy 
efficient compared to fixed point math.

- The step-size between two numbers could be 
dynamic using floating-point numbers. This is 
useful feature for different kinds of layers in CNN.

- Closing gap between CNN compute demand and 
HW-accelerator is important

→ Trend to specialized HW-accelerator, e.g. Tesla 
T4
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CNN OPTIMIZATION TECHNIQUES FOR AD

Fig. 11: Optimization design process.
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RESOURCE AWARE MULTICRITERIAL OPTIMIZATION

▪ Motivation:

- Out of the box DNNs require high performance HW-accelerator:

- YOLO [11] or SSD300 [12] require an Nvidia Titan X to run in real-time

→ Showing the high compute demand of those models

- No, SqueezeNet [13] is really not out of the box!

→ An 18,000 GPU super-computer is used for the model exploration

- Deploy DNNs on memory, performance and power-consumption
constraint embedded hardware is commonly time consuming

Fig. 11: Filter-wise pruning of convolutional layer.
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WHY RESOURCE-AWARE MULTICRITERIAL OPTIMIZATION?

▪ Optimization techniques are going hand in hand                     

(Filter-wise pruning and Quantization)

▪ CNN optimization depends on system, 

algorithmic and system level in the design process

▪ DNNS need to be highly compressed to fit the HW for AD

→ Automotive rated memory is expensive

▪ Good data locality is essential for low-power applications

→ Extreme temperatures in cars (Siberia → Death Valley)

→ Active cooling obligatory?

▪ Fast deployment time is a crucial aspect for 

agile SW deployment 

→ Proposing a Pruning and Quantization scheme for CNNs
Fig. 12: Pruning and quantization for efficient embedded Applications of DNNs.
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METHOD -PRUNING

▪ Fast magnitude based [14] pruning scheme → removing unimportant filter

▪ Based on a half-interval search (log2(n))

→ Explore optimal layer-wise pruning rate

▪ Varying pruning order to generate an optimized model either with respect to the 
memory demand or execution time 

▪ Process of removing weight-filter of a layer:

1. Identify Cost (L1-distance) of all weight-filter of a layer

2. Based on the half-interval search remove filter, which cost is below a threshold

3. Threshold is identified by half-interval search

4. Retrain model (SGD with momentum) with small learning rate 

→ Momentum should be available before pruning

5. As accuracy of the CNN is maintained increase the pruning rate (half-interval 
search)

6. Pruning is always applied to the layer which fits the desired optimization goal best

Fig. 13: Binary-search applied to prune CNN.
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METHOD - QUANTIZATION

▪ Quantization leads to a hardware friendly implementation

▪ Reducing the footprint of HW-components

▪ Lowering the memory bandwidth 

▪ Improving the performance 

→ Floating-point PE is 10x less efficient 

compared to fixed-point unit

▪ Weight and activations are brought into the fixed-point 

format with the notation <S,IB,FB>

- S: Sign bit

- IB: Integer bit

- FB: Fractional bit

▪ Stochastic rounding is used for approximation 
Fig. 14: Pruning and quantization applied to CNN.
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MEMORY AND PERFORMANCE BENCHMARK

Fig. 15: Pruning rate and runtime of Deep Compression [14] and our approach.

Fig. 16: Runtime of VGG16 [7] on different HW-Accelerator.
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MEMORY AND PERFORMANCE BENCHMARK

Tab. 3: Performance and memory benchmark of our method applied to 
VGG16.
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