DEEP LEARNING IN THE FIELD OF AUTONOMOUS DRIVING

AN OUTLINE OF THE DEPLOYMENT PROCESS FOR ADAS AND AD

Alexander Frickenstein, 3/17/2019

AUTONOMOUS DRIVING AT BMW

- BMW Autonomous Driving Campus in Unterschleißheim (Munich), established in 2017
- 1400 Employees incl. Partners (Sensor-processing, Data-Analytics, ML, Driving-Strategy, HW-Architecture)
- 81 Feature teams (incl. Partners), working in 2 weekly sprints (LESS)
- 30 PhDs

'Raw data are good data' -Unknown Author-

- BMW AD research fleet consist of 85 cars collecting 2TB/h per car
 - \rightarrow High resolution sensor data, like LIDAR, Camera

► Insight into three PhD-projects, which are driven by the AD strategy at BMW

CONTENT

- Introduction: Design Process of ML-Applications for AD
- Exemplary projects; which are driven by the AD strategy at BMW
 - 1. Fine-Grained Vehicle Representations for AD
 - 2. Self-Supervised Learning of the Drivable Area of AD
 - 3. CNN Optimization Techniques for AD

DESIGN PROCESS OF ML-APPLICATIONS FOR AD

DESIGN PROCESS OF ML-APPLICATIONS FOR AD

- An rough outline of the deployment* process for ADAS and AD
- Inspired by Gajski-Kuhn chart (or Y diagram) [1]
- Design of real-world applications include:
 - Multiple domains (structural, modelling, optimization)
 - Abstraction levels
 - Knowledge sharing is essential for the drive of inovation (e.g. Car manufactures, technology companies)

*Presented projects gives an academic insight of PhD-candidates *Datasets shown here are not used for commercial purpose

01

FINE-GRAINED VEHICLE REPRESENTATIONS FOR AD

BY THOMAS BAROWSKI, MAGDALENA SZCZOT AND SEBASTIAN HOUBEN

FINE-GRAINED VEHICLE REPRESENTATIONS FOR AD BY THOMAS BAROWSKI, MAGDALENA SZCZOT AND SEBASTIAN HOUBEN

- Motivation: a detailed understanding of complex traffic scenes
- State and possible intentions of other traffic participants
- Precise estimation of a vehicle pose and category
- Be aware of dynamic parts, e.g. Doors, Trunks
- React fast and appropriate to safety critical situations

Thomas Barowski, Magdalena Szczot and Sebastian Houben: Fine-Grained Vehicle Representations for Autonomous Driving, ITSC, 2018, 10.1109/ITSC.2018.8569930.

Fig. 2: Exemplary 2D visualization of fragmentation levels in the Cityscapes[3] segmentation benchmark.

FINE-GRAINED VEHICLE REPRESENTATIONS FOR AD

Goal:

- Learn new vehicle representations by semantic segmentation
- <u>Three vehicle fragmentation levels (Course \rightarrow Fine \rightarrow Full):</u>
 - Dividing vehicle into part areas, based on materials and fun
 - Embedding pose information
 - Annotating representations on CAD-Models
- Empirically examined on VKITTY[4], Cityscapes[3]
- Core idea is to extend an existing image-dataset by manual labe
- Data generation pipeline is an adaption of the semi-automated method from Chabot et al. [5]
- Instead, annotation is done on a set of models (3D Car Models)

Fig. 2: Exemplary 2D visualization of fragmentation (levels in the Cityscapes[3] segmentation benchmark.

SEMI-AUTOMATED LABELING PIPELINE (1)

- Vehicle Fragmentation Levels from ShapeNet (3D Model <u>Repository):</u>
 - Different car models including WorldNet synsets (>4000)
 - Three fragmentation levels (Coarse (4) Fine (9) Full (27))
 - Including classes for: Body, windows, lights, wheels, doors, roof, side, trunk, wheels, windshiels
 - In finer grained representations: model needs to solve challenging task of separation between parts that share visual cues but vary in position, e.g. individual doors
 - Identify parts with small local visual context: representation becomes suitable for pose estimation with high occlusion or truncation

Fig. 3: Visualization of the annotated CAD models [5].

SEMI-AUTOMATED LABELING PIPELINE (2)

- 1. Apply well overlapping 3D bounding boxes to raw images
- 2. Suited model is selected based on the vehicle type or dimensions of the model (L1-distance)
- 3. Mesh of the 3D-model is resize to fit the bounding box and aligned to 3D space
- 4. Mesh is projected on the image plane:
 - → Resulting in a segmentation map containing fragmentation level information of the vehicle
- 5. Only pixels labeled as vehicle in the respective dataset are propagated to the image
 - \rightarrow To overcome projection errors
- ightarrow Results in fine-grained dense representations

Fig. 4: Semi-automated labeling pipeline.

FCN MODEL EXPLORATION

- Reimplemented FCN8 [6] and VGG16 [7] as backbone
- End to end training, using cross entropy loss
- Trained on 4-27 classes (based on fragmentation level)
- Plus classes of datasets
- Multi-GPU training (Kubernets and Horovod on DGX1)
 - \rightarrow Full fragmentation level \rightarrow High resolution input images
- Aim: not loosing significant accuracy in non vehicle-related background classe

Fig. 5: FCN8 [6] with VGG16[7] backbone.

FCN MODEL EXPLORATION

Experiment		loUclass	IoUnon-parts	loUparts
VKITTY Baseline		68.77	68.77	-
VKITTY ShapeNet [15]	Coarse	61.05	66.49	63.64
	Fine	56.93	66.31	44.73
	Full	36.67	58.22	27.44
Cityscapes ShapeNet [15]	Coarse	49.56	48.81	52.96
	Fine	48.63	50.88	44.20
	Full	33.50	50.78	21.98

Tab. 1: Segmentation results for the three fragmentation levels, performed on VKITTY and Cityscapes using FCN8.

FCN MODEL EXPLORATION – VKITTY AND CITYSCAPES

Fig. 6a: Qualitative results on VKITTY dataset for the three fragmentation levels.

Fig. 6b: Qualitative results on Cityscapes dataset for the three fragmentation levels.

02

SELF-SUPERVISED LEARNING OF THE DRIVABLE AREA OF AD

BY JAKOB MAYR, CHRISTIAN UNGER, FEDERICO TOMBARI

SELF-SUPERVISED LEARNING OF THE DRIVABLE AREA OF AD

Motivation:

- Automated approach for generating training data for the task of drivable area segmentation → Training Data Generator (TDG)
- Acquisition of large scale datasets with associated ground-truth still poses an expensive and labor-intense problem
- Jakob Mayr, Christian Unger, Federico Tombari: Self-Supervised Learning of the Drivable Area for Autonomous Driving, iROS, 2018.

Deterministic stereo-based approach for ground-plane detection:

Fig. 7a: Automated generated data of TDG.

WHY GROUND-PLANE DETECTION?

- Important aspect is the planning of safe and comfortable driving maneuvers
- Knowledge about the environment of the vehicle
- especially drivable areas (important role in ADAS and AD)
- e.g. road ahead/ drivable area is blocked by obstacles
- Parallel processing of GPUs allow frame based semantic segmentation
- Why Automated Data-Labeling?
 - Pace and cost pressure
 - Labeling is expensive
 - Existing datasets do not suit the desired application:
 - Technical aspects: e.g. field of view, mounting position, camera geometry
 - Environmental conditions: e.g. weather condition, time, street types

Technical Aspect of Cityscapes: images show part of the hood, initialization of the ground-plane model including non-ground plane disparity is necessary!

AUTOMATED LABELING PIPELINE

- Based on so-called v-disparity map [8]:
 - Different use cases
 - No fine tuning of existing models required

Fig. 8: Automated labeling pipeline.

CNN-MODEL EXPLORATION (1)

- Automatically generated data are used to train Unet and SegNet → low resolution inputs (512*256 and 480*360)
- Models are trained only on automatically generated datasets
- Evaluation is performed by using human labeled ground-truth data, e.g. Cityscape [3], Kitty [2]
 - \rightarrow Drivable (road, parking) and non-drivable area (side walks, pedestrians)
- Observations:
 - Low detection in lateral direction
 - Noisy data of TDG \rightarrow generate robust CNN model
 - Dynamic objects are detected reliably

Fig. 9a: SegNet segmentation.

Fig. 9b: U-Net segmentation.

CNN-MODEL EXPLORATION (1)

Robustness of model - Flipping images upside down:

- SegNet [9] \rightarrow Not capable of detecting ground-plane
- UNet [10] \rightarrow Detects ground-plane

Fig. 9c: Flipped SegNet segmentation.

Fig. 9d: Flipped U-Net segmentation.

CNN-MODEL EXPLORATION (2)

	Cityscapes			КІТТҮ				
Approach	Rec	Prec	Acc	loU	Rec	Prec	Acc	loU
Training Data Generator (TDG)	70.84	91.49	85.35	66.46	81.87	58.07	86.58	51.45
Unet trained on auto. TDG labels	85.29	92.83	91.27	80.01	87.25	81.35	94.31	72.70
SegNet trained on auto. TDG labels	85.75	76.10	85.29	67.56	90.96	70.01	91.35	65.45

Tab. 2: Segmentation results for the TDG, performed on Cityscapes [3] and Kitty [2] using U-Net [10] and SegNet [9].

Performance:

- Data generation:
 - Hand labeling Cityscape [3] 19d
 - Using automated labeling 3.5h (CPU) not parallelized on GPU yet
- U-Net [10] : 10 fps on Titan X
- ResNet [9].:4.4fps on Titan X

\rightarrow Optimization of DNNs comes into account

 \rightarrow Out of the box CNNs come along with substantial drawbacks

03 CNN OPTIMIZATION TECHNIQUES FOR AD

BY ALEXANDER FRICKENSTEIN, MANOJ VEMPARALA, WALTER STECHELE

CNN OPTIMIZATION TECHNIQUES FOR AD

Running example: Quantization of CNNs:

- Normally, floating-point PEs is **10**× less energy efficient compared to fixed point math.
- The step-size between two numbers could be dynamic using floating-point numbers. This is useful feature for different kinds of layers in CNN.
- Closing gap between CNN compute demand and HW-accelerator is important

→ Trend to specialized HW-accelerator, e.g. Tesla T4

CNN OPTIMIZATION TECHNIQUES FOR AD

RESOURCE AWARE MULTICRITERIAL OPTIMIZATION

Motivation:

- <u>Out of the box DNNs require high performance HW-accelerator:</u>
 - YOLO [11] or SSD300 [12] require an Nvidia Titan X to run in real-time
 → Showing the high compute demand of those models
 - No, SqueezeNet [13] is really not out of the box!
 - \rightarrow An 18,000 GPU super-computer is used for the model exploration
- Deploy DNNs on <u>memory</u>, <u>performance</u> and <u>power-consumption</u> constraint embedded hardware is commonly time consuming

Dense Filter:

Sparse Filter:

WHY RESOURCE-AWARE MULTICRITERIAL OPTIMIZATION?

- Optimization techniques are going hand in hand (Filter-wise pruning and Quantization)
- CNN optimization depends on system, algorithmic and system level in the design process
- DNNS need to be highly compressed to fit the HW for AD
 → Automotive rated memory is expensive
- Good data locality is essential for low-power applications
 → Extreme temperatures in cars (Siberia → Death Valley)
 → Active cooling obligatory?
 Active cooling applications
- Fast deployment time is a crucial aspect for agile SW deployment
- → Proposing a Pruning and Quantization scheme for CNNs

Sparse Filter:

Dense Filter:

0.78 -0.85 -0.54 0.1

0.12 -0.05 -0.54 0.12

Vectorizatio

 (\mathbf{x})

Fig. 12: Pruning and quantization for efficient embedded Applications of DI

METHOD - PRUNING

- Based on a half-interval search (log2(n))
 - \rightarrow Explore optimal layer-wise pruning rate
- Varying pruning order to generate an optimized model either with respect to the memory demand or execution time
- Process of removing weight-filter of a layer:
 - Identify Cost (L1-distance) of all weight-filter of a layer 1.
 - Based on the half-interval search remove filter, which cost is below a threshold
 - 3. Threshold is identified by half-interval search
 - Retrain model (SGD with momentum) with small learning rate 4.
 - \rightarrow Momentum should be available before pruning
 - 5. As accuracy of the CNN is maintained increase the pruning rate (half-interval search)
 - Pruning is always applied to the layer which fits the desired optimization goal best 6.

Step 1:

Step 2:

Fig. 13: Binary-search applied to prune CNN.

METHOD - QUANTIZATION

- Quantization leads to a hardware friendly implementation
- Reducing the footprint of HW-components
- Lowering the memory bandwidth
- Improving the performance
 - → Floating-point PE is **10x** less efficient compared to fixed-point unit
- Weight and activations are brought into the fixed-point format with the notation <S,IB,FB>
 - S: Sign bit
 - IB: Integer bit
 - FB: Fractional bit
- Stochastic rounding is used for approximation

Fig. 14: Pruning and quantization applied to CNN.

MEMORY AND PERFORMANCE BENCHMARK

Fig. 15: Pruning rate and runtime of Deep Compression [14] and our approach.

Fig. 16: Runtime of VGG16 [7] on different HW-Accelerator.

MEMORY AND PERFORMANCE BENCHMARK

Model	Top-1 acc.	Params.	Comp. Rate	MACs	Retrain [Epochs]	([Time])
LeNet reference	$98.9\%^{*}$	1,720kB		2.3M	~ 100	(21min)
DC [11]	99.2%	44kB	$39 \times$	415k	~ 160	(34min)
DNS [8]	99.1%	16kB	$108 \times$	91k		
BC [29]	99.0%	10.5kB	$361 \times$	106k ⁺		
L-OBS [6]	98.7%	17kB	$101 \times$	78k	~ 8	(4min)
LeNet Mem. (Ours)	$98.9\%^*$	4.4kB	$385 \times$	210k	~ 112	(24min)
LeNet Perf. (Ours)	$98.9\%^*$	10.0kB	$172 \times$	57k	~ 112	(24min)
VGG16 reference	68.5%	138.4M		15.47B	~ 90	(7.5d)
LWC [13]**	68.7%	10.4M	$13.1 \times$	5.04B	\sim 4,950	(412d)
L-OBS [6]**	62.7%	10.4M	$13.1 \times$	5.45B	~ 19	(3.2d)
DNS [8] ^{**}	36.6%+	10.4M	$13.1 \times$		~ 230	(19.2d)
VGG16 Mem. (Ours) ^{**}	68.4%	9.5M	$14.5 \times$	7.14B	~ 192	(16d)
VGG16 Perf. (Ours)**	68.5%	19.4M	7.1×	3.54B	~ 192	(16d)

* 5,000 images of the training set are used for validation. Otherwise, the reported accuracy is 99.1%.

** Optimization of VGG16 is limited to pruning

Tab. 3: Performance and memory benchmark of our method applied to VGG16.

REFERENCES

- [1] Grout Ian: Digital Systems Design with FPGAs and CPLDs, 2008.
- [2] Andreas Geiger, Philip Lenz, Raquel Urtasun, et al.: Are we ready for autonomous driving? The KITTI vision benchmark suite, CVPR, 2012.
- [3] Marius Cordts, Mohamed Omran, Sebastian Ramos, et al.: The Cityscapes Dataset for Semantic Urban Scene Understanding, CVPR, 2016.
- [4] Adrien Gaidon, Qiao Wang, Yohann Cabon, et al.: Virtual Worlds as Proxy for Multi-Object Tracking Analysis, CVPR, 2016.
- [5] Angel X. Chang, Thomas Funkhouser, Leonidas Guibas, et al.: ShapeNet: An Information-Rich 3D Model Repository, 2015.
- [6] Jonathan Long, Evan Shelhamer, Trevor Darrell: Fully convolutional networks for semantic segmentation, CVPR, 2015.
- [7] Karen Simonyan, Andrew Zisserman: Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR, 2014.
- [8] Raphael Labayrade, Didier Aubert, Jean-Philippe Tarel: Real time obstacle detection in stereovision on non flat road geometry through "vdisparity" representation, IVS, 2002.
- [9] Vijay Badrinarayanan, Alex Kendall, Roberto Cipolla: SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation, IEEE Transactions on Pattern Analysis and Machine Learning, 2017.
- [10] Olaf Ronneberger, Philipp Fischer, Thomas Brox: U-Net: Convolutional Networks for Biomedical Image Segmentation, Lecture Notes in Computer Science, 2015.
- [11] Joseph Redmon, Santosh Divvala, Ross Girshick: YOLO: Real-Time Object Detection, CVPR, 2014.
- [12] Wei Liu, Dragomir Anguelov, Dumitru Erhan: SSD: Single Shot MultiBox Detector, ECCV, 2016.
- [13] Forrest N. Iandola, Song Han, Matthew W. Moskewicz, SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size, ICLR, 2017.
- [14] Song Han, Jeff Pool, John Tran, William J. Dally: Learning both Weights and Connections for Efficient Neural Networks, CVPR, 2015.

