NUTANIX

Nutanix AHV with NVIDIA Virtual GPU Solutions

Ready to Meet the Demands of Any Workload

Malcolm Crossley, AHV GPU Architect Tanuja Ingale, AHV Product Manager

GTC, Mar 2019

Our Mission: Nutanix makes IT infrastructure invisible with an enterprise cloud platform that delivers the agility and economics of the public cloud, without sacrificing the security and control of on-premises infrastructure.

IT Complexity is Hurting Business

Time consuming to provision

Multiple points of failure

Little time for innovation Requires IT specialists

The Need for Desktop Virtualization (VDI)

VDI and GPU workload evolution

VDI, Client/Server & business apps

- Nutanix Comprehensive desktop virtualization
- 100s of general knowledge & task workers per Compute + Expansion module
- ~2000 VDI users per X rack units w/o GPU acceleration
- 200+ VDI sessions with accelerated virtualized graphics

High Performance

Complex Design & Visualization

- High-end design, CAD, Rendering, Ray tracing (M&E, Manufacturing)
- Support 10s of specialized users (Design) per Compute + Expansion module
- Support AI, Deep ML, Compute workloads for Improved VR perf
- HPC workloads, Monte Carlo analysis

How IT complexity translates to GPU environments

Operational & workflow complexity

Silos for graphics & compute

Demand for GPU accelerated workloads

People

Requires experts for GPU workflows/sizing

Innovating in Three Fronts for VDI/GPU accelerated env

Innovating in Three Fronts for VDI/GPU accelerated env

VDI Pain points on legacy architecture

Nutanix: Web-Scale Converged Architecture

> Built for Virtualization

- Software-defined approach with Controller VM per node
- Pooled storage resources across the platform and scale as needed

11

The Result is Linearly Scaling

Number of Nodes

- Scale incrementally one node at a time
- Protect infrastructure investment by eliminating forklift upgrades
- Scale storage capacity & performance linearly

Nutanix Platform

simplifying datacenter operations

Turnkey infrastructure platform that converges compute, storage and virtualization to run any application, at any scale

Nutanix AHV

The hypervisor built for the Enterprise Cloud

AHV: Foundation of the Enterprise Cloud OS

AHV Powers HCI

Security

- Data Encryption
- Certifications

Self-Healing

- Hot Spot Remediation
- Auto STIG Compliance

Management

- Prism Central
- API and CLI

Performance

- AHV Turbo
- IO Optimization

Automation

- Distributed Scheduler
- Calm Blueprints

Biz. Continuity

- P HA
- Synch Rep (2019)

Auditability

- Logging
- Remote Syslog

Ecosystem

- Over 100 ISV solutions
- Backup, SAP HANA

Analytics

- Prism Pro
- Performance

Extendable

- Memory
- vCPU

VDI/ GPU Acceleration

- GPU, vGPU
- PVS, MCS

Nutanix-NVIDIA Strategic Partnership

- Nvidia: Industry leader in Visual Computing Technologies and GPU accelerators
- AHV
- First commercial kernel-based virtual machine (KVM) to support vGPU
- Fully supports NVIDIA virtual GPU technology (GRID)
 - Quadro Virtual Data Center Workstation (vDWS)
 - nVIDIA GRID Virtual PC
 - GRID Virtual Applications

AHV: Modes of GPU usage

Acropolis GPU resource management concepts

Acropolis GPU resource management concepts

AHV VM GPU resource configuration

Overview - Table			_							•	Create VM	etwork Config
VM								1-10) of 1926	< > ∘\$		۹
 VM NAME 	HOST	IP ADD	d GPU					? X	ER PS	CONTROLLER IO BANDWIDTH	CONTROLLER AVG IO LATENCY	BACKUP
centos-1	NTNX- 16SM6B300385 -A	172. GPI	U MODE ∨GPU ○ Pa	ssthrough					o	22 KBps	16.42 ms	Yes
centos-10	NTNX- 16SM6B300385 -A	172. GRI	ID LICENSE ⑦	on				v	o	2 KBps	11.69 ms	Yes
centos-100	NTNX- 16SM6B300385 -C	172. VGI GPU	PU PROFILE	the selected profile	will be assig	ned to this VM while it	s is powered on.		3	22 KBps	79 ms	Yes
centos-1001	NTNX- 16SM6B300385 -C	172	NAME	VIRTUAL 1/16 GPU	SLICE	FRAMEBUFFER	VMS ASSIGNED	DETAILS	0	2 KBps	7.53 ms	Yes
centos-1002	NTNX- 16SM6B300385 -D	172.	M60-1Q	1/8 GPU		1 GB	7 (2 powered on)		0	16 KBps	11.99 ms	Yes
centos-1003	NTNX- 16SM6B300385 -D	172) M60-2Q) M60-4Q	1/4 GPU		2 GB 4 GB	0	0	0	4 KBps	9.17 ms	Yes
centos-1005	NTNX- 16SM6B300385 -A	172					C	Cancel	0	25 KBps	13.11 ms	Yes
centos-1006	NTNX- 16SM6B300385 -C	172.16							0	7 KBps	9.19 ms	Yes
centos-1009	NTNX- 16SM6B300385 -B	172.16	1	512 MiB	5.59 GiB	960 MiB	3.23%	0	1	8 KBps	23.25 ms	Yes

Prism UI - Physical GPU overview

Home Explore	Analysis	Plannin	ng Alerts 15	0 ~					۹	? 🌣 Admin 🚨
Entities										Group 🗸 🍸 Filters
VMs	10									
Clusters	2	Type na	Type name to filter by							
Hosts	7									
Disks	27	10 Total V	/Ms							🛃 · 1 - 10 of 10 🗸 🔇 📎
Storage Containers GPUs	2 10		▲ TYPE	HOST	CLUSTER	MODE	VGPU PROFILE	ALLOCATION	GPU USAGE	FRAMEBUFFER USAGE
			Tesla M10	host-ntnx-A	cluster-2	vGPU	M10-1Q	7 of 8 VMs allocated	78.5%	46.7%
			Tesla M10	host-ntnx-D	cluster-2	vGPU	M10-1Q	8 of 8 VMs allocated	92.1%	89.4%
			Tesla M10	host-ntnx-B	cluster-2	vGPU	M10-2Q	4 of 4 VMs allocated	71.8%	75.1%
			Tesla M10	host-ntnx-A	cluster-2	None		0 VMs allocated	0%	0%
			Tesla M10	host-ntnx-D	cluster-2	vGPU	M10-4Q	2 of 2 VMs allocated	66.1%	66.1%
			Tesla M60	ntnx-sjc-h1	vdi-SJC-1	vGPU	M60-0Q	13 of 16 VMs allocated	98.0%	100%
			Tesla M10.Compute	host-ntnx-D	cluster-2	Passthrough		1 of 1 VM allocated	Unknown	Unknown
			Tesla M60	ntnx-sjc-h1	vdi-SJC-1	vGPU	M60-0Q	10 of 16 VMs allocated	53.5%	54.1%
			Tesla M60	ntnx-sjc-h1	vdi-SJC-1	vGPU	M60-0Q	7 of 16 VMs allocated	31.6%	25.0%
			Tesla M60	ntnx-sjc-h1	vdi-SJC-1	vGPU	M60-0Q	12 of 16 VMs allocated	78.9%	75.0%

Prism UI - Physical GPU metrics

Tesla M10 🖌						? X
Summary VMs						
Tesla M10 GPU Type		GPU Usage				Peak: 100% Current: 0%
Cluster Name Host Mode	meg9 meg11-1 vGPU		10:30 AM	11:00 AM	11:30 AM	12:00 PM
vGPU Profile Allocation Framebuffer	GRID M10-2Q 4 of 4 VMs allocated 8 GiB	Framebuffer Usage				Peak: 100% Current: 99.39%
ID	0000:08:00.0		10:30 AM	11:00 AM	11:30 AM	12:00 PM
		Encoder Usage				Peak: 0.01% Current: 0%
			10:30 AM	11:00 AM	11:30 AM	12:00 PM
		Decoder Usage				Peak: 0.01% Current: 0%
				0%		
			10:30 AM	11:00 AM 11:20:00 AM (09/20) 11:30 AM	12:00 PM

Prism UI - Virtual GPU metrics

NVIDIA M10 Summary - VMs

🕐 🗘 🗘 search in table

? X

Q

VM NAME	▼ GPU USAGE	FRAMEBUFFER USAGE
vdi-windows-kiosk	15.1%	12.5%
eng-ML-processing-1	11.4%	12.5%
eng-ML-processing-7	8.1%	12.5%
eng-ML-processing-12	8.0%	12.5%
eng-ML-processing-2	7.6%	12.5%
eng-ML-processing-8	7.3%	12.5%
eng-ML-processing-8	7.3%	12.5%

Prism UI – Multi-vGPU per VM

	Update VM	? X
Compute Details		
VCPU(S)		
1		
Number Of Cores Per Vcpu		
48		
Memory		
128		GiB
Graphics		+ Add GPU
CONFIGURATION	TYPE	
GRID T4-16Q	vGPU	×
GRID T4-16Q	vGPU	×
Disks		+ Add New Disk

hosts	Show/Hide List Operations Expand Operations
GET /hosts/gpu_profiles	Get the list of virtual GPU profiles for all physical Hosts.
GET /hosts/host_gpus	Get the list of GPUs for all physical Host.
GET /hosts/{uuid}/host_gpus	Get the list of GPUs for a physical Host.
GET /hosts/{uuid}/host_gpus/{gpu_uuid}	Get a particular GPU for a physical Host.
GET /hosts/{uuid}/host_gpus/{gpu_uuid}/stats/	Get stats for a particular GPU for a physical Host.

Innovating in Three Fronts for VDI/GPU accelerated env

Nutanix Data & Control Fabric Solutions

Software-defined Snapshots & Clones

Offloads virtualization tier \rightarrow higher ops performance

Array-based quick-clones for efficient provisioning

Native VM-centric snapshots

Nutanix Shadow Clones

Distributed caching of vDisks and VM data read by multiple CVMs

~50% reduction in boot time

Consistent response time while incrementally scaling blocks

Control of the second second

Nutanix Frame: Desktop-as-a-service

NUTANIX

Innovating in Three Fronts for VDI/GPU accelerated env

> Need for GPU powered & oversubscribed infra

Increased need for GPUs

- AI Composability & Virtualization
- Data Simulation

• 20x Faster > CPUs

- Fast Complex Calculations & Simulations
- Massively parallel, multi-core GPUs = 1000s of Compute Cores

• Infra CapEx

- o GPUs more expensive than CPUs
- Underutilization of GPU resources (< 15%)

> AHV: Graphics by Day / Compute by Night

Follow the Sun !

•

Future developments

- Prism App for Nvidia Dashboard
- vGPU live migration (Coming soon)

• Support for Nvidia's cutting-edge Quadro RTX technology

Conclusion: AHV drives GPU infrastructure elasticity

- Fully Supports Nvidia GRID technology
- Intuitive GPU management workflow
- Built-in scale out technology
 - o Storage scale out and elasticity
 - o Data locality
 - GPU config simplicity (metrics, usage, alerts)
 - Storage scale out and elasticity

Infrastructure elasticity

- o 100% GPU utilization
- CUDA/Graphics mode support
- CapEx & TCO savings

Workload support

• HPC

37

- AI/ML (Inferencing, TensorFlow)
- High End Design, Simulation

NUTANIX DEMO – Multi-vGPU per VM

NUTANIX DEMO – Graphics by Day & Compute by Night

NUTANX Thank you! Questions?

