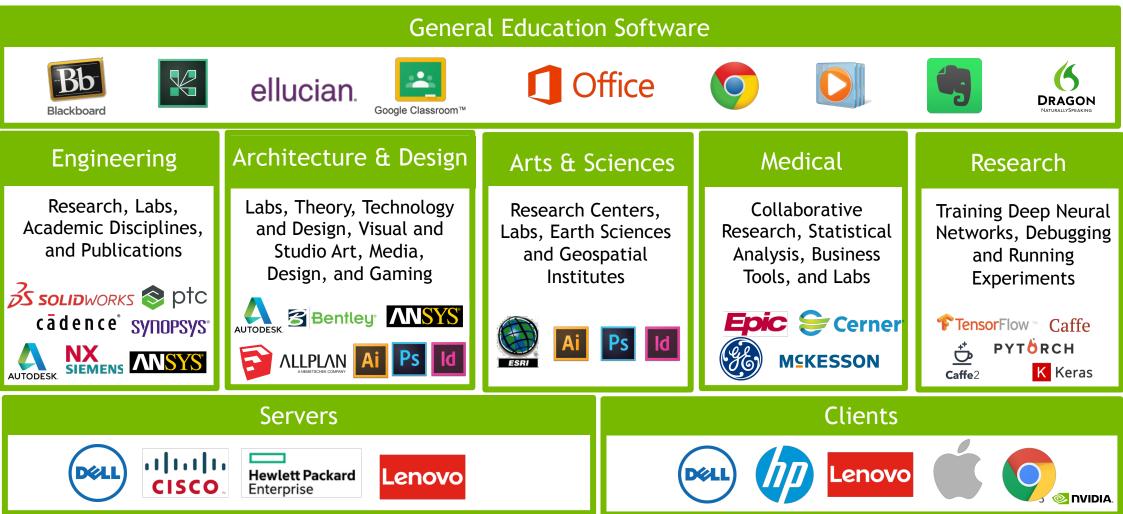
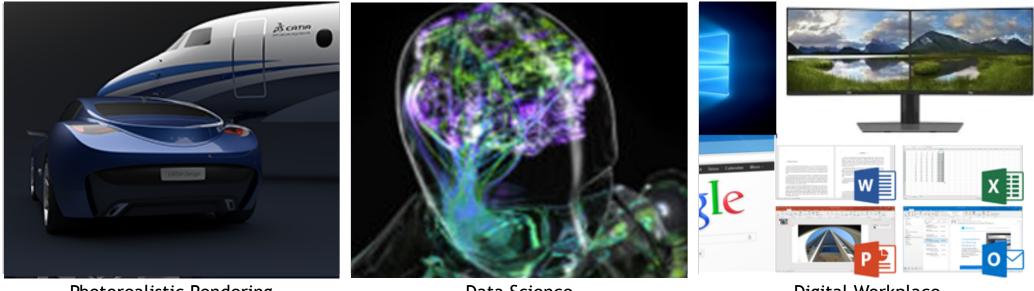
VIRTUAL GPU POWERS AI AND DEEP LEARNING VIRTUAL LABS

Emily Apsey, Performance Engineering, NVIDIA John Meza - Performance Engineering Team Lead, Esri Konstantin Cvetanov - Sr. Solution Architect, NVIDIA

AI AND DEEP LEARNING IN UNIVERSITIES


Increasing Demand for AI/DL Classrooms/Labs Implementation is constrained by cost & availability of physical classroom labs

Need for a Highly Secure, Flexible, Accessible solution Students require access to labs 24x7 to work on projects and assignments Robust, Data Scientist Workstations are Expensive Expensive workstations are not always needed due to smaller data sizes


EDUCATION ECOSYSTEM

WHY CHOOSE NVIDIA T4 FOR VIRTUALIZATION?

DRIVING NEW WORKFLOWS

Empowering the Modern Digital Workplace

Photorealistic Rendering Increasingly Complex Designs

Data Science Increase in AI/DL & Inference

Digital Workplace Windows 10 & Productivity Apps

ANNOUNCING NVIDIA T4 FOR VIRTUALIZATION

The New Generation of Computer Graphics on a Quadro Virtual Data Center Workstation

- Virtual Quadro Workstation for the Professional Designer & Data Scientist:
 - Up to 2X graphics performance versus M60
 - 5 Giga Rays per second for real-time, interactive rendering
 - NGC support; run deep learning inferencing workloads 25x faster than CPU on a virtual machine
- Virtual PCs for the Knowledge Worker:
 - Support for VP9 decode and H.265 encode and decode for improved CPU offload

RTX PERFORMANCE IN A QUADRO VIRTUAL WORKSTATION

Support for up to 5 Giga Rays/Sec

Media & Entertainment Real-time Rendering Manufacturing Simulation, modeling, design Architecture Rendering, design

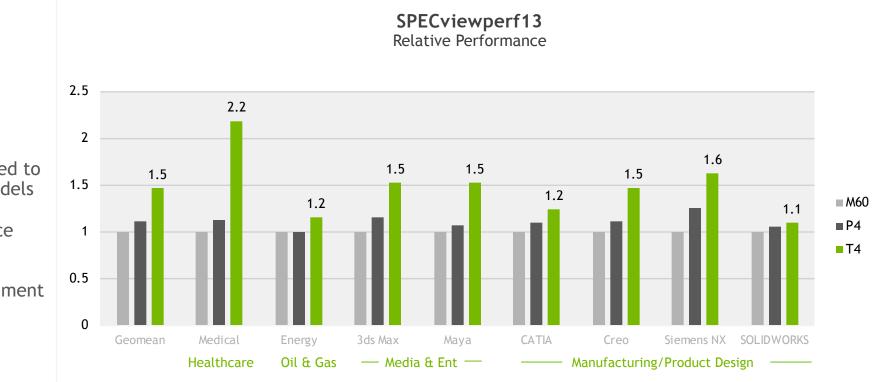
NVIDIA T4 KEY SPECIFICATIONS

GPU Architecture	NVIDIA Turing
NVIDIA CUDA [®] Cores	2,560
NVIDIA Turing™ Tensor Cores	320
RT Cores	40
Giga Rays/second	5
Memory Size	16 GB GDDR6
Memory BW	Up to 320 GB/s
vGPU Profiles	1 GB, 2 GB, 4 GB, 8 GB, 16 GB
Form Factor	PCIe 3.0 single slot (half height & length)
Power	70W
Thermal	Passive

NVIDIA DATA CENTER GPUs Recommended for Virtualization

	V100	P40	T4	M10	P6	
GPUs / Board (Architecture)	1 (Volta)	1 (Pascal)	1 (Turing)	4 (Maxwell)	1 (Pascal)	
CUDA Cores	5,120	3,840	2,560	2,560 (640 per GPU)	2,048	
Tensor Cores	640		320			
RT Cores			40			
Memory Size	32 GB/16 GB HBM2	24 GB GDDR5	16 GB GDDR632 GB GDDR5 (8 GB per GPU)		16 GB GDDR5	
vGPU Profiles	1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB	1 GB, 2 GB, 3 GB, 4 GB, 6 GB, 8 GB, 12 GB, 24 GB	1 GB, 2 GB, 4 GB, 8 GB, 16 GB	0.5 GB, 1 GB, 2 GB, 4 GB, 8 GB	1 GB, 2 GB, 4 GB, 8 GB, 16 GB	
Form Factor	PCIe 3.0 Dual Slot & SXM2 (rack servers)	PCIe 3.0 Dual Slot (rack servers)	PCIe 3.0 Single Slot (rack servers)	PCIe 3.0 Dual Slot (rack servers)	MXM (blade servers)	
Power	250W/300W	250W	70W 225W		90W	
Thermal	passive	passive	passive	passive	bare board	
	PEI	RFORMANCE Optimized		DENSITY Optimized	BLADE Optimized	

QUADRO vDWS POSITIONING


Deep learning, rendering, and GPGPU compute applications		Г		1 a		
Largest CAD models, CAE, Photorealistic rendering, Seismic exploration, GPGPU compute			57321 1990		NVIDIA	V100
Large/complex CAD models, Seismic exploration, complex DCC effects, 3D Medical Imaging Recon			NVID	DIA P40	High-Er	nd Quadro vDWS
Large/complex CAD models, Advanced DCC, Medical Imaging	H GI COL					
Medium size/complexity CAD models, Basic DCC, Medica <mark>l</mark> Imaging, PLM	NVIDIA T4					
Small/simple CAD models, video, Entry PLM	Entry	y - Mid Range Quadro v	vDWS			
Office, Sketchup	PACS/Di	agnostics	Schlumberg	er, Halliburtoi	n, DeltaGen, Cati	a Live Rendering
AutoCAD, Revit, I	nventor				Ansys, Abaqus	, Simulia
	Solidworks, S	iemens NX, Creo, Cati	a, ArcGIS Pro	0		
Adobe CC Photoshop	, Illustrator	Adobe CC Premier	e Pro, After	Effects, Autoo	desk Maya, 3ds Ma	ax, Mari, Nuke

💿 NVIDIA.

NVIDIA T4 PERFORMANCE FOR VIRTUALIZATION WORKLOADS

HIGHEST GRAPHICS PERFORMANCE ON A VIRTUAL WORKSTATION

Work Faster with Larger Models

Up to 2X performance compared to M60

2X framebuffer compared to P4 to support larger models

Professional Performance

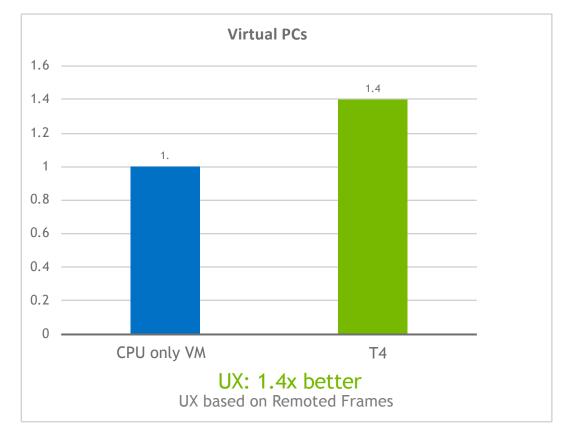
- ✓ Healthcare
- ✓ Oil & Gas
- ✓ Media & Entertainment
- ✓ Manufacturing

SPECviewperf 13 results tested on a server with Intel Xeon Gold 6154 (18C, 3.0 GHz), Quadro vDWS with T4-16Q, VMware ESXi 6.7, host/guest driver 410.87/412.10, VM config, Windows 10, 8 vCPU, 16GB memory.

NVIDIA T4 FOR VIRTUAL PCs

Optimize Data Center Utilization with Mixed Workloads

T4 vs. CPU only: Adding NVIDIA GPUs results in 1.4X better user experience versus CPU only VMs**


T4 vs. M10: provides same user density with lower power consumption*

Same user experience & performance**

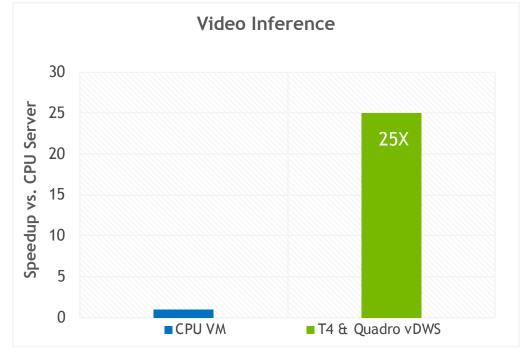
Support for VP9 decode

Support for H.265 (HEVC) 4:4:4 encode and decode

Support for >1TB system memory

• Two NVIDIA T4 GPUs support the same user density as a single M10 and fit in the same 2 slot PCIe form factor. ** NVIDIA internal benchmark running Microsoft PowerPoint, Word, Excel, Chrome, PDF viewing and video playback.

13


NVIDIA T4 WITH QUADRO vDWS

Real-Time Inference Performance

Quadro Virtual Workstation for deep learning inferencing workloads

Support for NVIDIA GPU Cloud (NGC)

Ideal for deep learning labs and classrooms

Speedup: 25x faster ResNet-50 (7ms latency limit)

DVIDIA

T4 BENCHMARK ANALYSIS

TensorRT Inferencing

		Avg Images/s				
Tensor RT Inferencing - NGC 18.12	T4-16Q 410.49	T4 BM 410.79	T4 vGPU vs BM			
Model:ResNet50 Python: 2 Precision: FP32 bs:1	309	337	-8%			
Model:ResNet50 Python: 2 Precision: FP32 bs:2	394	427	-8%			
Model:ResNet50 Python: 2 Precision: FP32 bs:4	444	484	-8%			
Model:ResNet50 Python: 2 Precision: FP32 bs:8	482	521	-8%			
Model:ResNet50 Python: 2 Precision: FP32 bs:16	505	561	-10%			
Model:ResNet50 Python: 2 Precision: FP32 bs:32	495	553	-11%			
Model:ResNet50 Python: 2 Precision: FP32 bs:64	518	575	-10%			
Model:ResNet50 Python: 2 Precision: FP32 bs:128	515	580	-11%			
Model:ResNet50 Python: 2 Precision: FP32 bs:7ms Target Latency	380	447	-15%			

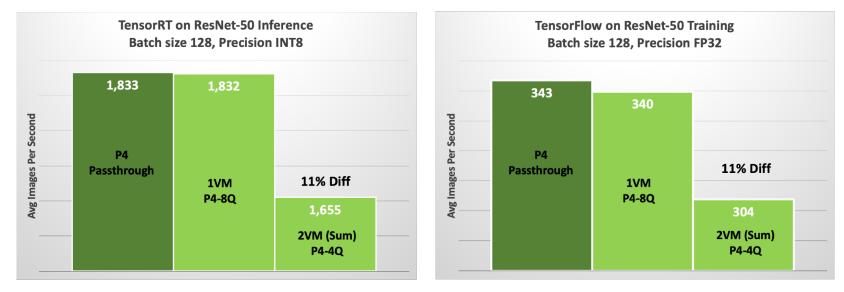
vGPU Tested on a server with Intel Xeon Gold 6154 (18C, 3.0 GHz), Quadro vDWS with T4-16Q, VMware ESXi 6.7, host/guest driver 410.87/412.10, VM config-Ubuntu 16.04, 8 vCPU, 32GB memory.

T4 BENCHMARK ANALYSIS

MXNet Training

MXNet - NGC 18.12	T4-16Q 410.49	T4 BM 410.79	% Diff T4 vGPU vs BM
Model: ResNet50 Precision: FP32 bs:32	130	137	-5%
Model: ResNet50 Precision: FP32 bs:48	131	DNA	DNA
Model: ResNet50 Precision: FP32 bs:128	131	139	-6%
Model: ResNet50 Precision: Mixed bs:32	378	DNA	DNA
Model: ResNet50 Precision: Mixed bs:48	390	DNA	DNA
Model: ResNet50 Precision: Mixed bs:64	396	431	-8%

vGPU Tested on a server with Intel Xeon Gold 6154 (18C, 3.0 GHz), Quadro vDWS with T4-16Q, VMware ESXi 6.7, host/guest driver 410.87/412.10, VM config-Ubuntu 16.04, 8 vCPU, 32GB memory.


MXNET TRAINING vGPU T4-16Q vs V100-16Q

	T4-16Q	V100-16Q	% Diff T4 vs
MXNet - NGC 18.12	410.49	410.49	V100
Model: ResNet50 Precision: FP32 bs:32	130	363	-62%
Model: ResNet50 Precision: FP32 bs:48	131	390	-66%
Model: ResNet50 Precision: FP32 bs:128	131	402	-67%
Model: ResNet50 Precision: Mixed bs:32	378	985	-62%
Model: ResNet50 Precision: Mixed bs:48	390	1117	-65%
Model: ResNet50 Precision: Mixed bs:64	396	1152	-66%

vGPU Tested on a server with Intel Xeon Gold 6154 (18C, 3.0 GHz), Quadro vDWS with T4-16Q, VMware ESXi 6.7, host/guest driver 410.87/412.10, VM config-Ubuntu 16.04, 8 vCPU, 32GB memory.

FRACTIONAL PROFILE ANALYSIS

Inferencing and Training

¹ Represents the performance of 2x 4Q VMs (sum across the VMs) against a single 8Q VM and P4 PT

Equal or Fixed Share Scheduler recommended, Best Effort will result in significantly lower performance.

Performance dependent on dataset used (not all tests can run successfully on smaller profile sizes).

Tests ran on Intel Xeon Gold 6140 CPU @ 2.3 GHz, Esxi 6.7, VM Config - Ubuntu 16.04.3, 8vCPU, 16GB, Host/Guest driver: 410.91,410.92, based upon NGC 19.01

AI LABS IN EDUCATION

COMMON CHARACTERISTICS

- Universities typically have an HPC cluster that students have ssh (secure shell) lab access to, over the duration of a course like deep learning.
- An HPC cluster would typically have a few servers providing 1:1 bare metal access.
- Students submit jobs into the cluster while debugging code on their laptop.
- Tensorflow is still the dominant framework but Pytorch and Keras are quickly catching up. Caffe and Torch are still used for legacy reasons and they are on a down trend.
- At least 8GB GPU memory is required for training (more is better, loading batches of high resolution images takes a lot of GPU memory).

MIXED WORKLOADS WITH NVIDIA vGPU

Increase productivity & utilization, decrease costs

×

DESKTOP VIRTUALIZATION TECHNOLOGY SUPPLEMENTS HPC CLUSTERS

vGPU Technology Enables Ultimate Flexibility

Debug and run neural network training and inferencing from anywhere using NVIDIA Quadro vDWS for Education License and Tesla Data Center GPUs. Run multiple training and graphics jobs concurrently

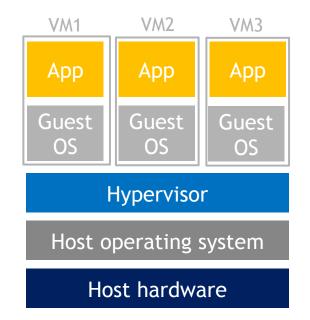
HPC Cluster Runs Compute and Data Intensive Workloads

Apply deep learning frameworks to models debugged during the day:

- Finance: modeling and risk exposure
 - Life Science: genomics
 - Engineering: data analysis, training/inferencing

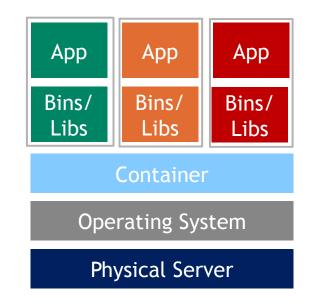
BENEFITS OF VGPU FOR AI

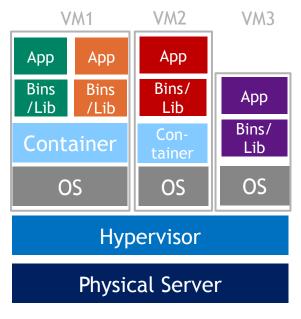
	BENEFIT	TESLA V100 GPU + QUADRO vDWS
	Best Professional Application Performance	Highly tuned drivers for professional applications used for manufacturing design, architecture, energy, medical industries and many others
	Advanced Professional Features	ECC*, double precision FP64 support, multi-GPU support, Tensor cores
Workflow Acceleration	Scalable Performance	Up to 32GB memory with V100
\frown	Right-Sizing Resource Allocation	- De-provision users and modify profile sizes
	Run Mixed Workloads	- Run VDI, HPC and compute workloads on the same infrastructure by using live migration and repurposing the hosts
Infrastructure Agility	Support Other Virtual Labs	-Run learning labs on common infrastructure for other departments (AEC, Engineering) with support for 3D professional applications
	Ease of IT Management	 Configuration, monitoring and diagnostic tools, including vGPU Live migration Local and remote access
	Global Support / Warranty	 Enterprise level technical support Warrantied by NVIDIA
IT Management	Extended Product Availability	- Bulk availability - Full product lifecycle management
	Mission Critical Drivers	 - Long life, stable Drivers - Enterprise level verification by OEMS's comprehensive test suites - Enterprise level release management
Enterprise Class Reliability	Certified for OEM Workstations	Extensive joint qualifications with major workstation OEMs for enterprise deployment
Security	Enterprise Grade Security	- Ability to sandbox users/ container isolation
	Virtual Deep Learning Labs	- Deep learning labs can be conducted anywhere
Mobility	Anywhere access to applications	- Training can be done on any device, anywhere
BS		


GPU VIRTUALIZATION WITH NGC

Virtual Machines

Containers


GPU Virtualization + NGC



Students, Instructors, Researchers

Students, Instructors, Researchers

CUSTOMER EXAMPLE - NANJING UNIVERSITY

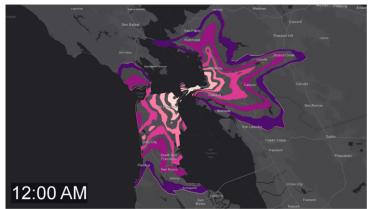
vForum Breakout Session: <u>VMware云平台加速机器学习</u> (VMware Cloud Platform Accelerated Machine Learning)

- Using vGPU+NGC(DOCK) solution with 80 licenses
- Adopted vGPU to provide students mobility to study and practice anywhere
- Leveraged NGC to simplify the installation process and avoid DIY risks
- Working with VMware to develop a feature on VMware vRealize Automation to enable students/teachers to apply the GPU/vGPU resource for themselves
- Defined different vGPU profiles depending on user:
 - vGPU with 4/6GB FB (For undergraduate AI teaching)
 - vGPU with 8/12GB FB (For grad students AI teaching/DL beginner)
 - vGPU with 24GB FB (For teachers doing research)
- Uses Caffe/Tensorflow/Pytorch DL framework, with DL model(Lenet/Alexnet) and Dataset(Mnist/Cifar10) for teaching

/m wa	are vl	Realiz	e-Aut	omati	on				首选项	帮助 注	销
主页	目录	项目	请求	收件箱	管理	基础架构					
新建议	请求										
					GPU类型		 ○ P40 ○ TitanV ○ vGPU 			^	
	u with GPU PUB9Ubunt				GPU数量		 grid_p40-6q (1/4 P40) grid_p40-3q (1/8 P40) grid_p40-1q (1/24 P40) 				
					模板*		Ubuntu 16.04 🗸				
					部署数量	•	1				
							94vCPU、32GB内存(2)默认租期为7天, : 如果没有续租,VM会自动停机,并卸载GPU				
					□ 我已经	了解以上说	明 *			~	
								保存 批	绞	取消	

ESRI DEEP LEARNING IN HIGHER ED WORKSHOP

First One Day workshop at Esri Developer Summit


Delivered completely from the cloud

Each attendee had an entire V100

Deep Learning integration into ArcGIS platform

Next -

Potential Esri Education Service class

ESRI DEEP LEARNING IN HIGHER ED

Universities

- Clemson Center for Geospatial Technologies
 - Parallel Processing UAV Imagery
- University of California Riverside
- University of California San Diego
 - San Diego Supercomputer Center, Spatial Information Systems Laboratory
- Johns Hopkins
- University of Michigan

GEORGIA STATE UNIVERSITY

- Desire to implement GPU cluster solution for teaching HPC/ML/DL courses to 1200 students
- Existing HPC cluster will continue to operate
- Each Jypiter Notebook connects to a SLURM node on a cluster
- Potential implementation details:
 - CentOS 7 KVM
 - 4-8 GPUs per system (T4 and/or V100)
 - Multiple VMs per GPU today, and multi-GPU with NVLINK in the future
 - Lightweight simulations for molecular dynamics research
- Working on a National Science Foundation proposal for MRI grant

GETTING STARTED

Deploy Virtual labs for AI/DL with a 30% discount on V100 GPUs for educational institutions

NVIDIA Quadro Virtual Data Center Workstation for Education

Get up to 75 percent discount on NVIDIA Quadro[®] Virtual Data Center Workstation commercial list price, with a single SKU optimized for educational institutions providing all NVIDIA virtual GPU features.

\$99 Perpetual License List Price

NVIDIA VIRTUAL GPU RESOURCES

Virtual GPU Test Drive https://www.nvidia.com/tryvgpu

NVIDIA Virtual GPU Website www.nvidia.com/virtualgpu

NVIDIA Virtual GPU YouTube Channel http://tinyurl.com/gridvideos

Questions? Ask on our Forums https://gridforums.nvidia.com

NVIDIA Virtual GPU on LinkedIn http://linkd.in/QG4A6u

Follow us on Twitter @NVIDIAVirt

