illilli CISCO

S9881 Using Industry Standard Benchmark Tools to Size Graphics Accelerated **Applications**

Mike Brennan, Product Manager, Virtual Client Computing and Graphics Vadim Lebedev, Technical Marketing Engineer
21 March 2019

What we will cover

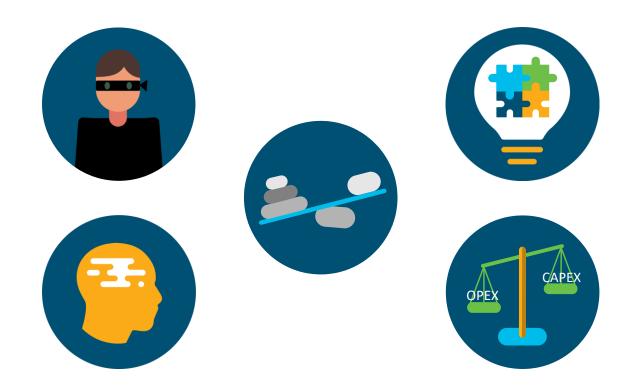
- Let's talk about the basics on virtualizing pro graphics apps
- How do you measure performance?
- Key NVIDIA cards
- Sample benchmark performance
- Server/GPU performance
- Where do I start with sizing?
- Cisco lineup
- Key takeaways
- Q&A

Lets talk basics

Can you virtualize Catia and SolidWorks?

Yes you can!

Cisco has 14 hardware/ software combinations certified


Dassault VDI Certifications

Why replace physical graphics workstations?

Key performance requirements for Virtual Workstations

User requirements

CPU and memory performance

Software requirements

Graphics card oversubscription

Display resolution

Frame rate

Monitors

Multi-user graphics card scheduling engine

User requirements



User role

Concurrent applications open

User roles

- Primarily read only documentation, project managers
- Small subsets of entire entity

Medium user type

- Read only and design
- Small and medium subassemblies

Heavy user type

- Design and render
- Large sub-assemblies and full model

Software requirements



Display resolution and monitors

Maximum display resolution supported

Display resolution expected by user type

Number of monitors per user supported

Number of monitors expected by user type

CPU and memory performance

CPU selection criteria

- Total frequency in MHz/CPU and server
- Core count
- Planned user count

Memory selection criteria

- Balance
- Frequency

Graphics card oversubscription

User count per graphics card

- Fixed at GPU frame buffer divided by vGPU profile
 - For an NVIDIA P4 card
 - For a 2Q profile: 8GB frame buffer/2GB frame buffer per user = 4 Users per card.

GPU oversubscription

- NVIDIA concept
- Based on scheduler chosen
- For the T4 card, light user could get more than 12.5% of GPU resources

Frame rates

The great equalizer for performance

- · For computer video displays,
 - frame rate = #frames or images displayed per second
- For a given application
 - Provides a mechanism to compare systems performance
 - Describes a mechanism by which system requirements can be stated

Virtual Graphics Workstation insights

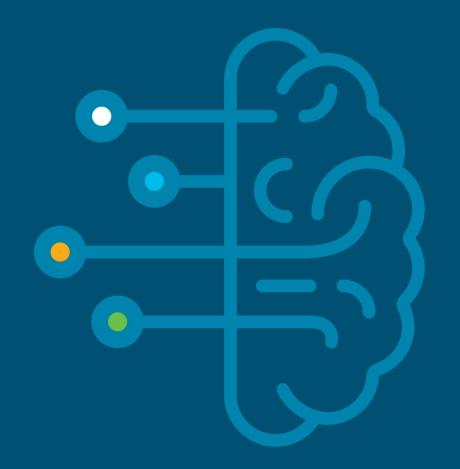
- Frame rate can be controlled
 or not
- Frame rate can be set in the NVIDIA and Desktop Broker software policy

Multi-user graphics cards scheduling engines

NVIDIA supports 3 models

Best effort (default)

- User gets GPU resources based on current availability
- At any given point in time a user MIGHT get more than his fair share of GPU


Fixed share

 Each user gets the same dedicated performance at all times

Equal share

 Each VM gets and equal share of the GPU resources How do you measure performance?

Performance measurement

Industry graphic benchmark examples

- · SPECviewperf 13
- · PassMark Software
- · Unigen Heaven, Valley, etc
- Others

SPECviewperf 13 supports nine Virtual Professional Graphics Applications

SPECviewperf 13 provides a composite benchmark score across all nine applications

SPECviewperf 13 provides capability to score individual applications

SPECviewperf 13 provides ability to measure performance across various graphic card, CPU, memory, scheduling and frame rate scenarios

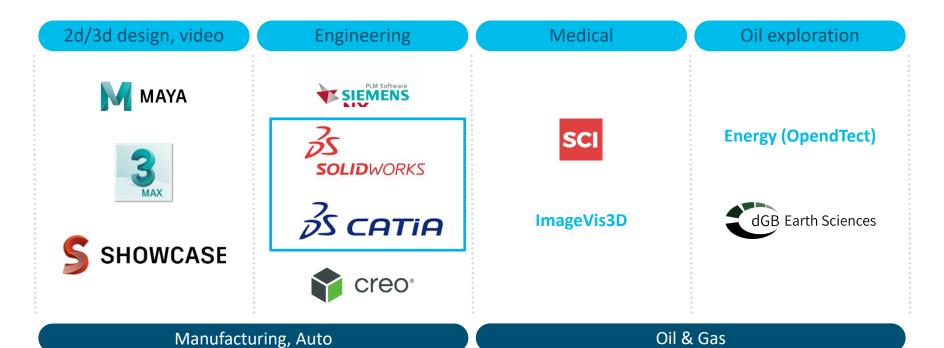
SPECviewperf 13 has the following minimum requirements:

Microsoft Windows 10 64-bit RS3 or later VM

OpenGL 4.0

Direct X12 support

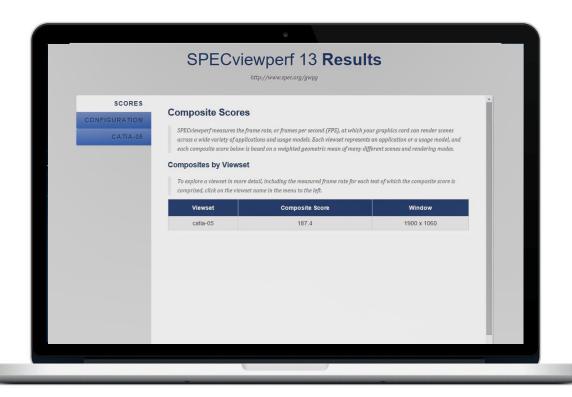
8GB of installed system memory


80GB available disk space

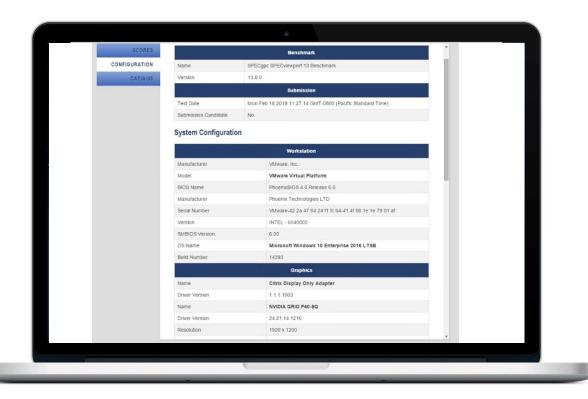
1920x1080 screen resolution for submissions published on the SPEC website

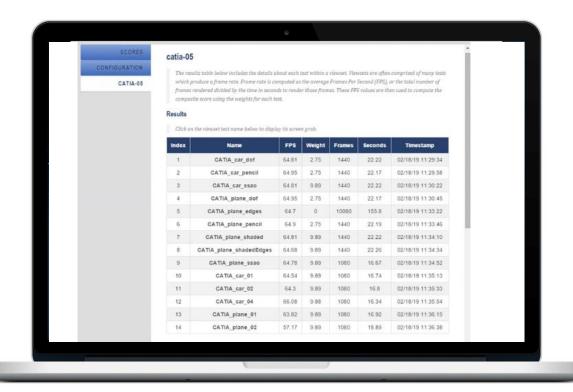
Applications driving large TAM, Verticals

Utilities, Sled, Arch/Design/Constr



© 2019 Cisco and/or its affiliates. All rights reserved. Cisco Confidential


SPECviewperf 13 Test Console


SPECviewperf 13 Test Results - Composite


SPECviewperf 13 Test Results - Configuration

SPECviewperf 13 Test Results – Viewset Catia

NVIDIA Tesla T4 and P40

Tesla T4 Key Specifications

GPU Architecture	NVIDIA Turing			
NVIDIA Turing Tensor Cores	320			
NVIDIA CUDA® Cores	2,560			
RT Cores	40			
Giga Rays/second	5			
Memory Size	16 GB GDDR6			
Memory BW	Up to 320 GB/s			
vGPU Profiles	1 GB, 2 GB, 4 GB, 8 GB, 16 GB			
Form Factor	PCIe 3.0 single slot (half height & length)			
Power	70W			
Thermal	Passive			

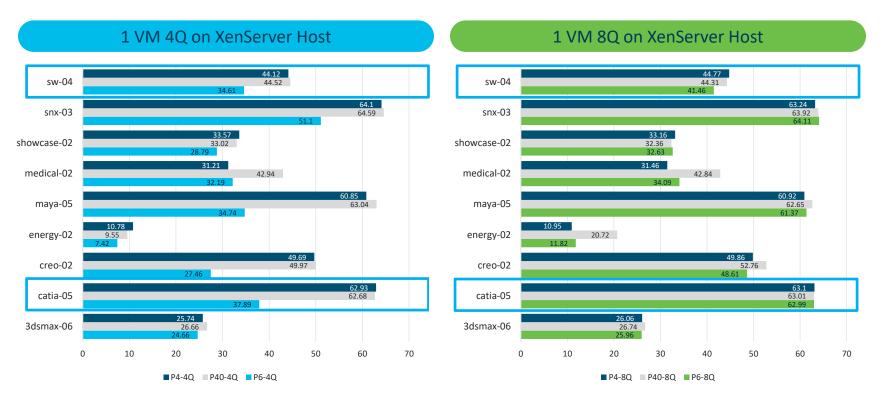
Tesla P6 Key Specifications

GPU	1 NVIDIA Pascal GPU			
CUDA Cores	2,048			
Memory Size	16 GB GDDR5			
H.264 1080p30 streams	24			
Max vGPU instances	16 (1 GB Profile)			
vGPU Profiles	1 GB, 2 GB, 4 GB, 8 GB, 16 GB			
Form Factor	MXM (blade servers)			
Power	90 W (70 W opt)			
Thermal	Bare Board			

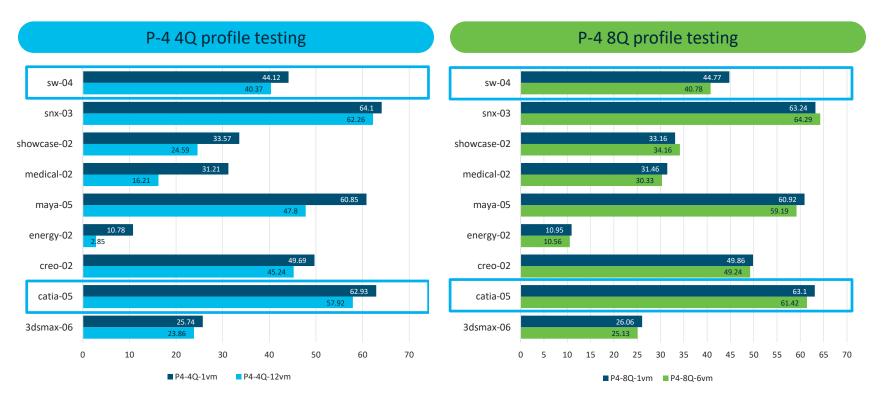
Tesla P40 Key Specifications

GPU	1 NVIDIA Pascal GPU				
CUDA Cores	3,840				
Memory Size	24 GB GDDR5				
H.264 1080p30 streams	24				
Max vGPU instances	24 (1 GB Profile)				
vGPU Profiles	1 GB, 2 GB, 3 GB, 4 GB, 6 GB, 8 GB, 12 GB, 24 GB				
Form Factor	PCIe 3.0 Dual Slot (rack servers)				
Power	250 W				
Thermal	Passive				

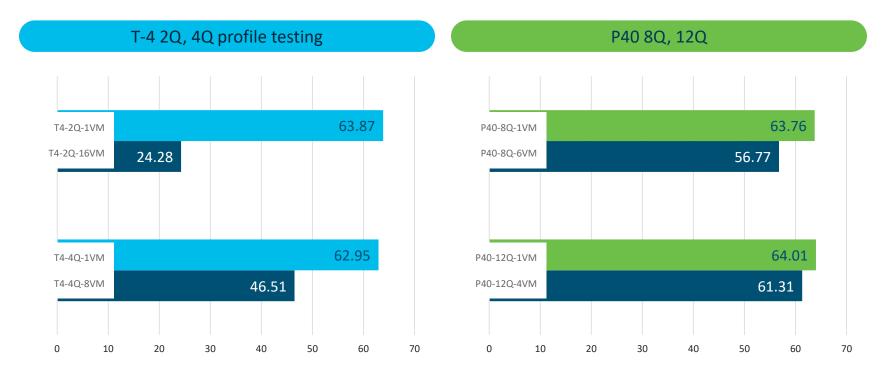
NVIDIA TESLA GPUs Recommended for Virtualization


	V100	P40	T4	P4	M60	M10	Р6
GPUs / Board (Architecture)	1 (Volta)	1 (Pascal)	1 (Turing)	1 (Pascal)	2 (Maxwell)	4 (Maxwell)	1 (Pascal)
CUDA Cores	5,120	3,840	2,560	2,560	4,096 (2,048 per GPU)	2,560 (640 per GPU)	2,048
Memory Size	32 GB/16 GB HBM2	24 GB GDDR5	16 GB GDDR6	8 GB GDDR5	16 GB GDDR5 (8 GB per GPU)	32 GB GDDR5 (8 GB per GPU)	16 GB GDDR5
vGPU Profiles	1 GB, 2 GB, 4 GB, 8 GB, 16 GB, 32 GB	1 GB, 2 GB, 3 GB, 4 GB, 6 GB, 8 GB, 12 GB, 24 GB	1 GB, 2 GB, 4 GB, 8 GB, 16 GB	1 GB, 2 GB, 4 GB, 8 GB	0.5 GB, 1 GB, 2 GB, 4 GB, 8 GB	0.5 GB, 1 GB, 2 GB, 4 GB, 8 GB	1 GB, 2 GB, 4 GB, 8 GB, 16 GB
Form Factor	PCIe 3.0 Dual Slot & SXM2 (rack servers)	PCIe 3.0 Dual Slot (rack servers)	PCIe 3.0 Single Slot (rack servers)	PCIe 3.0 Single Slot (rack servers)	PCIe 3.0 Dual Slot (rack servers)	PCIe 3.0 Dual Slot (rack servers)	MXM (blade servers)
Power	250W/300W	250W	70W	75W	300W (225W opt)	225W	90W
Thermal	passive	passive	passive	passive	active/passive	passive	bare board
	PERFORMANCE Optimized					DENSITY Optimized	BLADE Optimized

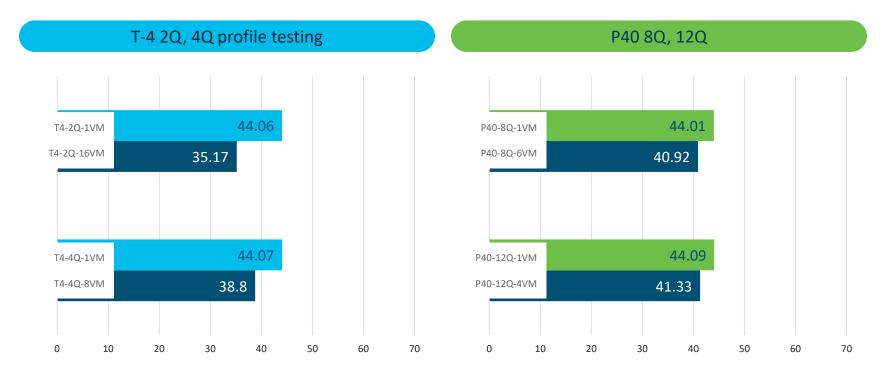
Example Benchmark Insights


SPECviewperf 13 benchmark results

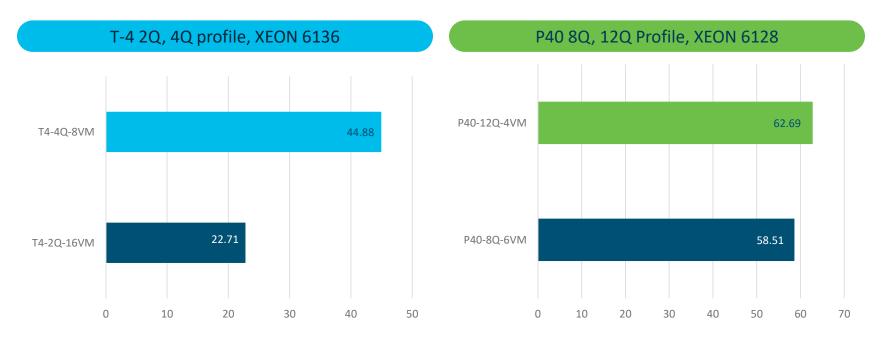
Compare three cards, two profiles, 1 VM, best effort, FRL On, Xeon 6140


SPECviewperf 13 benchmark results

Compare one card, two profiles, 1 VM & max VMs, best effort and FRL On, Xeon 6140

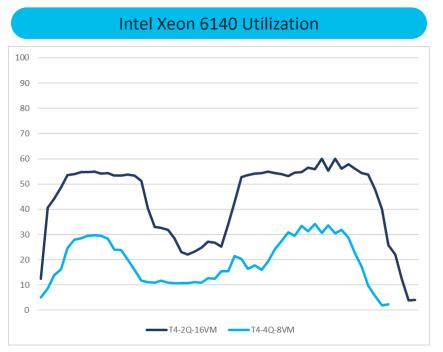

SPECviewperf 13 non-benchmark results - Catia

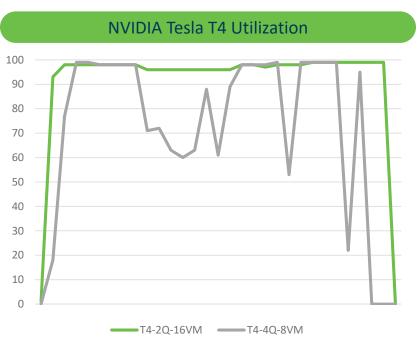
Compare two cards, 1 VM & max VMs, best effort and FRL On, Xeon 6140


SPECviewperf 13 non-benchmark results -Solidworks

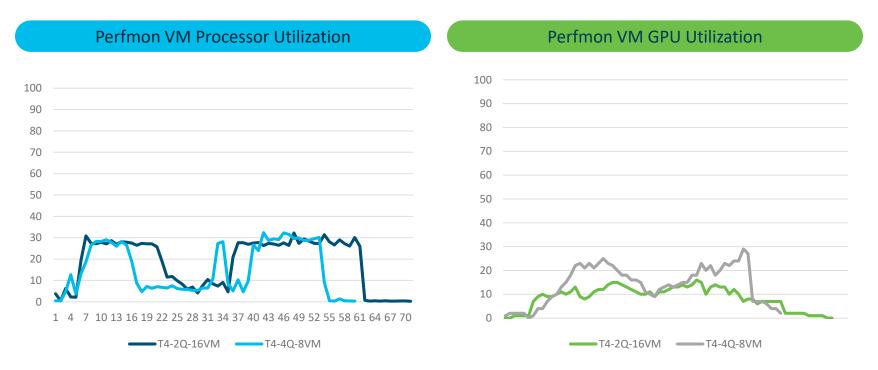
Compare two cards, 1 VM & max VMs, best effort and FRL On, Xeon 6140

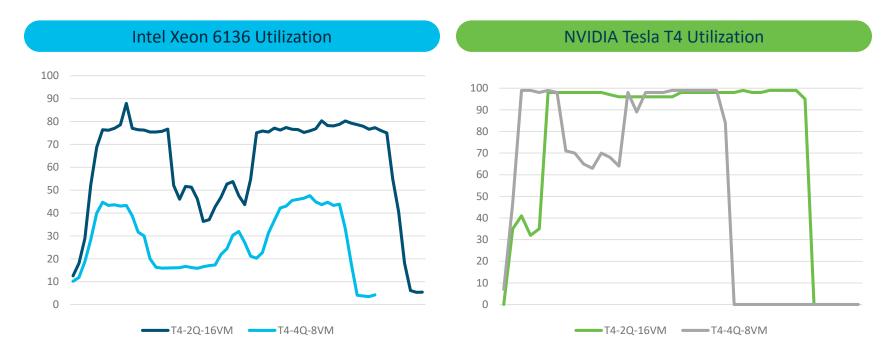
SPECviewperf 13 non-benchmark results - Catia


Compare two cards, max VMs, best effort and FRL On, Xeon 6136, 6128

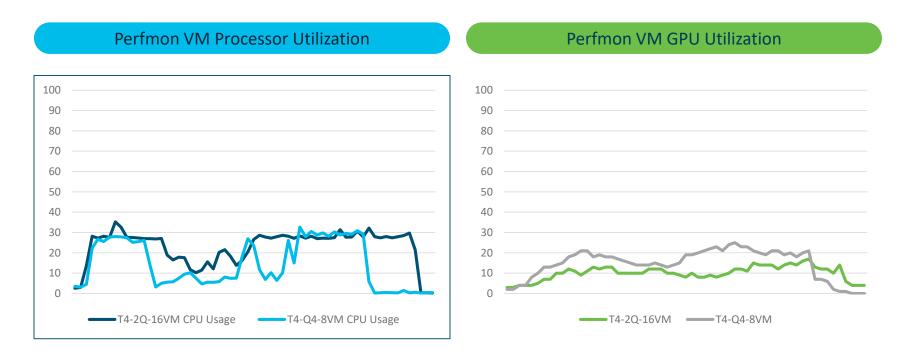


Tying the Benchmarks to CPUs and GPUs

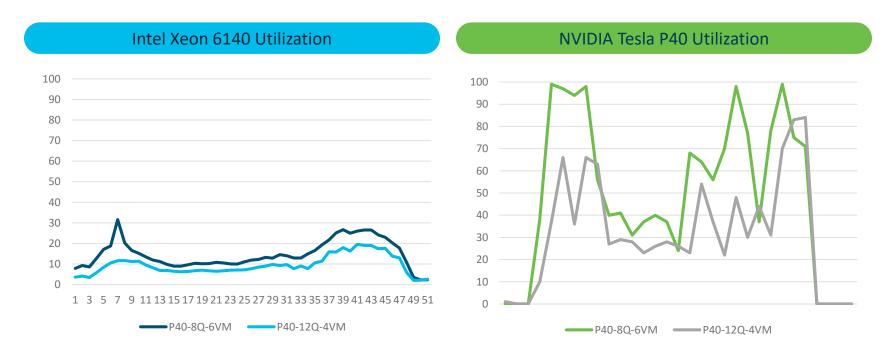

Intel Scalable Family 6140 and NVIDIA Tesla T4*


* SPECviewperf 13 Catia Test – ESXi Host Data

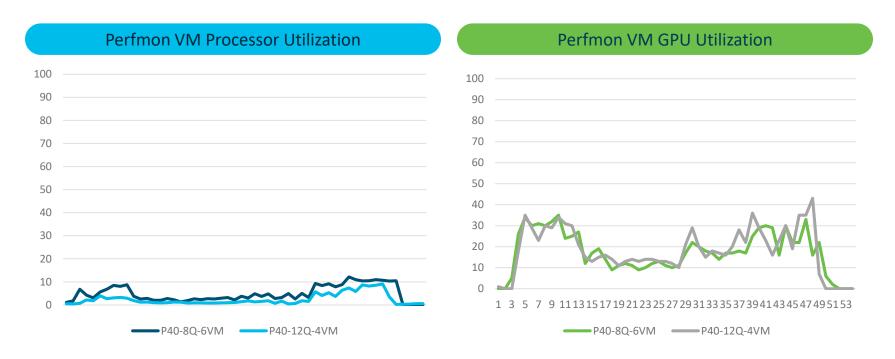
Windows 10 (1607) VM with Tesla T4 vGPU*


^{*} SPECviewperf 13 Catia Test – Single VM in multiple VM test Perfmon Data with Xeon 6140 host processor

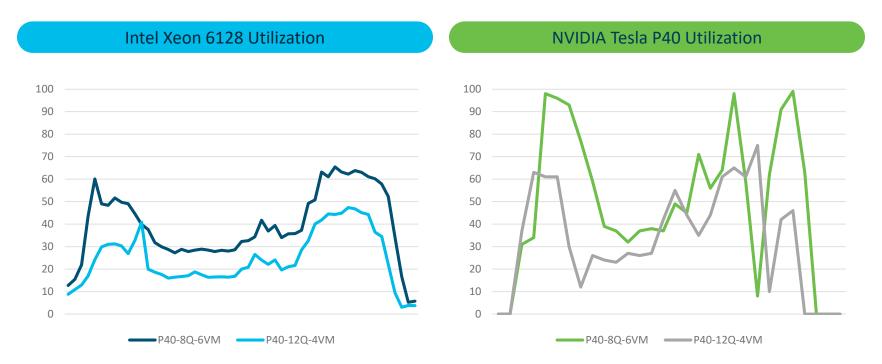
Intel Scalable Family 6136 and NVIDIA Tesla T4*


^{*} SPECviewperf 13 Catia Test – ESXi Host Data

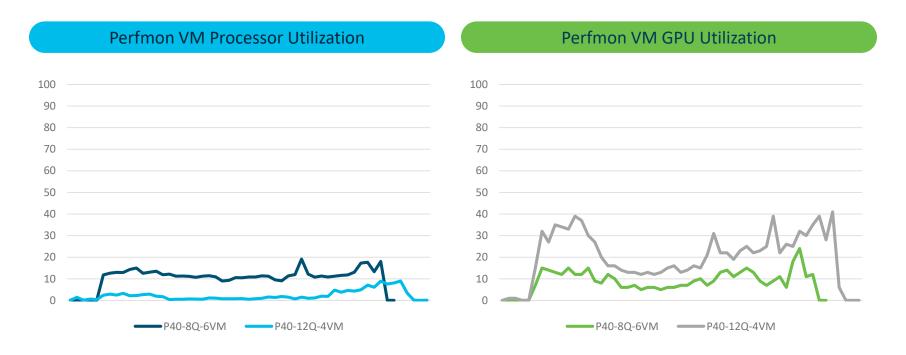
Windows 10 (1607) VM with Tesla T4 vGPU*


^{*} SPECviewperf 13 Catia Test – Single VM in multiple VM test Perfmon Data with Xeon 6136 host processor

Intel Scalable Family 6140 and NVIDIA Tesla P40*


^{*} SPECviewperf 13 Catia Test – ESXi Host Data

Windows 10 (1607) VM with Tesla P40 vGPU*


^{*} SPECviewperf 13 Catia Test – Single VM in multiple VM test Perfmon Data with Xeon 6140 host processor

Intel Scalable Family 6128 and NVIDIA Tesla P40*

^{*} SPECviewperf 13 Catia Test – ESXi Host Data

Windows 10 (1607) VM with Tesla P40 vGPU*

^{*} SPECviewperf 13 Catia Test – Single VM in multiple VM test Perfmon Data with Xeon 6128 host processor

Sizing for Dassault Apps

Dassault Systemes 3DEXPERIENCE UCS C240 M5 Rack Server starting points*

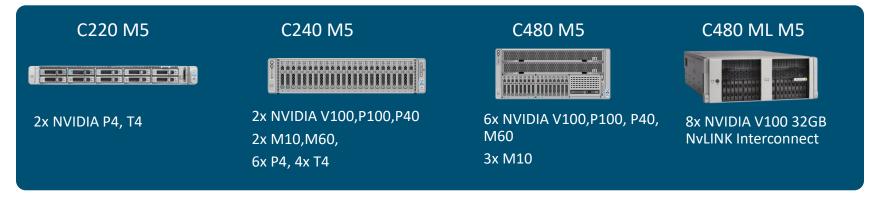
User type	Equivalent performance	Users/ server	vCPU/ user	Memory/ user	Server CPU	Server memory	NVIDIA GPU	Quadro profile	Storage type	Network
Light	Quadro P1000	32	4	12-16	Intel Xeon 6136	768	Tesla T4 (4)	T4-2Q	Flash	10Gb+
Medium	Quadro P2000	16	4-6	16-32	Intel Xeon 6134	768	Tesla T4 (4)	T4-4Q	Flash	10Gb+
Heavy	Quadro P5000	4-6	8-12	96+	Intel Xeon 6128	768	Tesla P40 (2)	P40-8Q P40-12Q	Flash	10Gb+

^{*}The recommendations above reflect starting points. Customers should perform PoCs to determine optimal configurations for their specific environments. Cisco can help.

Dassault Systemes 3DEXPERIENCE UCS B200 M5 Blade Server Rack Dense starting points*

User type	Equivalent performance	Users/ server	vCPU/ user	Memory/ user	Server CPU	Server memory	NVIDIA GPU	Quadro profile	Storage type	Network
Light	Quadro P1000	12	4	12-16	Intel Xeon 6128	192	Tesla P6 (2)	P6-2Q	Flash	10Gb+
Medium	Quadro P2000	6	4-6	16-32	Intel Xeon 6128	192	Tesla P6 (2)	P6-4Q	Flash	10Gb+
Heavy	Quadro P5000	2-4	8-12	96+	Intel Xeon 6128	192	Tesla P6 (2)	P6-8Q P6-16Q	Flash	10Gb+

^{*}The recommendations above reflect starting points. Customers should perform PoCs to determine optimal configurations for their specific environments. Cisco can help.


The Cisco Lineup

Cisco graphics accelerated Data Center with NVIDIA


Racks

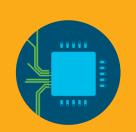
Blades

Hyperconverged

Key takeaways

Keep these things in mind

Understanding the different types of users


There are three key GPU settings:

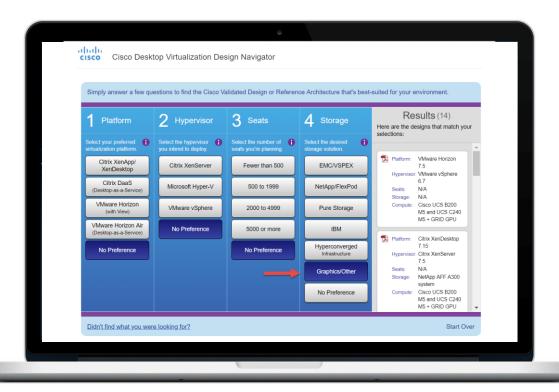
- GPU scheduler
- NVIDIA profile selection
- Frame rate control
 - NVIDIA Tesla card
 - Desktop Broker

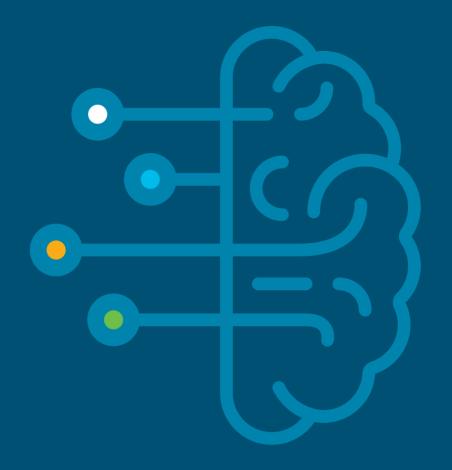
CPU selection is critical

- CPU and GPU work synergistically
- High frequency
- CPU core count

High frequency memory

Resources




VCC Design Navigator

Your source for VDI content

http://cisco.com/go/vdi-cvd

Q & A

·I|I·I|I· CISCO