A FAST FORWARD THROUGH RAY TRACING GEMS

Eric Haines, Distinguished Engineer | March 21, 2019 | Talk S9872
There is an old joke that goes, “Ray tracing is the technology of the future, and it always will be!”

- David Kirk, March 2008
RAY TRACING GEMS

http://raytracinggems.com

- Table of Contents, links, and what this talk is mostly about.

Proposed by Tomas Akenine-Möller, co-editor, in Spring 2018.

Like other “Gems” books: provide tools and case studies.

32 papers accepted, 64 authors, 652 pages.

Tight schedule: papers received October 15, finished book proof done February 12. 121 days.

Open Access! Articles can be freely redistributed (non-commercial, and attribute the source).
PART I
RAY TRACING BASICS

Edited by Chris Wyman
RAY TRACING TERMINOLOGY

by Eric Haines and Peter Shirley
WHAT IS A RAY?
by Peter Shirley, Ingo Wald, Tomas Akenine-Möller, and Eric Haines
INTRODUCTION TO DIRECTX RAYTRACING

by Chris Wyman and Adam Marrs
A PLANETARIUM DOME MASTER CAMERA
by John E. Stone
COMPUTING MINIMA AND MAXIMA OF SUBARRAYS

by Ingo Wald
PART II
INTERSECTIONS AND EFFICIENCY

Edited by Ingo Wald
A FAST AND ROBUST METHOD FOR AVOIDING SELF-INTERSECTION

by Carsten Wächter and Nikolaus Binder
With a trembling arm shoot an arrow at a coin - so are ray and sphere.
PRECISION IMPROVEMENTS FOR RAY/SPHERE INTERSECTION

by Eric Haines, Johannes Günther, and Tomas Akenine-Möller
COOL PATCHES: A GEOMETRIC APPROACH TO RAY/BILINEAR PATCH INTERSECTIONS

by Alexander Reshetov

```c
1 RT_PROGRAM void intersectPatch(int prim_idx) {
2    // ray is rtDeclareVariable(ray, ray, rtCurrentRay,) in OptiX
3    // patchdata is optix:rtBuffer
4    const PatchData& patch = patchdata[prim_idx];
5    const float3* a = patch.coefficients();
6    // 4 corners = "normal" qn
7    float3 o00 = a[0], q10 = a[1], q11 = a[2], q01 = a[3];
8    float3 e10 = q10 - q00; // q01 --------- q11
9    float3 e11 = q11 - q10; // q10
10    float3 e00 = q01 - q00; // | e00 e11 | we precompute
11    float3 qn = q[4]; // | e10 |
12    float q00 = ray.origin; // q00 0 q01 q01-q11
13    q00 = ray.origin +
14    float a = dot(cross(q00, ray.direction), e00); // the equation is
15    float c = dot(qn, ray.direction); // a = b u + c u^2
16    float b = dot(cross(q10, ray.direction), e11); // first compute
17    b = a + c; // abc & and then b
18    float det = b*b - 4*a*c;
19    if (det < 0) return; // see the right part of Figure 5
20    det = sqrt(det); // we -use_fast_math in CUDA_NVTC_OPTIONS
21    float u1, u2; // the roots(u parameter)
22    float t = ray.tmax, u, v; // need solution for the smallest t > 0
23    if (c == 0) {
24        u1 = -a/b; u2 = -1; // and there is only one root
25    } else {
26        u1 = (-b - copySign(det, b))/2; // numerically "stable" root
27        u2 = a/u1;
28        u1 /= c;
29    }
30    if (0 <= u1 && u1 <= 1) {
31        float3 pa = lerp(q00, q10, u1);
32        float3 pb = lerp(q00, q11, u1);
33        float3 n = cross(ray.direction, pb);
34        det = dot(n, n);
35        n = cross(n, pa);
36        float t1 = dot(n, pb);
37        float v1 = dot(n, ray.direction);
38        if (1 > t1) return; // no need to check t1 < t
39        if (t1 > 0 && 0 < v1 && v1 < det) {
40            t = t1/det; // if t1 > ray.tmax,
41            t = t/det; // it will be rejected
42        }
43    }
44}
```
MULTI-HIT RAY TRACING IN DXR
by Christiaan Gribble
A SIMPLE LOAD-BALANCING SCHEME WITH HIGH SCALING EFFICIENCY

by Dietger van Antwerpen, Daniel Seibert, and Alexander Keller
PART III
REFLECTIONS, REFRACTIONS, AND SHADOWS

Edited by Peter Shirley
AUTOMATIC HANDLING OF MATERIALS IN NESTED VOLUMES
by Carsten Wächter and Matthias Raab
A MICROFACET-BASED SHADOWING FUNCTION TO SOLVE THE BUMP TERMINATOR PROBLEM
by Alejandro Conty Estevez, Pascal Lecocq, and Clifford Stein
RAY TRACED SHADOWS: MAINTAINING REAL-TIME FRAME RATES

by Jakub Boksansky, Michael Wimmer, and Jiri Bittner
RAY-GUIDED VOLUMETRIC WATER CAUSTICS IN SINGLE SCATTERING MEDIA WITH DXR

by Holger Gruen
ON THE IMPORTANCE OF SAMPLING

by Matt Pharr
SAMPLE TRANSFORMATIONS ZOO
by Peter Shirley, Samuli Laine, David Hart, Matt Pharr, Petrik Clarberg, Eric Haines, Matthias Raab, and David Cline
IGNORING THE INCONVENIENT WHEN TRACING RAYS

by Matt Pharr
IMPORTANCE SAMPLING OF MANY LIGHTS ON THE GPU

by Pierre Moreau and Petrik Clarberg
CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING
by Edward Liu, Ignacio Llamas, Juan Cañada, and Patrick Kelly

(a) Ray traced shadows
(b) Shadow maps
CINEMATIC RENDERING IN UE4 WITH REAL-TIME RAY TRACING AND DENOISING

by Edward Liu, Ignacio Llamas, Juan Cañada, and Patrick Kelly

(a) Noisy input (1 spp)
(b) Our spatial denoiser
TEXTURE LEVEL OF DETAIL STRATEGIES FOR REAL-TIME RAY TRACING

by Tomas Akenine-Möller, Jim Nilsson, Magnus Andersson, Colin Barré-Brisebois, Robert Toth, and Tero Karras
SIMPLE ENVIRONMENT MAP FILTERING USING RAY CONES AND RAY DIFFERENTIALS

by Tomas Akenine-Möller and Jim Nilsson
IMPROVING TEMPORAL ANTIALIASING WITH ADAPTIVE RAY TRACING

by Adam Marrs, Josef Spjut, Holger Gruen, Rahul Sathe, and Morgan McGuire

<table>
<thead>
<tr>
<th></th>
<th>SSAA</th>
<th>ATAA-C</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>2x</td>
<td>6.30</td>
<td>1.47</td>
<td>4.29x</td>
</tr>
<tr>
<td>4x</td>
<td>12.60</td>
<td>2.70</td>
<td>4.67x</td>
</tr>
<tr>
<td>8x</td>
<td>25.20</td>
<td>5.32</td>
<td>4.74x</td>
</tr>
</tbody>
</table>
INTERACTIVE LIGHT MAP AND IRRADIANCE VOLUME PREVIEW IN FROSTBYTE

by Diede Apers, Petter Edblom, Charles de Rousiers, and Sébastien Hillaire
REAL-TIME GLOBAL ILLUMINATION WITH PHOTON MAPPING

by Niklas Smal and Maksim Aizenshtein
HYBRID RENDERING FOR REAL-TIME RAY TRACING

by Colin Barré-Brisebois, Henrik Halén, Graham Wihlidal, Andrew Lauritzen, Jasper Bekkers, Tomasz Stachowiak, and Johan Andersson
DEFERRED HYBRID PATH TRACING
by Thomas Schander, Clemens Musterle, and Stephan Bergmann
INTERACTIVE RAY TRACING TECHNIQUES FOR HIGH-FIDELITY SCIENTIFIC VISUALIZATION

by John E. Stone
EFFICIENT PARTICLE VOLUME SPLATTING IN A RAY TRACER

by Aaron Knoll, R. Keith Morley, Ingo Wald, Nick Leaf, and Peter Messmer
CAUSTICS USING SCREEN SPACE PHOTON MAPPING

by Hyuk Kim
VARIANCE REDUCTION VIA FOOTPRINT ESTIMATION IN THE PRESENCE OF PATH REUSE

by Johannes Jendersie
ACCURATE REAL-TIME SPECULAR REFLECTIONS WITH RADIANCE CACHING

by Antti Hirvonen, Atte Seppälä, Maksim Aizenshtein, and Niklas Smal
“RT is the future of gaming, so the main focus is now on RT either way.”

- Ben Archard, Metro Exodus programmer

Ray Tracing Gems 2?

raytracinggems.com
THE DANGERS OF RAY TRACING

CAUTION: OBJECT CONTAINS CAUSTICS
QUESTIONS?
Eric Haines | ehaines@nvidia.com