
Optimizing Facebook AI
Workloads for NVIDIA GPUs
Gisle Dankel and Lukasz Wesolowski
Facebook AI Infrastructure

S9866

03/19/2019

Outline

2

Fleetwide GPU Efficiency at Facebook

Issues and
Solutions

Commonly observed
reasons for poor
utilization and how to
address them

NVIDIA GPUs at
Facebook

Context

Data-Driven
Efficiency

You can’t improve what
you can’t measure

NVIDIA GPU
Timeline Analysis

Understanding low
utilization

1 2 3 4

Outline

3

Fleetwide GPU Efficiency at Facebook

NVIDIA GPUs at
Facebook

Context

1 2 3 4

Outline

4

Fleetwide GPU Efficiency at Facebook

Data-Driven
Efficiency

You can’t improve what
you can’t measure

1 2 3 4

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

Outline

5

Fleetwide GPU Efficiency at Facebook

NVIDIA GPU
Timeline Analysis

Understanding low
utilization

2 3 41

Low utilization

Outline

6

Fleetwide GPU Efficiency at Facebook

Issues and
Solutions

Commonly observed
reasons for poor
utilization and how to
address them

2 3 41

Bottleneck

7

NVIDIA GPUs at Facebook
Context

1

Why the need for a dedicated efficiency effort

8

NVIDIA GPUs at Facebook

Enable GPU experts to

improve efficiency across

teams with minimal workload

context

Large shared GPU pool for training

• Mainly Pascal and Volta GPUs, 8 per server

• CUDA 9 (soon 10)

• Mix of CUDA libraries (cuDNN, cuBLAS, …) & custom

kernels

Various users across several teams

• Their own distinct use cases, changes over time

• Computer vision, speech, translation and many more

• Many machine learning experts, not as many GPU experts

Caffe2 and PyTorch 1.0 in containers

1

9

Data-Driven Efficiency
You can’t improve what you can’t measure

2

Efficiency

10

Data-Driven Efficiency

GPU performance experts

System-centric efficiency metrics

Focused on maximizing use of

resources given particular choice of

algorithm

Efficient Execution

Machine learning domain experts

Domain-specific efficiency metrics

Focused on correctness,

model experimentation time,

and model launch time

Efficient Algorithms

2

Efficiency

11

Data-Driven Efficiency

GPU performance experts

System-centric efficiency metrics

Focused on maximizing use of

resources given particular choice of

algorithm

Efficient Execution

Machine learning domain experts

Domain-specific efficiency metrics

Focused on correctness,

model experimentation time,

and model launch time

Efficient Algorithms

This is us

2

Efficient Resource Utilization - A Complete Picture

12

Data-Driven Efficiency

Many layers of inefficiency

The top part could fill another talk

We will focus on the portion of time

when GPUs have been allocated to a job

2

Zooming in on NVIDIA GPU Utilization

13

Data-Driven Efficiency

What does utilization mean?

High-level utilization metric is coarse

(GPU in use?)

Doesn’t show how many SMs / functional units in

use

A kernel with a single thread running

continuously will get 100% GPU

utilization

Even if it only uses 0.1% of available GPU resources!

H/W Event: SM Active Cycles:

Cycles where SM had > 0 active warps

Metric: SM Efficiency:

SM Active Cycles / SM Elapsed Cycles

nvidia-smi: GPU 100% utilized

SM Efficiency: GPU ~1% utilized

Streaming Multiprocessors (SM) x 80

2

Zooming in on SM Utilization

14

Data-Driven Efficiency 2

What does utilization mean?

SM Efficiency does not tell the whole

story

Single active warp will not utilize SM to anywhere

near its potential

Active Warps:

Number of warps in-flight on an SM

concurrently (0-64)

Achieved Occupancy:

Active Warps / Active Cycles

Even more detail:

*_fu_utilization - Per-functional unit

utilizationInstructions per cycle (IPC)

FLOPS / peak FLOPS

CUPTI – the CUDA Profiler Tools Interface

15

Data-Driven Efficiency 2

Dynamic library for writing profiling and tracing tools

Provides multiple APIs:

• Activity API: GPU tracing, e.g. kernel launches, memcopies

• Callback API: Driver and library API tracing

• Event API: GPU events, e.g. cycles, instructions, active warps

• Metric API: Predefined metrics, e.g. SM Efficiency, Achieved Occupancy

• Profiler API: Kernel replays, range profiling

Library (libcupti) must be linked into application to be profiled

Contributors to Low GPU Utilization

16

Data-Driven Efficiency

CUPTI:
CUDA Profiling Tools Interface

APIs we use:

Events API, Activities API, Callback API

2

%GPU Hours and Average Active Warps by Workflow

17

Data-Driven Efficiency 2

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

Top workflow accounts for 18% of GPU hours

Average Active Warps is 8 (theoretical max is 64)

Active Warps per SM
vary from 0 to 64

"Active"
means the warp has been issued and is in-

flight

Average Active Warps

=
Active Warps

Elapsed Cycles

= SM Efficiency ⋅ Achieved Occupancy

Profiling Deep Dive

18

Data-Driven Efficiency 2

Low SM

Efficiency

I/O
Job Startup /

Checkpoints

CPU

Computation

CPU-Only

Activities

Low Achieved

Occupancy

Kernel Launch

Latency

Memcopy

Latency

Low GPU

Utilization

Memory

Bottleneck

Instructions

Bottleneck

…

…

CPU-Only

Activities

Low SM

Efficiency

Low Achieved

Occupancy

Memory

Bottleneck

Instructions

Bottleneck

Low GPU

Utilization

CUPTI

Hardware

Events

How to Measure

CPU + GPU
Tracing

Memcopy

Latency

Kernel Launch

Latency

I/O

CPU-Only

Activities

CPU

Computation
Job Startup /

Checkpoints

Application
Tracing

nvprof

Visual Profiler

Nsight Compute

Nsight Systems

+

Application Tracing

Low Achieved

Occupancy

Low SM

Efficiency

I/O
Job Startup /

Checkpoints

CPU

Computation

CPU-Only

Activities

Low Achieved

Occupancy

Kernel Launch

Latency

Memcopy

Latency

Find reasons for

large and small gaps

in GPU timeline

Profiling Deep Dive

19

Data-Driven Efficiency 2

Low SM

Efficiency

I/O
Job Startup /

Checkpoints

CPU

Computation

CPU-Only

Activities

Low Achieved

Occupancy

Kernel Launch

Latency

Memcopy

Latency

Low GPU

Utilization

Memory

Bottleneck

Instructions

Bottleneck

…

…

CPU-Only

Activities

Low SM

Efficiency

Low Achieved

Occupancy

Memory

Bottleneck

Instructions

Bottleneck

Low GPU

Utilization

CUPTI

Hardware

Events

How to Measure

CPU + GPU
Tracing

Memcopy

Latency

Kernel Launch

Latency

I/O

CPU-Only

Activities

CPU

Computation
Job Startup /

Checkpoints

Application
Tracing

nvprof

Visual Profiler

Nsight Compute

Nsight Systems

+

Application Tracing

Arithmetic

Control Flow

…

Cache Misses

Bandwidth Limit

…

Too Few Threads

Register Limit

…

Find reasons for GPU

kernel bottlenecks

20

GPU Timeline Analysis
Understanding low utilization

3

NVIDIA Nsight Systems

21

GPU Timeline Analysis 3

Source: NVIDIA

22

Caffe2

Operator

void FacebookGPUOperatorObserver::Start(){

nvtxRangePush(opDetails_->opType);

}

void FacebookGPUOperatorObserver::Stop() {

nvtxRangePop();

}

NVIDIA Tools Extension API (NVTX)

23

Fleetwide On-Demand Training

24

GPU Timeline Analysis 3

Always available tracing at the push of a button

We use our own tracing library today for the following reasons:

• Always available on-demand (no workload config or build mode)

• Available in production (at very low overhead)

• Integrated with job management UI and other relevant perf tools

• Browser-based (including visualization)

We use CUPTI Activities API to implement on-demand tracing for production

workflows. In the future, we hope to expand our use of Nsight Systems.

In-House Tracing Infrastructure

25

GPU Timeline Analysis 3

CPU
Threads

GPU
Streams

Caffe2 Operator

Cuda Runtime

API

GPU Kernels

Visualized in Chrome

Libgpumon

26

GPU Timeline Analysis 3

Profiling and tracing

library

Detailed utilization metrics

and tracing on-demand for

all production workflows
Moni-

toring

Realtime

Analytics

Batch

Analytics

Host Process

(Caffe2 / PyTorch)

libgpumonlibcupti

Metrics

Daemon

Application

OS

H/W

Cuda Driver

GPU PMU

Object

Store

Trace store Metrics storesCUPTI-based Profiling Library

Telemetry and Profiling Takeaways

27

GPU Timeline Analysis 3

Visibility, top-down, full coverage

Collect metrics deep and wide

• Hierarchical top-down breakdown

• Detailed utilization metrics

• Break down by team, user, package, workflow, GPU kernels etc.

Systematically address low utilization with on-demand tracing

• Nsight Systems and CUPTI Activity API for CPU-GPU interactions

• Application level tracing for big picture

Target frequently used GPU kernels with nvprof and Nsight Compute

• What to target: Use periodic tracing to rank kernels across fleet

Best experience when

all these integrate

smoothly

28

Issues and Solutions
Commonly observed reasons for poor utilization and how to address them

4

Fleetwide Performance Optimization

29

Issues and Solutions 4

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat 0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

Fleetwide Performance Optimization

30

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

8

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

Fleetwide Performance Optimization

31

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

8

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

Fleetwide Performance Optimization

32

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

Optimization

Target

8

Fleetwide Performance Optimization

33

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8 (12.5% of max)

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

Bottleneck

Fleetwide Performance Optimization

34

Issues and Solutions 4

Before optimization

After optimization
Bottleneck

200x operator

speedup

Fleetwide Performance Optimization

35

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

8

0

5

10

15

20

Workflow A Workflow B Workflow C Workflow D Workflow E Workflow F Workflow G

0

4.5

9

13.5

18

GPU Hours % Average Active Warps

Fleetwide Performance Optimization

36

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

Optimization

Target

8

A One-Minute Primer to Caffe2 and PyTorch

37

Issues and Solutions 4

The vast majority of GPUs at FB are used for training machine learning models using Caffe2 or PyTorch

Caffe2 and PyTorch are open source deep learning platforms that facilitate expression, training, and inference of neural network models

In Caffe2 models are expressed by defining a graph for the neural network whose nodes are operators

PyTorch supports eager mode in which the graph is expressed implicitly through control flow in an imperative program

In practice the graph can usually be automatically generated to facilitate optimizations and tracing support similar to Caffe2

API and Platform Design Choices that Improve Performance

38

Issues and Solutions 4

Caffe2 platform support
For translating loops into kernel code with proper block sizes; helps improve SM utilization and occupancy

Dependency-tracking system for operators
Performs memory copies into and out of GPU memory generally only when required

Automatic fusion of operators
Prevents unnecessary copies and kernel invocations

CUDA's similarity to C++
Reduces the barrier of entry for writing GPU code

Causes of Performance Issues in GPU Code

39

Issues and Solutions 4

A case of mistaken assumptions

GPUs differ significantly from CPUs

• Much higher number of execution units

• Data-parallel code and execution

• Lower single-thread performance

• Accelerator managed by the CPU

Each difference requires an adaptation in code patterns for good performance

Most new GPU programmers are experienced CPU programmers

• They often use common CPU practices and coding patterns, which may not work well on the GPU

Patterns of GPU Misuse

40

Issues and Solutions 4

Most GPU performance issues result from a Blind Spot or mistaken assumptions

about key GPU architectural aspects

As a result, the programmer writes Anti-Pattern code that performs poorly

Often, a simple Solution is available to a whole class of problems

Issue 1: CPU to GPU Communication Latency

41

Issues and Solutions 4

So close, yet so far away

Blind Spot: Overhead of kernel launches and cudaMemcpy is relatively high

And GPUs are not designed to allow executing a large number of cudaMemcpy calls concurrently

Anti-Pattern: Code that transforms GPU data using CPU loops containing fine-grained

cudaMemcpy calls

Solution: Rewrite these operations as GPU kernels that transform the data using

blocks of GPU threads

Example: The Case of the 14k cudaMemcpy Calls

42

Issues and Solutions 4

CPU Timeline

GPU Timeline Zoomed In

Before and After Optimization

43

Issues and Solutions 4

Before optimization

After optimization
Bottleneck

200x op speedup, 3.5x workflow

speedup

Issue 2: Bottlenecks at the CPU Cause High GPU Idle Time

44

Issues and Solutions 4

Feeding the beast

Blind Spot: Peak throughput is much higher on GPU than on CPU

Anti-Pattern: Code that performs expensive data transformations on the CPU,

causing GPU to go idle for extended time

Solution 1: Do as much as possible of the expensive work on the GPU with kernels

that take advantage of the available concurrency

Solution 2: Run more threads on the CPU to concurrently prepare work for GPU

execution to help feed the GPU more effectively

Example: The Case of the Well-Utilized CPU Threads

45

Issues and Solutions 4

... and poorly utilized GPUs

A workflow used 8 CPU threads to manage the 8 GPUs on the server

CPU timeline showed good thread utilization, GPU timeline showed gaps

Increasing the number of threads on the CPU (from 8 to 64) to concurrently prepare more GPU work

improved overall throughput by 40%

Issue 3: Improper Grain Size per GPU Thread

46

Issues and Solutions 4

The more the merrier

Blind Spot: On the CPU, the work per thread needs to be substantial (e.g. to absorb

context-switch overhead), but GPUs switch between warps of threads very efficiently,

so keeping grain size very low is fine

Anti-Pattern: GPU code with too much work per thread artificially limits concurrency,

yielding low block count and SM efficiency

Solution: Rewrite kernels to expose more concurrency and increase number of blocks

per kernel

Issue 4: Improper Memory Access Patterns

47

Issues and Solutions 4

Blind Spot: GPU memory data access patterns between threads in the same warp can

affect achieved memory bandwidth by more than an order of magnitude

Anti-Pattern: Code with inefficient memory access patterns, where threads access

different memory segments or individual threads copy large chunks of memory

Solution: Rewrite kernels to structure memory access patterns in the proper way to

utilize bandwidth effectively

Proper GPU Global Memory Access Patterns

48

Issues and Solutions 4

Threads access addresses in the same segments

Each thread fetches one word (fine grain)

Source: CUDA Programming Guide

Example: Increase Concurrency and Improve Memory Access Pattern

49

Issues and Solutions 4

A timeline for a workflow showed 95% of GPU active time in one operator that

performed a data transformation

GPU Summary

indicates good

utilization

95% of active time spent executing one kernel type

Example: Increase Concurrency and Improve Memory Access Pattern

50

Issues and Solutions 4

Two birds with one stone

A timeline for a workflow showed 95% of GPU active time in one operator that performed a data transformation

Each thread in the kernel block was issuing a memcpy inside GPU global memory to replicate a large portion of the

input tensor

We rewrote the kernel code so each thread would write a single value of the output tensor

memcpy(output_ptr, input_ptr, inner_dim * item_size);

output_data[index] = input_data[row * inner_dim + col];

3x speedup in operator and workflow

Issue 5: Insufficient Concurrency

51

Issues and Solutions 4

When a GPU for your workload is overkill

Blind Spot: Modern GPUs contain thousands of arithmetic units, so code must expose

that much concurrency for proper utilization

Anti-Pattern: Code that runs a few kernel blocks at a time with only a small fraction

of SMs utilized

Solution: If the problem inherently has low concurrency, consider running on CPU

instead

Example: Too Little Work

52

Issues and Solutions 4

You know you are in trouble when it takes longer to launch a kernel

than to run it

Optimization Takeaways

53

Issues and Solutions 4

Platform abstractions allow our workflow developers to make use of GPUs and help with some

performance aspects

Timeline tracing is the first tool you should use for identifying bottlenecks in parallel workflows

To become a better GPU programmer, understand the key differences between GPU and CPU

architectures

• Very high parallelism – requires high concurrency and efficiently feeding work from CPU

• Accelerator - minimize CPU to GPU communication

• Zero-cost “context switch” – don’t be afraid to keep grain size very low

• Access patterns – learn the optimal access patterns for the various memory/cache types on the GPU

Don't reinvent the wheel - use optimized libraries like cuDNN whenever possible

54

Q&A

55

Thank you for watching

NVIDIA Nsight Systems

56

GPU Timeline Analysis 3

Understanding the workflow

A tracing tool such as NSight Systems is what we use to investigate low utilization

cases

• Collects both CPU and GPU traces

• API for adding application-level trace events

• Great at highlighting system-wide bottlenecks

In addition, we use CUPTI Activities API directly

• NVIDIA's tools are built on top of CUPTI APIs

• Allows greater flexibility

• Derive metrics on-the-fly, aggregate per-kernel stats etc

Use off-the-shelf tracing tools or

use CUPTI APIs to build your

own

%GPU Hours and Average Active Warps by Workflow

57

Data-Driven Efficiency 2

Used resources is measurable in context

independent manner

Various levels of system metrics

From GPU hours to FLOPs / instructions

Available resources is measurable

Available GPU hours, peak FLOPs / instructions

Utilization =
ResourcesUsed

ResourcesAvailable
Goodput is not easily measurable -

workload and context dependent

From images processed to user engagement rates

Cost is standardized and measurable

E.g. GPU hours

Efficiency =
"Goodput"

Cost

Poor utilization = waste of expensive resource TODO: clarify

Focus on improving utilization - lower cost for the same goodput

Contributors to Low GPU Utilization

58

Data-Driven Efficiency 2

