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NVIDIA GPUs at Facebook
Context

1



Why the need for a dedicated efficiency effort
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NVIDIA GPUs at Facebook

Enable GPU experts to 

improve efficiency across 

teams with minimal workload 

context

Large shared GPU pool for training

• Mainly Pascal and Volta GPUs, 8 per server

• CUDA 9 (soon 10)

• Mix of CUDA libraries (cuDNN, cuBLAS, …) & custom 

kernels

Various users across several teams

• Their own distinct use cases, changes over time

• Computer vision, speech, translation and many more

• Many machine learning experts, not as many GPU experts

Caffe2 and PyTorch 1.0 in containers

1
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Data-Driven Efficiency
You can’t improve what you can’t measure
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Efficiency
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Data-Driven Efficiency

GPU performance experts

System-centric efficiency metrics

Focused on maximizing use of 

resources given particular choice of 

algorithm

Efficient Execution

Machine learning domain experts

Domain-specific efficiency metrics

Focused on correctness, 

model experimentation time, 

and model launch time

Efficient Algorithms

2



Efficiency
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Data-Driven Efficiency

GPU performance experts

System-centric efficiency metrics

Focused on maximizing use of 

resources given particular choice of 

algorithm

Efficient Execution

Machine learning domain experts

Domain-specific efficiency metrics

Focused on correctness, 

model experimentation time, 

and model launch time

Efficient Algorithms

This is us

2



Efficient Resource Utilization - A Complete Picture
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Data-Driven Efficiency

Many layers of inefficiency

The top part could fill another talk

We will focus on the portion of time 

when GPUs have been allocated to a job 

2



Zooming in on NVIDIA GPU Utilization
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Data-Driven Efficiency

What does utilization mean?

High-level utilization metric is coarse 

(GPU in use?)

Doesn’t show how many SMs / functional units in 

use

A kernel with a single thread running 

continuously will get 100% GPU 

utilization

Even if it only uses 0.1% of available GPU resources!

H/W Event: SM Active Cycles:

Cycles where SM had > 0 active warps

Metric: SM Efficiency:

SM Active Cycles / SM Elapsed Cycles

nvidia-smi: GPU 100% utilized

SM Efficiency: GPU   ~1% utilized

Streaming Multiprocessors (SM) x 80

2



Zooming in on SM Utilization

14

Data-Driven Efficiency 2

What does utilization mean?

SM Efficiency does not tell the whole 

story

Single active warp will not utilize SM to anywhere 

near its potential

Active Warps:

Number of warps in-flight on an SM 

concurrently (0-64)

Achieved Occupancy:

Active Warps / Active Cycles

Even more detail:

*_fu_utilization - Per-functional unit 

utilizationInstructions per cycle (IPC)

FLOPS / peak FLOPS



CUPTI – the CUDA Profiler Tools Interface
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Data-Driven Efficiency 2

Dynamic library for writing profiling and tracing tools

Provides multiple APIs:

• Activity API: GPU tracing, e.g. kernel launches, memcopies

• Callback API: Driver and library API tracing

• Event API: GPU events, e.g. cycles, instructions, active warps

• Metric API: Predefined metrics, e.g. SM Efficiency, Achieved Occupancy

• Profiler API: Kernel replays, range profiling

Library (libcupti) must be linked into application to be profiled



Contributors to Low GPU Utilization
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Data-Driven Efficiency

CUPTI:
CUDA Profiling Tools Interface

APIs we use:

Events API, Activities API, Callback API

2



%GPU Hours and Average Active Warps by Workflow
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Data-Driven Efficiency 2
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Top workflow accounts for 18% of GPU hours

Average Active Warps is 8 (theoretical max is 64)

Active Warps per SM 
vary from 0 to 64

"Active" 
means the warp has been issued and is in-

flight

Average Active Warps

=
Active Warps

Elapsed Cycles

= SM Efficiency ⋅ Achieved Occupancy



Profiling Deep Dive
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Data-Driven Efficiency 2
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Profiling Deep Dive
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Data-Driven Efficiency 2
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…
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…
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…
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GPU Timeline Analysis
Understanding low utilization

3



NVIDIA Nsight Systems

21

GPU Timeline Analysis 3

Source: NVIDIA
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Caffe2 

Operator

void FacebookGPUOperatorObserver::Start(){

nvtxRangePush(opDetails_->opType);

}

void FacebookGPUOperatorObserver::Stop() {

nvtxRangePop();

}

NVIDIA Tools Extension API (NVTX)
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Fleetwide On-Demand Training
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GPU Timeline Analysis 3

Always available tracing at the push of a button

We use our own tracing library today for the following reasons:

• Always available on-demand (no workload config or build mode)

• Available in production (at very low overhead)

• Integrated with job management UI and other relevant perf tools

• Browser-based (including visualization)

We use CUPTI Activities API to implement on-demand tracing for production 

workflows. In the future, we hope to expand our use of Nsight Systems.



In-House Tracing Infrastructure
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GPU Timeline Analysis 3

CPU
Threads

GPU
Streams

Caffe2 Operator

Cuda Runtime 

API

GPU Kernels

Visualized in Chrome



Libgpumon
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GPU Timeline Analysis 3

Profiling and tracing 

library

Detailed utilization metrics 

and tracing on-demand for 

all production workflows
Moni-

toring

Realtime 

Analytics

Batch 

Analytics

Host Process

(Caffe2 / PyTorch)

libgpumonlibcupti

Metrics 

Daemon

Application

OS

H/W

Cuda Driver

GPU PMU

Object 

Store

Trace store Metrics storesCUPTI-based Profiling Library



Telemetry and Profiling Takeaways
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GPU Timeline Analysis 3

Visibility, top-down, full coverage

Collect metrics deep and wide

• Hierarchical top-down breakdown

• Detailed utilization metrics

• Break down by team, user, package, workflow, GPU kernels etc.

Systematically address low utilization with on-demand tracing

• Nsight Systems and CUPTI Activity API for CPU-GPU interactions

• Application level tracing for big picture

Target frequently used GPU kernels with nvprof and Nsight Compute

• What to target: Use periodic tracing to rank kernels across fleet

Best experience when 

all these integrate 

smoothly
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Issues and Solutions
Commonly observed reasons for poor utilization and how to address them

4



Fleetwide Performance Optimization
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Issues and Solutions 4

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow
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Issues and Solutions
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Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4
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Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

Optimization 

Target

8



Fleetwide Performance Optimization
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Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8 (12.5% of max)

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

Bottleneck



Fleetwide Performance Optimization
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Issues and Solutions 4

Before optimization

After optimization
Bottleneck

200x operator 

speedup



Fleetwide Performance Optimization
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Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4
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Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat

4

Optimization 
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A One-Minute Primer to Caffe2 and PyTorch
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Issues and Solutions 4

The vast majority of GPUs at FB are used for training machine learning models using Caffe2 or PyTorch

Caffe2 and PyTorch are open source deep learning platforms that facilitate expression, training, and inference of neural network models 

In Caffe2 models are expressed by defining a graph for the neural network whose nodes are operators

PyTorch supports eager mode in which the graph is expressed implicitly through control flow in an imperative program

In practice the graph can usually be automatically generated to facilitate optimizations and tracing support similar to Caffe2



API and Platform Design Choices that Improve Performance
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Issues and Solutions 4

Caffe2 platform support
For translating loops into kernel code with proper block sizes; helps improve SM utilization and occupancy

Dependency-tracking system for operators
Performs memory copies into and out of GPU memory generally only when required

Automatic fusion of operators
Prevents unnecessary copies and kernel invocations

CUDA's similarity to C++
Reduces the barrier of entry for writing GPU code



Causes of Performance Issues in GPU Code
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Issues and Solutions 4

A case of mistaken assumptions

GPUs differ significantly from CPUs

• Much higher number of execution units

• Data-parallel code and execution

• Lower single-thread performance

• Accelerator managed by the CPU

Each difference requires an adaptation in code patterns for good performance 

Most new GPU programmers are experienced CPU programmers

• They often use common CPU practices and coding patterns, which may not work well on the GPU 



Patterns of GPU Misuse
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Issues and Solutions 4

Most GPU performance issues result from a Blind Spot or mistaken assumptions 

about key GPU architectural aspects

As a result, the programmer writes Anti-Pattern code that performs poorly

Often, a simple Solution is available to a whole class of problems



Issue 1: CPU to GPU Communication Latency
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Issues and Solutions 4

So close, yet so far away

Blind Spot: Overhead of kernel launches and cudaMemcpy is relatively high

And GPUs are not designed to allow executing a large number of cudaMemcpy calls concurrently

Anti-Pattern: Code that transforms GPU data using CPU loops containing fine-grained 

cudaMemcpy calls

Solution: Rewrite these operations as GPU kernels that transform the data using 

blocks of GPU threads



Example: The Case of the 14k cudaMemcpy Calls
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Issues and Solutions 4

CPU Timeline

GPU Timeline Zoomed In



Before and After Optimization
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Issues and Solutions 4

Before optimization

After optimization
Bottleneck

200x op speedup, 3.5x workflow 

speedup



Issue 2: Bottlenecks at the CPU Cause High GPU Idle Time
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Issues and Solutions 4

Feeding the beast

Blind Spot: Peak throughput is much higher on GPU than on CPU 

Anti-Pattern: Code that performs expensive data transformations on the CPU, 

causing GPU to go idle for extended time

Solution 1: Do as much as possible of the expensive work on the GPU with kernels 

that take advantage of the available concurrency

Solution 2: Run more threads on the CPU to concurrently prepare work for GPU 

execution to help feed the GPU more effectively



Example: The Case of the Well-Utilized CPU Threads 
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Issues and Solutions 4

... and poorly utilized GPUs

A workflow used 8 CPU threads to manage the 8 GPUs on the server 

CPU timeline showed good thread utilization, GPU timeline showed gaps 

Increasing the number of threads on the CPU (from 8 to 64) to concurrently prepare more GPU work 

improved overall throughput by 40%



Issue 3: Improper Grain Size per GPU Thread
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Issues and Solutions 4

The more the merrier

Blind Spot: On the CPU, the work per thread needs to be substantial (e.g. to absorb 

context-switch overhead), but GPUs switch between warps of threads very efficiently, 

so keeping grain size very low is fine

Anti-Pattern: GPU code with too much work per thread artificially limits concurrency, 

yielding low block count and SM efficiency

Solution: Rewrite kernels to expose more concurrency and increase number of blocks 

per kernel



Issue 4: Improper Memory Access Patterns
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Issues and Solutions 4

Blind Spot: GPU memory data access patterns between threads in the same warp can 

affect achieved memory bandwidth by more than an order of magnitude

Anti-Pattern: Code with inefficient memory access patterns, where threads access 

different memory segments or individual threads copy large chunks of memory 

Solution: Rewrite kernels to structure memory access patterns in the proper way to 

utilize bandwidth effectively



Proper GPU Global Memory Access Patterns
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Issues and Solutions 4

Threads access addresses in the same segments 

Each thread fetches one word (fine grain) 

Source: CUDA Programming Guide



Example: Increase Concurrency and Improve Memory Access Pattern
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Issues and Solutions 4

A timeline for a workflow showed 95% of GPU active time in one operator that 

performed a data transformation

GPU Summary 

indicates good 

utilization

95% of active time spent executing one kernel type



Example: Increase Concurrency and Improve Memory Access Pattern
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Issues and Solutions 4

Two birds with one stone

A timeline for a workflow showed 95% of GPU active time in one operator that performed a data transformation

Each thread in the kernel block was issuing a memcpy inside GPU global memory to replicate a large portion of the 

input tensor

We rewrote the kernel code so each thread would write a single value of the output tensor

memcpy(output_ptr, input_ptr, inner_dim * item_size);

output_data[index] = input_data[row * inner_dim + col];

3x speedup in operator and workflow



Issue 5: Insufficient Concurrency
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Issues and Solutions 4

When a GPU for your workload is overkill

Blind Spot: Modern GPUs contain thousands of arithmetic units, so code must expose 

that much concurrency for proper utilization

Anti-Pattern: Code that runs a few kernel blocks at a time with only a small fraction 

of SMs utilized

Solution: If the problem inherently has low concurrency, consider running on CPU 

instead



Example: Too Little Work
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Issues and Solutions 4

You know you are in trouble when it takes longer to launch a kernel 

than to run it



Optimization Takeaways

53

Issues and Solutions 4

Platform abstractions allow our workflow developers to make use of GPUs and help with some 

performance aspects

Timeline tracing is the first tool you should use for identifying bottlenecks in parallel workflows 

To become a better GPU programmer, understand the key differences between GPU and CPU 

architectures

• Very high parallelism – requires high concurrency and efficiently feeding work from CPU

• Accelerator - minimize CPU to GPU communication 

• Zero-cost “context switch” – don’t be afraid to keep grain size very low 

• Access patterns – learn the optimal access patterns for the various memory/cache types on the GPU

Don't reinvent the wheel - use optimized libraries like cuDNN whenever possible
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Q&A
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Thank you for watching



NVIDIA Nsight Systems
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GPU Timeline Analysis 3

Understanding the workflow

A tracing tool such as NSight Systems is what we use to investigate low utilization 

cases

• Collects both CPU and GPU traces

• API for adding application-level trace events

• Great at highlighting system-wide bottlenecks

In addition, we use CUPTI Activities API directly

• NVIDIA's tools are built on top of CUPTI APIs

• Allows greater flexibility

• Derive metrics on-the-fly, aggregate per-kernel stats etc

Use off-the-shelf tracing tools or 

use CUPTI APIs to build your 

own



%GPU Hours and Average Active Warps by Workflow
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Data-Driven Efficiency 2

Used resources is measurable in context 

independent manner

Various levels of system metrics

From GPU hours to FLOPs / instructions

Available resources is measurable

Available GPU hours, peak FLOPs / instructions

Utilization = 
ResourcesUsed

ResourcesAvailable
Goodput is not easily measurable -

workload and context dependent

From images processed to user engagement rates

Cost is standardized and measurable

E.g. GPU hours

Efficiency = 
"Goodput"

Cost

Poor utilization = waste of expensive resource   TODO: clarify

Focus on improving utilization - lower cost for the same goodput



Contributors to Low GPU Utilization
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Data-Driven Efficiency 2


