Optimizing Facebook AI Workloads for NVIDIA GPUs

Gisle Dankel and Lukasz Wesolowski
Facebook AI Infrastructure
Outline

1. NVIDIA GPUs at Facebook
 Context

2. Data-Driven Efficiency
 You can’t improve what you can’t measure

3. NVIDIA GPU Timeline Analysis
 Understanding low utilization

4. Issues and Solutions
 Commonly observed reasons for poor utilization and how to address them
Fleetwide GPU Efficiency at Facebook

Outline

1. NVIDIA GPUs at Facebook
 Context
Data-Driven Efficiency

You can’t improve what you can’t measure
Fleetwide GPU Efficiency at Facebook

Outline

1. NVIDIA GPU Timeline Analysis
2. Understanding low utilization

Low utilization
Fleetwide GPU Efficiency at Facebook

Outline

1. Issues and Solutions
 Commonly observed reasons for poor utilization and how to address them
NVIDIA GPUs at Facebook

Context
Why the need for a dedicated efficiency effort

Large shared GPU pool for training
- Mainly Pascal and Volta GPUs, 8 per server
- CUDA 9 (soon 10)
- Mix of CUDA libraries (cuDNN, cuBLAS, ...) & custom kernels

Various users across several teams
- Their own distinct use cases, changes over time
- Computer vision, speech, translation and many more
- Many machine learning experts, not as many GPU experts

Enable GPU experts to improve efficiency across teams with minimal workload context
Data-Driven Efficiency

You can’t improve what you can’t measure
Efficiency

Efficient Algorithms

Machine learning domain experts

Domain-specific efficiency metrics

Focused on correctness, model experimentation time, and model launch time

Efficient Execution

GPU performance experts

System-centric efficiency metrics

Focused on maximizing use of resources given particular choice of algorithm
Efficiency

Efficient Algorithms

Machine learning domain experts

Domain-specific efficiency metrics

Focused on correctness, model experimentation time, and model launch time

Efficient Execution

GPU performance experts

System-centric efficiency metrics

Focused on maximizing use of resources given particular choice of algorithm

This is us
Many layers of inefficiency

The top part could fill another talk

We will focus on the portion of time when GPUs have been allocated to a job
What does utilization mean?

High-level utilization metric is coarse (GPU in use?)

Doesn’t show how many SMs / functional units in use

A kernel with a single thread running continuously will get 100% GPU utilization

Even if it only uses 0.1% of available GPU resources!

H/W Event: SM Active Cycles:
Cycles where SM had > 0 active warps

Metric: SM Efficiency:
SM Active Cycles / SM Elapsed Cycles

Streaming Multiprocessors (SM) x 80

nvidia-smi: GPU 100% utilized
SM Efficiency: GPU ~1% utilized
Data-Driven Efficiency

Zooming in on SM Utilization

What does utilization mean?

SM Efficiency does not tell the whole story

Single active warp will not utilize SM to anywhere near its potential

Active Warps:
Number of warps in-flight on an SM concurrently (0-64)

Achieved Occupancy:
Active Warps / Active Cycles

Even more detail:
_fu_utilization - Per-functional unit utilization Instructions per cycle (IPC)
FLOPS / peak FLOPS
CUPTI – the CUDA Profiler Tools Interface

Dynamic library for writing profiling and tracing tools

Provides multiple APIs:

- **Activity API**: GPU tracing, e.g. kernel launches, memcopies
- **Callback API**: Driver and library API tracing
- **Event API**: GPU events, e.g. cycles, instructions, active warps
- **Metric API**: Predefined metrics, e.g. SM Efficiency, Achieved Occupancy
- **Profiler API**: Kernel replays, range profiling

Library (libcupti) must be linked into application to be profiled
Contributors to Low GPU Utilization

How to Measure

- CUPTI: CUDA Profiling Tools Interface
- APIs we use:
 - Events API
 - Activities API
 - Callback API
Top workflow accounts for 18% of GPU hours
Average Active Warps is 8 (theoretical max is 64)

Active Warps per SM vary from 0 to 64
"Active" means the warp has been issued and is in-flight

Average Active Warps

\[
\text{Active Warps} = \text{Elapsed Cycles} = \text{SM Efficiency} \times \text{Achieved Occupancy}
\]
Data-Driven Efficiency

Profiling Deep Dive

How to Measure

- CUPTI Hardware Events
- CPU + GPU Tracing
- Application Tracing

Nsight Systems + Application Tracing

- Low SM Efficiency
- Low Achieved Occupancy
- Memory Bottleneck
- Instructions Bottleneck

Low GPU Utilization

CPU + GPU Tracing

Find reasons for large and small gaps in GPU timeline

Job Startup / Checkpoints

CPU Computation

I/O

Memcopy Latency

Kernel Launch Latency

Find reasons for large and small gaps in GPU timeline
Data-Driven Efficiency

Profiling Deep Dive

How to Measure

- Nsight Systems + Application Tracing
- Low GPU Utilization
- Low SM Efficiency
- Low Achieved Occupancy
- Memory Bottleneck
- Instructions Bottleneck
- Too Few Threads
- Cache Misses
- Arithmetic
- Control Flow
- Bandwidth Limit

Find reasons for GPU kernel bottlenecks

CUPTI Hardware Events

CPU + GPU Tracing

Application Tracing

Application Tracing

Job Startup / Checkpoints

CPU Computation

I/O

How to Measure

- Nsight Systems + Application Tracing
- Low GPU Utilization
- Low SM Efficiency
- Low Achieved Occupancy
- Memory Bottleneck
- Instructions Bottleneck
- Too Few Threads
- Cache Misses
- Arithmetic
- Control Flow
- Bandwidth Limit

Find reasons for GPU kernel bottlenecks

CUPTI Hardware Events

CPU + GPU Tracing

Application Tracing

Application Tracing

Job Startup / Checkpoints

CPU Computation

I/O
GPU Timeline Analysis

Understanding low utilization
NVIDIA Nsight Systems

GPU Timeline Analysis

Processes and threads
CUDA and OpenGL API trace
cuDNN and cuBLAS trace
Kernel and memory transfer activities
Thread/core migration
Thread state
Multi-GPU

Source: NVIDIA
```cpp
void FacebookGPUOperatorObserver::Start()
{
    nvtxRangePush(opDetails_ -> opType);
}

void FacebookGPUOperatorObserver::Stop()
{
    nvtxRangePop();
}
```
Fleetwide On-Demand Training

Always available tracing at the push of a button

We use our own tracing library today for the following reasons:

- Always available on-demand (no workload config or build mode)
- Available in production (at very low overhead)
- Integrated with job management UI and other relevant perf tools
- Browser-based (including visualization)

We use CUPTI Activities API to implement on-demand tracing for production workflows. In the future, we hope to expand our use of Nsight Systems.
GPU Timeline Analysis

In-House Tracing Infrastructure

Visualized in Chrome

Caffe2 Operator

Cuda Runtime

GPU Kernels
Libgpumon

Profiling and tracing library

Detailed utilization metrics and tracing on-demand for all production workflows

CUPTI-based Profiling Library

Application

Host Process (Caffe2 / PyTorch)

libcupti

libgpumon

Trace store

Object Store

Metrics Daemon

Trace store

Metrics stores

Batch Analytics

Realtime Analytics

Monitoring

OS

Cuda Driver

H/W

GPU

PMU
Telemetry and Profiling Takeaways

Visibility, top-down, full coverage

Collect metrics deep and wide
- Hierarchical top-down breakdown
- Detailed utilization metrics
- Break down by team, user, package, workflow, GPU kernels etc.

Systematically address low utilization with on-demand tracing
- Nsight Systems and CUPTI Activity API for CPU-GPU interactions
- Application level tracing for big picture

Target frequently used GPU kernels with nvprof and Nsight Compute
- What to target: Use periodic tracing to rank kernels across fleet
Issues and Solutions

Commonly observed reasons for poor utilization and how to address them
Fleetwide Performance Optimization

Issues and Solutions

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat
Fleetwide Performance Optimization

Issues and Solutions

- Aggregate occupancy and resource use stats by workflow
- Select the set of workflows with occupancy < 8
- Rank resulting workflows by aggregate resources consumed
- Select top workflow
- Collect timeline trace
- Identify and fix bottleneck
- Repeat

![Bar chart showing GPU Hours % and Average Active Warps for workflows A to G.](chart.png)

- Workflow A
- Workflow B
- Workflow C
- Workflow D
- Workflow E
- Workflow F
- Workflow G

- GPU Hours %
- Average Active Warps

"facebook Artificial Intelligence"
Fleetwide Performance Optimization

Issues and Solutions

Aggregate occupancy and resource use stats by workflow
Select the set of workflows with occupancy < 8
Rank resulting workflows by aggregate resources consumed
Select top workflow
Collect timeline trace
Identify and fix bottleneck
Repeat

![Chart showing GPU Hours % and Average Active Warps for different workflows](chart.png)
Fleetwide Performance Optimization

Issues and Solutions

1. Aggregate occupancy and resource use stats by workflow
2. Select the set of workflows with occupancy < 8
3. Rank resulting workflows by aggregate resources consumed
4. Select top workflow
5. Collect timeline trace
6. Identify and fix bottleneck
7. Repeat

Optimization Target

GPU Hours %
Average Active Warps
Fleetwide Performance Optimization

Aggregate occupancy and resource use stats by workflow

Select the set of workflows with occupancy < 8 (12.5% of max)

Rank resulting workflows by aggregate resources consumed

Select top workflow

Collect timeline trace

Identify and fix bottleneck

Repeat
Fleetwide Performance Optimization

Issues and Solutions

Before optimization

After optimization

200x operator speedup
Fleetwide Performance Optimization

Issues and Solutions

1. Aggregate occupancy and resource use stats by workflow
2. Select the set of workflows with occupancy < 8
3. Rank resulting workflows by aggregate resources consumed
4. Select top workflow
5. Collect timeline trace
6. Identify and fix bottleneck
7. Repeat
Fleetwide Performance Optimization

Issues and Solutions

Aggregate occupancy and resource use stats by workflow
Select the set of workflows with occupancy < 8
Rank resulting workflows by aggregate resources consumed
Select top workflow
Collect timeline trace
Identify and fix bottleneck
Repeat

Optimization
Target

- GPU Hours %
- Average Active Warps

Workflow A
Workflow B
Workflow C
Workflow D
Workflow E
Workflow F
Workflow G

Aggregate occupancy and resource use stats by workflow
Select the set of workflows with occupancy < 8
Rank resulting workflows by aggregate resources consumed
Select top workflow
Collect timeline trace
Identify and fix bottleneck
Repeat

Optimization
Target

- GPU Hours %
- Average Active Warps

Workflow A
Workflow B
Workflow C
Workflow D
Workflow E
Workflow F
Workflow G
A One-Minute Primer to Caffe2 and PyTorch

The vast majority of GPUs at FB are used for training machine learning models using Caffe2 or PyTorch.

Caffe2 and PyTorch are open source deep learning platforms that facilitate expression, training, and inference of neural network models.

In Caffe2 models are expressed by defining a graph for the neural network whose nodes are operators.

PyTorch supports eager mode in which the graph is expressed implicitly through control flow in an imperative program.

In practice the graph can usually be automatically generated to facilitate optimizations and tracing support similar to Caffe2.
API and Platform Design Choices that Improve Performance

Caffe2 platform support
For translating loops into kernel code with proper block sizes; helps improve SM utilization and occupancy

Dependency-tracking system for operators
Performs memory copies into and out of GPU memory generally only when required

Automatic fusion of operators
Prevents unnecessary copies and kernel invocations

CUDA's similarity to C++
Reduces the barrier of entry for writing GPU code
Causes of Performance Issues in GPU Code

A case of mistaken assumptions

GPUs differ significantly from CPUs

- Much higher number of execution units
- Data-parallel code and execution
- Lower single-thread performance
- Accelerator managed by the CPU

Each difference requires an adaptation in code patterns for good performance

Most new GPU programmers are experienced CPU programmers

- They often use common CPU practices and coding patterns, which may not work well on the GPU
Patterns of GPU Misuse

Most GPU performance issues result from a **Blind Spot** or mistaken assumptions about key GPU architectural aspects.

As a result, the programmer writes **Anti-Pattern** code that performs poorly.

Often, a simple **Solution** is available to a whole class of problems.
Issue 1: CPU to GPU Communication Latency

So close, yet so far away

Blind Spot: Overhead of kernel launches and cudaMemcpy is relatively high

And GPUs are not designed to allow executing a large number of cudaMemcpy calls concurrently

Anti-Pattern: Code that transforms GPU data using CPU loops containing fine-grained cudaMemcpy calls

Solution: Rewrite these operations as GPU kernels that transform the data using blocks of GPU threads
Example: The Case of the 14k cudaMemcpy Calls

CPU Timeline

GPU Timeline Zoomed In
Before and After Optimization

Before optimization

After optimization

200x op speedup, 3.5x workflow speedup
Issue 2: Bottlenecks at the CPU Cause High GPU Idle Time

Feeding the beast

Blind Spot: Peak throughput is much higher on GPU than on CPU

Anti-Pattern: Code that performs expensive data transformations on the CPU, causing GPU to go idle for extended time

Solution 1: Do as much as possible of the expensive work on the GPU with kernels that take advantage of the available concurrency

Solution 2: Run more threads on the CPU to concurrently prepare work for GPU execution to help feed the GPU more effectively
Example: The Case of the Well-Utilized CPU Threads

... and poorly utilized GPUs

A workflow used 8 CPU threads to manage the 8 GPUs on the server.

CPU timeline showed good thread utilization, GPU timeline showed gaps.

Increasing the number of threads on the CPU (from 8 to 64) to concurrently prepare more GPU work improved overall throughput by 40%.
Issues and Solutions

Issue 3: Improper Grain Size per GPU Thread

The more the merrier

Blind Spot: On the CPU, the work per thread needs to be substantial (e.g. to absorb context-switch overhead), but GPUs switch between warps of threads very efficiently, so keeping grain size very low is fine.

Anti-Pattern: GPU code with too much work per thread artificially limits concurrency, yielding low block count and SM efficiency.

Solution: Rewrite kernels to expose more concurrency and increase number of blocks per kernel.
Issues and Solutions

Issue 4: Improper Memory Access Patterns

Blind Spot: GPU memory data access patterns between threads in the same warp can affect achieved memory bandwidth by more than an order of magnitude.

Anti-Pattern: Code with inefficient memory access patterns, where threads access different memory segments or individual threads copy large chunks of memory.

Solution: Rewrite kernels to structure memory access patterns in the proper way to utilize bandwidth effectively.
Proper GPU Global Memory Access Patterns

Threads access addresses in the same segments

Each thread fetches one word (fine grain)

Source: CUDA Programming Guide
Example: Increase Concurrency and Improve Memory Access Pattern

A timeline for a workflow showed 95% of GPU active time in one operator that performed a data transformation.

GPU Summary indicates good utilization.

95% of active time spent executing one kernel type.
Example: Increase Concurrency and Improve Memory Access Pattern

Two birds with one stone

A timeline for a workflow showed 95% of GPU active time in one operator that performed a data transformation.

Each thread in the kernel block was issuing a `memcpy` inside GPU global memory to replicate a large portion of the input tensor.

We rewrote the kernel code so each thread would write a single value of the output tensor:

```c
memcpy(output_ptr, input_ptr, inner_dim * item_size);
output_data[index] = input_data[row * inner_dim + col];
```

3x speedup in operator and workflow.
Issue 5: Insufficient Concurrency

When a GPU for your workload is overkill

Blind Spot: Modern GPUs contain thousands of arithmetic units, so code must expose that much concurrency for proper utilization

Anti-Pattern: Code that runs a few kernel blocks at a time with only a small fraction of SMs utilized

Solution: If the problem inherently has low concurrency, consider running on CPU instead
Example: Too Little Work

You know you are in trouble when it takes longer to launch a kernel than to run it
Optimization Takeaways

Platform abstractions allow our workflow developers to make use of GPUs and help with some performance aspects.

Timeline tracing is the first tool you should use for identifying bottlenecks in parallel workflows.

To become a better GPU programmer, understand the key differences between GPU and CPU architectures:

- Very high parallelism — requires high concurrency and efficiently feeding work from CPU
- Accelerator - minimize CPU to GPU communication
- Zero-cost “context switch” — don’t be afraid to keep grain size very low
- Access patterns — learn the optimal access patterns for the various memory/cache types on the GPU

Don’t reinvent the wheel - use optimized libraries like cuDNN whenever possible.
Thank you for watching
Understanding the workflow

A tracing tool such as NSight Systems is what we use to investigate low utilization cases

- Collects both CPU and GPU traces
- API for adding application-level trace events
- Great at highlighting system-wide bottlenecks

In addition, we use CUPTI Activities API directly

- NVIDIA's tools are built on top of CUPTI APIs
- Allows greater flexibility
- Derive metrics on-the-fly, aggregate per-kernel stats etc

Use off-the-shelf tracing tools or use CUPTI APIs to build your own
Data-Driven Efficiency

%GPU Hours and Average Active Warps by Workflow

Efficiency = \frac{\text{"Goodput"}}{\text{Cost}}

Goodput is not easily measurable - workload and context dependent
From images processed to user engagement rates
Cost is standardized and measurable
E.g. GPU hours

Utilization = \frac{\text{Resources}_{\text{Used}}}{\text{Resources}_{\text{Available}}}

Used resources is measurable in context independent manner
Various levels of system metrics
From GPU hours to FLOPs / instructions
Available resources is measurable
Available GPU hours, peak FLOPs / instructions

Poor utilization = waste of expensive resource TODO: clarify
Focus on improving utilization - lower cost for the same goodput
Contributors to Low GPU Utilization

- Low SM Efficiency
- Low Achieved Occupancy
- Memory Bottleneck
- Instructions Bottleneck
- CPU-Only Activities
- Memcopy Latency
- Kernel Launch Latency
- Job Startup / Checkpoints
- CPU Computation
- I/O