

Intelligent Operation and Maintenance of Public Cloud Based on GPU-Accelerated Machine Learning

Feng Xie(stephen.xf@alibaba-inc.com) Zhaowei Ouyang(zhaowei.oyzw@alibaba-inc.com)

AIOps on Public Cloud

Product recommendations

d Upgrading	Portrait		Product recommendations		
prediction	VM Portr	ait	Analysis	s of purchasing	
tection	Customer Po	ortrait			
			Resource	demand analysis	
me prediction	Cluster health	n portrait		:	
				·	
gression	Clustering				
_S	/bridDB for MySQL	Dask		Rapids	
Cluster Data		ata			
KPI, Abrior., Eveni	Power, Rad				

Machine Learning Platform Architecture

KPI Prediction

CPU Load Time Series

Periodicity

Similarity

Training Flow Chart

Predicting Flow Chart

Classified?

FFT

No

Predicting wih a general regression model

Periodicity of Time Series

The Fast Fourier Transform (FFT) is used to transform the time series data from the time domain to the frequency domain. The frequency domain distribution is analyzed to determine whether it is periodic or not.

$$x_k = \sum_{n=0}^{N-1} x_n$$

 $c_n e^{-i2\pi kn/N}$

Basics of Signal Processing

Input time series

Original series

Frequency Domain

Similarity of Time Series

Use DTW distance as a measure of similarity between time series

	0	$d_{0,1}$	•••	<i>d</i> _{0,<i>n</i>-1}	$d_{0,n}$	
	<i>d</i> _{1,0}	0	•••	$d_{1,n-1}$	$d_{1,n}$	
M _{distance} =	• •	• •	•••	• •	• •	
	<i>d</i> _{<i>n</i>-1,0}	$d_{n-1,1}$	•••	0	$d_{n-1,n}$	
	<i>d</i> _{<i>n</i>,0}	$d_{n,1}$	•••	$d_{n,n-1}$	0	

K(i, j)

$$= e^{-\frac{d_{i,j}}{2\sigma^2}}$$

		<i>S</i> _{0,1}	•••	<i>S</i> _{0,<i>n</i>-1}	<i>s</i> _{0,<i>n</i>}
	<i>S</i> _{1,0}	1	•••	<i>S</i> _{1,<i>n</i>-1}	<i>S</i> _{1,<i>n</i>}
S _{similar} =	•	• •	•••	• •	• •
	<i>S</i> _{<i>n</i>-1,0}	<i>S</i> _{<i>n</i>-1,1}	•••	1	s _{n-1,}
	<i>S_{n,0}</i>	<i>S</i> _{<i>n</i>,1}	•••	$S_{n,n-1}$	1

GPU-Accelearated FFT and DTW distance calculation

The calculation of Dynamic Time Warping(DTW) distance is a task with high time and space complexity. We can use the powerful parallel computing power of GPU to accelerate the calculation of DTW distance.

Use cuFFT to accelearate FFT calculation of massive time series data

Clustering results

Time Series Regression Model

Model	Advantage	Disadvantage
ARIMA	Simple Hyperparameter Optimization	Low accuracy
LSTM	High accuracy	Complicated Hyperparameter Optimization Poor interpretability
XGBoost Regression Tree	High accuracy Good interpretability	Complicated Hyperparameter Optimization

Regression algorithm Result:XGBoost

Predict Next 24 Hours Result

Regression algorithm accuracy

MSE	MAPE
)% <5	70% <0.5
3% <5	83% <0.5

Migration downtime prediction

Use XGBoost Classification Tree to predict whether a VM is migration-sensitive

Feature

- Average vCPU utilization(1 hour before migration)
- Amplitude of fluctuation with vCPU utilization(one day before migration)
- VM Instance Type(How many vCPU/Memory?)
-

Result

- Migration-insensitive VM (downtime <= 100 ms)
- Migration-sensitive VM (downtime > 100 ms)

Migration Prediction Flow Chart

Migrate immediately

Predict next 24 hours load

Classification algorithm

Predict a nearest migrationinsensitive window in next 24 hours

Classification Algorithm Accuracy:XGBoost

Accuracy ≈70% Migration-sensitive Recal:76%

Classific	cation	n_report:			
		precision	recall	fl-score	support
	0.0	0.94	0.66	0.77	22346
	1.0	0.28	0.76	0.40	3878
micro	avg	0.67	0.67	0.67	26224
macro	avg	0.61	0.71	0.59	26224
weighted	avg	0.84	0.67	0.72	26224

Classification Algorithm Performance:XGBoost

Latency:60% drop Throughout:20x Speed-up

GPU:NVIDIA Tesla P100 * 8 **CPU:2** Socket Intel Xeon E5-2682 v4 (Broadwell)

Questions?

