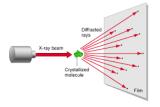
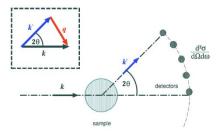
A Machine Learning Method in Computational Materials Science


Computer Network Information Center, Chinese Academy of Sciences

> Contributors: Yangang Wang Xueyuan Liu Boyao Zhang Rongqiang Cao



Experimental Technique

X-ray crystallography

Neutron scattering

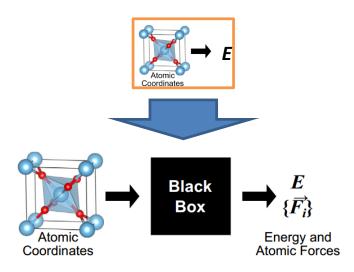
Computer Simulation

Based on the Principle of Minimum Energy: For a closed system, the internal energy will decrease and approach a minimum value at equilibrium.

Molecular Dynamics

Fast but Rough

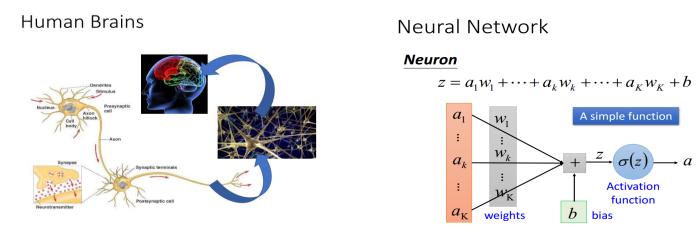
Density Function Theory


Precise but Time-consuming

Machine Learning

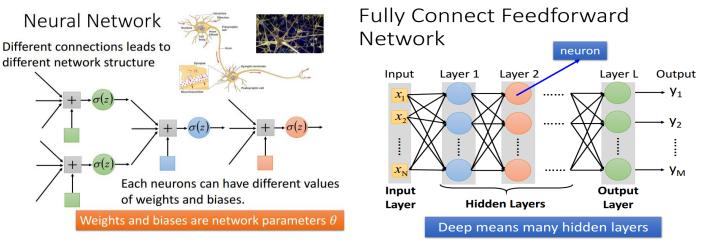
The basic model of Machine Learning Method

Nongnuch Artrith, Alexander Urban. Computational Materials Science 114 (2016) 135-150



The Goal or Advantage of Machine Learning Potential:

- More precise than molecular dynamics
- Much lower time-consumption than DFT
- Reduce the dependence on the physical model and the human intervention
- Suitable for different molecular systems
- Reuse the data we get during the research


Artificial Neural Network

Hongyi Li, Open Course: Understanding Deep Learning in One Day

Artificial Neural Network

Hongyi Li, Open Course: Understanding Deep Learning in One Day

Input Node:Description of Atomic InteractionsOutput Node:The Energy of Structure

• using directly the Cartesian atomic coordinates as inputs of ANN

 $E(\sigma) \approx E^{\text{ann}}(\sigma) = \mathcal{N}(\{\mathbf{R}_i\})$

resulting in highly specialized potentials that are not transferable to systems with different numbers of atoms

replaced by local structural environment

$$E(\sigma) = \sum_{i}^{\text{atoms}} E_i(\sigma) \approx \sum_{i}^{\text{atoms}} E_i(\sigma_i)$$

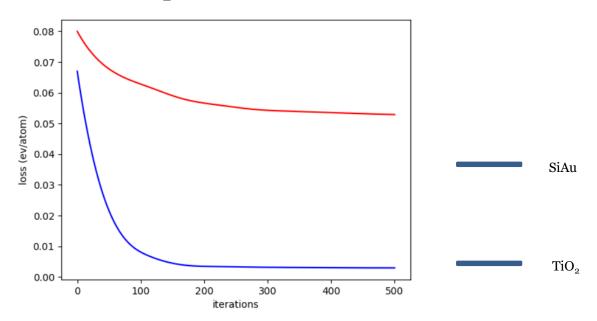
the basis set of radial and angular symmetry functions:

$$G_i^r(\sigma_i) = \sum_{j \neq i}^{\text{neighbors}} g^r(R_{ij})$$
 with $R_{ij} = |\mathbf{R}_j - \mathbf{R}_i|$

$$G_i^{a}(\sigma_i) = \sum_{k \neq j \neq i}^{\text{negations}} g^{a}(\theta_{ijk}) \quad \text{with} \quad \theta_{ijk} = \angle (\mathbf{R}_j - \mathbf{R}_i, \mathbf{R}_k - \mathbf{R}_i)$$

A.P. Bartók, R. Kondor, G. Csányi, Phys. Rev. B 87 (2013) 184115

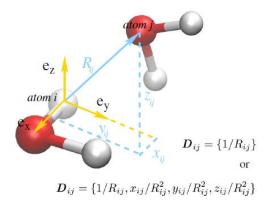
No.	η (Å ⁻²)	No.	η (Å ⁻²)
1-2	0.003214	9-10	0,214264
3-4	0.035711	11-12	0,357106
5-6	0.071421	13-14	0,714213
7-8	0.124987	15-16	1.428426


No.	η (Å ⁻²)	λ	ζ	No.	η (Å ⁻²)	λ	ζ
17-19	0.000357	-1.0	1.0	44-46	0.000357	1.0	1.0
20-22	0.028569	-1.0	1.0	47-49	0.028569	1.0	1.0
23-25	0.089277	-1.0	1.0	50-52	0.089277	1.0	1.0
26-28	0.000357	-1.0	2,0	53-55	0.000357	1.0	2.0
29-31	0.028569	-1.0	2,0	56-58	0.028569	1.0	2.0
32-34	0.089277	-1.0	2,0	59-61	0.089277	1.0	2.0
35-37	0.000357	-1.0	4,0	62-64	0.000357	1.0	4.0
38-40	0.028569	-1.0	4.0	65-67	0.028569	1.0	4.0
41-43	0.089277	-1.0	4,0	68-70	0.089277	1.0	4.0

The parameters of symmetry functions for TiO₂

Syı	mmetry function	us (G ²)	Syı	mmetry function	15 (G ²)
No.	Neighboring	η	No.	Neighboring	η
	element	$(Å^{-2})$		element	(Å ⁻²)
1	0	0.0009	15	Cu	0.0350
2	Au	0.0009	16	Н	0.0350
3	Cu	0.0009	17	0	0.0600
4	н	0.0009	18	Au	0.0600
5	0	0.0100	19	Cu	0.0600
6	Au	0.0100	20	Н	0.0600
7	Cu	0.0100	21	0	0.1000
8	н	0.0100	22	Au	0.1000
9	0	0.0200	23	Cu	0.1000
10	Au	0.0200	24	н	0.1000
11	Cu	0.0200	25	0	0.2000
12	н	0.0200	26	Au	0.2000
13	0	0.0350	27	Cu	0.2000
14	Au	0.0350	28	Н	0.2000

The parameters of symmetry functions for Cu_aAu_bO_cH_d



The convergence curve using the same functional parameters as TiO2 in SiAu

A new method for getting descriptors without designing different functional parameters

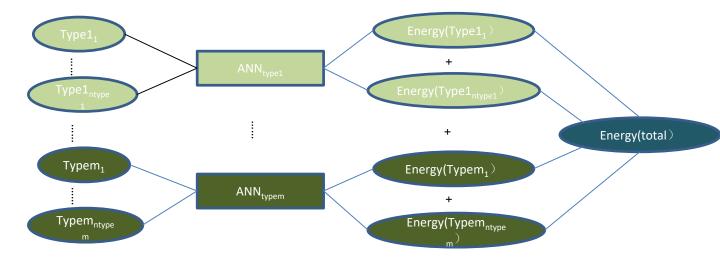
only the radial information

the full radial and angular information of atom i, j

Linfeng Zhang, Jiequn Han, Han Wang, etc. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics, Physical Review Letters 120, 143001 (2018)

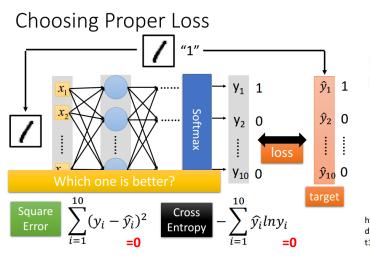
get the new coordinate based on its local framework of centered atom i

$$\mathcal{R}(R_{ia(i)}, R_{ib(i)}) = \begin{pmatrix} e[R_{ia(i)}] \\ e[R_{ib(i)} - (R_{ia(i)} \cdot R_{ib(i)}R_{ia(i)}] \\ e[R_{ia(i)} \times R_{ib(i)}] \end{pmatrix}^T, \qquad e[x] \equiv \frac{x}{||x|}$$

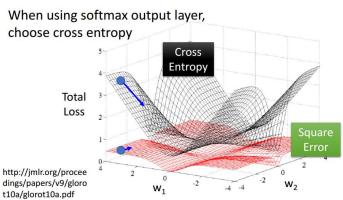

$$R'_{ij} = \left\{ x'_{ij}, y'_{ij}, z'_{ij} \right\} = \left\{ x_{ij}, y_{ij}, z_{ij} \right\} \mathcal{R}(R_{ia(i)}, R_{ib(i)})$$

$$D_{ij} \equiv \begin{cases} \left\{ D_{ij}^{0}, D_{ij}^{1}, D_{ij}^{2}, D_{ij}^{3} \right\} = \left\{ \frac{1}{R'_{ij}}, \frac{x'_{ij}}{R'_{ij}^{2}}, \frac{y'_{ij}}{R'_{ij}^{2}}, \frac{z'_{ij}}{R'_{ij}^{2}} \right\}, \\ \left\{ D_{ij}^{0} \right\} = \left\{ \frac{1}{R'_{ij}} \right\}, \\ R'_{ij} = ||R'_{ij}|| \end{cases}$$

Linfeng Zhang, Jiequn Han, Han Wang, etc. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics, Physical Review Letters 120, 143001 (2018)



The Structure of Artificial Neural Network



Loss Function

Hongyi Li, Open Course: Understanding Deep Learning in One Day

Choosing Proper Loss

Loss Function

Apart from energy, force and virial are considered in loss function as well

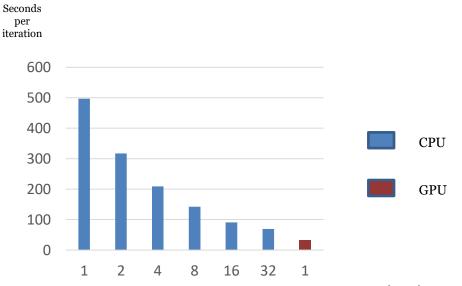
$$L(p_{\epsilon}, p_f, p_{\xi}) = p_{\epsilon} \Delta \epsilon^2 + \frac{p_f}{3N} \sum_i |\Delta F_i|^2 + \frac{p_{\xi}}{9} ||\Delta \xi||^2$$

The learning rate and the weight of energy, force, virial vary throughout the training procedure

$$r_{l} = r_{l0}d_{r}^{-c_{s}/d_{s}}$$
How the learning rate varies
$$p = p_{limit}(1 - \frac{r_{l}}{r_{l0}}) + p_{start}(\frac{r_{l}}{r_{l0}}),$$
How the weight of different factors vary
$$\begin{cases}
p_{estart} = 1, & p_{elimit} = 400; \\
p_{fstart} = 1000, & p_{flimit} = 1,
\end{cases}
\begin{cases}
p_{vstart} = 1, p_{vlimit} = 400, & \text{for liquid water and ice (b);} \\
p_{vstart} = 0, p_{vlimit} = 0, & \text{for ice (c) and (d) and the molecules.}
\end{cases}$$

Linfeng Zhang, Jiequn Han, Han Wang, etc. Deep Potential Molecular Dynamics: A Scalable Model with the Accuracy of Quantum Mechanics, Physical Review Letters 120, 143001 (2018)

Training with Deep Learning Framework



We want to use PyTorch to implement something as follows:

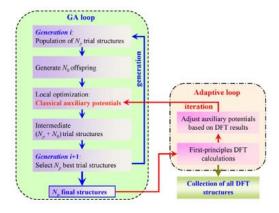
- Tensor computation with strong GPU acceleration
- Various optimizers for different systems
- Save the model and retrain it at any point

Tensor computation with strong GPU acceleration

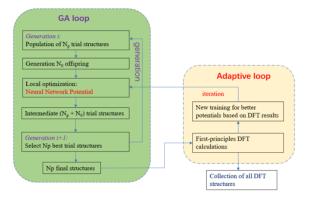
Numbers of CPU core or GPU

Various optimizers for different systems

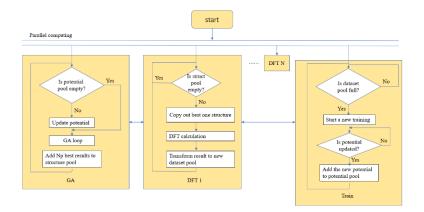
Optimizer	Best Loss
Adadelta	0.0155
Adam	0.0072
Adamax	0.0110
ASGD	0.0135
SGD	0.1676
Rprop	0.1159
RMSprop	0.1037


train TiO ₂ system	

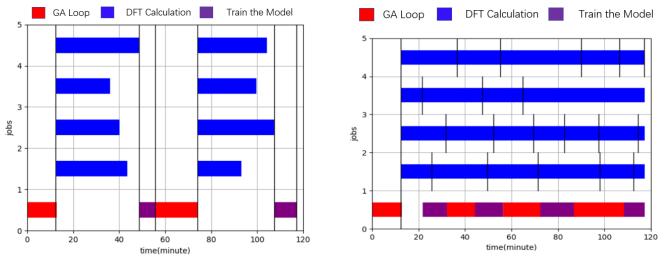
Optimizer	Best Loss
Adadelta	0.0341
Adam	0.0139
Adamax	0.0172
ASGD	0.0196
SGD	0.0294
Rprop	0.0172
RMSprop	0.0083


train SiAu system

Search for reasonable crystal structures

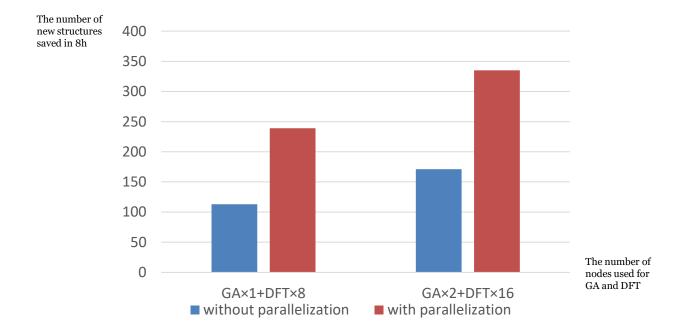

adaptive genetic algorithm

adaptive genetic algorithm using NNP


Performance Optimization of AGA

Parallel framework for GA, DFT and retrain module of AGA

Performance Optimization of AGA



without parallelization

with parallelization

Performance Optimization of AGA

Algorithm Optimization of AGA

The problems encountered in the retraining module after supplementing new data into original dataset

- The data volume of the original dataset is extremely large, while that of the new data are small
- The existing model has fitted the original dataset well already, but difficult to fit the new data

The reason above results in the phenomenon that new data are hard to be learnt in retrain procedure

Modify the loss function in order to adjust the weight of each structure in dataset based on the loss in last iteration:

$$FL_i = \left(\frac{n * loss_i}{\sum_{i=1}^n loss_i}\right)^t$$

Algorithm Optimization of AGA

Los	0	0.5	1	2	3
Ø.015	5	1	2	3	2
0.012	22	10	10	7	9
0.01	45	26	31	21	15
0.009	77	39	49	125	272
0.008	197	103	117	289	
0.007	279	174	256		

Shows the number of iterations needed with different exponent to reach the targeted loss

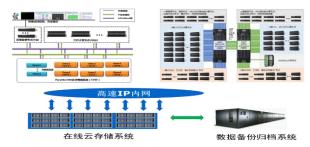
Algorithm Optimization of AGA

select some unlearnt data into dataset

- Parallel training =>several potentials
- New data + several potentials => several energies
- Calculate the difference between several energies

If the difference is big enough, we can infer that there is few similar structures in dataset and we should put the structure into dataset; otherwise, we leave it away

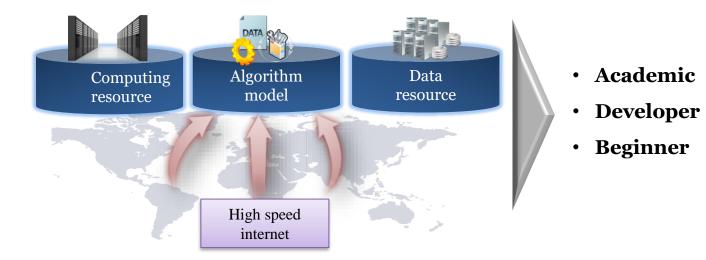
AI Computing and Data Service Platform


AI Computing and Data Service Platform

Easy-to-use AI platform that supports scientific discovery

- Provide a variety of ways to use
- Various types of artificial intelligence softwares
- Establish standardized public data
 resources
- Establish platform access standards and evaluation

The system is equipped with 380 P100 GPUs, double-precision peak 1.8PF, single-precision peak 3.6PF



Establish 118 service accounts and 200 training accounts

- Institute of High Energy Physics, Chinese Academy of Sciences, Institute of Biophysics, Chinese Academy of Sciences, etc.
- Peking University, China Earthquake Administration and other scientific research institutions
- Caiyun, Yihualu, Yuzhi Technology, Haina Yunfan, Beijing Super Satisfaction and other companies


AI Computing and Data Service Platform

Create an easy-to-use artificial intelligence platform that supports scientific discovery

Artificial intelligence platform construction

Intelligent management

Data and cluster maintenance require information-based intelligent management Increase management efficiency

Parallel Computing

The amount of calculation is huge, and GPU accelerated calculation can greatly speed up the analysis

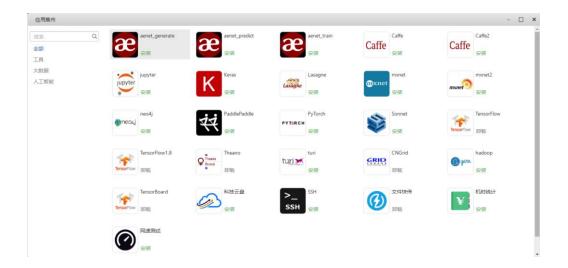
Fast tool integration

There are many kinds of algorithms related to artificial intelligence, and new algorithms emerge in an endless stream. Need to be able to deploy quickly on the cloud

Interaction is simple

No need to write code in front of the black box, data calculation can be done with simple mouse clicks and settings

Performance visualization


Free users from the ubiquitous data can easily analyze performance status

Application Integration: Deep Learning Framework, Industry Applications

>Integrated mainstream deep learning framework

≻Integrated parallel application

View and manage your jobs in all directions

•Job files, logs, and performance ^{Output file} at a glance

时长 操作	100000				٩		(他	· 10条 ·	ALL
	排队时长	状态	结束时间	开始时间	执行队列	核数	密級	作业名称	作业ID
38s 😐 G	17.38s	RUN	-	2018-04-12 09:35:58	compute	16核	糯	fluent_demo	1040
93s 🔒	53.93s	FAIL	2018-04-12 03:48:36	2018-04-11 15:18:29	compute	1核	-	fluent	1037
95 🐰	6.49s	DONE	2018-04-11 16:11:51	2018-04-11 16:10:59	compute	1核	÷	abaqus	1039
ls 📓	9.41s	DONE	2018-04-11 16:11:40	2018-04-11 16:10:46	compute	1核		abaqus	1038
25 📓	5.12s	DONE	2018-04-11 15:12:23	2018-04-11 15:10:59	compute	1核		abaqus	1036
28s	59.28s	CANCEL	2018-04-11 15:00:58	2018-04-11 14:27:30	compute	10核	-	fluent	1034
2	5.1	DONE	2018-04-11 15:12:23	2018-04-11 15:10:59	compute	1核		abaqus	1036

	用的作业			- 🗆 ×
	Malixia DeMai NA	12.00		0=+
	WHERE Cluster-A	mail: 1040 marste : fluent_demo	CRUS RUN BORRS	alas derro
	HERRINE: 2018-04-12 09.15:33	1019116 : 291582 (011049 : 2.41MB		: compute-03 20% ~
Oright of the second of the	0			
Output file		295 establisht 1,0553 det		文和大小 m.R 501.5168 T.m
	STR. IT.L.			
		805292		÷
Output log	<pre>PF: Du file "platible du" diredy PF: Ok to aventh? [cancel] put PF: Niting "platible du" PF: Niting "attention file 2 00780.t Di: hiting "actenion file 2 00780.t Di: hiting "actenion file 2 00780.t Di: hiting "actenion file 2 00780.t Di: Dis Dis Action file Concernence PF: Di: Dis Scilleroff 6 00780-10 0.t Dis Scilleroff</pre>	wt"	8 1537-80-13 989-8793	
	我的作业			- 🗆 ×
	输出文件 日志输出40	1403242		÷
	作业性秘密达领 (PU(5) (PU(5)	作让性感的时间 Memory(10) 150 Net Sen (304)	79 35:00	RESKE
Performance			112.10	2018-04-12 09:35:40
	NS NS	Net 0		2018-04-12 09:35:58
statistics	NS V	Net 0		
Hot Resource statistics	N a N a D e		18 04 11 101100	managanyo managanyo hitorya hitorya hitorya hitorya hitorya hitorya